
cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 1

CS766: Analysis of concurrent programs (first
half) 2023

Lecture 8: Why abstraction?

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-01-18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 2

Topic 8.1

Labeled transition system (reminder)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 3

labeled transition system (LTS)

Definition 8.1
A program P is a tuple (V , L, ℓ0, ℓe ,E), where

▶ V is a vector of variables,

▶ L be set of program locations,

▶ ℓ0 is initial location,

▶ ℓe is error location, and

▶ E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 8.1 ℓ0

ℓ1

ℓe

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {ℓ0, ℓ1, ℓe}
E = {(ℓ0, x′ = 1, ℓ1),

(ℓ1, x
′ = x+ 2, ℓ1),

(ℓ1, x < 0, ℓe)}

Notation:
If e = (ℓ, ρ(V ,V ′), ℓ′) ∈ E , then
e(V ,V ′) ≜ ρ(V ,V ′),
e(loc) ≜ ℓ and
e(loc ′) ≜ ℓ′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 4

Semantics
Consider program P = (V , L, ℓ0, ℓe ,E).

Definition 8.2
A state s = (ℓ, v) of a program is program location ℓ and a valuation v of V .

Let v(x) ≜ value of variable x in v . For state s = (ℓ, v), let s(x) ≜ v(x) and s(loc) ≜ ℓ.

Definition 8.3
A path π = e1, . . . , en in P is a sequence of transitions such that, for each 0 < i < n,
ei = (ℓi−1, , ℓi) and ei+1 = (ℓi , , ℓi+1).

Definition 8.4
An execution corresponding to path e1, . . . , en is a sequence (ℓ0, v0), .., (ℓn, vn) of states such that
∀i ∈ 1..n, ei (vi−1, vi) is true. An execution belongs to P if there is a corresponding path in P.

Definition 8.5
P is safe if there is no execution of P from ℓ0 to ℓe .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 5

Reminder: symbolic strongest post

sp : Σ(V)× Σ(V ,V ′) → Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) ≜ (∃V : F (V) ∧ ρ(V ,V ′))[V /V ′]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 6

Topic 8.2

Reachability and Abstraction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 7

Reachability

Consider program P = (V , L, ℓ0, ℓe ,E)

We have seen in order to prove that no execution will reach ℓe , we need to compute the reachable
valuations for each location in L.

Earlier, we called the set of reachable valuations as invariants.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 8

Reachable valuations

Let Xℓ be a variable representing the reachable valuations at location ℓ ∈ L

Let X denote the vector of Xℓs.

Example 8.2

Xℓ0

Xℓ1

Xℓe

x ′ = 1

x < 0

x ′ = x + 2

X = [Xℓ0 ,Xℓ1 ,Xℓ0]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 9

Reachability as equation
We trivially know Xℓ0 = ⊤.

For the other location, if we know reachable states for the sources of incoming edges we may
compute the reachable states at the location.

Xℓ′

Xℓ1

...

Xℓn

ρ1

ρn

Formally, we write the relation between reachable valuations using sp

∀ℓ′ ∈ L \ {ℓ0}. Xℓ′ =
∨
(ℓ,ρ,ℓ′)∈E

sp(Xℓ, ρ)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 10

Solving reachability equation

For program P = (V , L, ℓ0, ℓe ,E), we need to solve the following reachability equation.

Xℓ0 = ⊤

∀ℓ′ ∈ L \ {ℓ0}. Xℓ′ =
∨
(ℓ,ρ,ℓ′)∈E

sp(Xℓ, ρ)

Our goal is to show that Xℓe = ⊥.

If a solution of the above equations exists with Xℓe = ⊥, then the program is safe.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 11

Example: reachability equations

Example 8.3

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Reachability equations:

Xℓ0 = ⊤

Xℓ1 = sp(Xℓ0 , x
′ = 0) ∨ sp(Xℓ1 , x

′ = x + 1)

Xℓe = sp(Xℓ1 , x < 0 ∧ x ′ = x)

Since Xℓ1 depends on itself, we can not compute it with some sp engine.

If somehow we have Xℓ1 , we can compute others.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 12

Hoare logic and invariants
We have seen guess and check methods for verification.
▶ Hoare logic
▶ Invariant checking

In the above, we do not truly compute Xℓs.

We guess Xℓs at the cut-points and check if there is a solution of the equation compatible with the
following equations.

Xℓ0 = ⊤

∀ℓ′ ∈ L \ {ℓ0}.
∨
(ℓ,ρ,ℓ′)∈E

sp(Xℓ, ρ)⇒Xℓ′

such that Xℓe = ⊥.

Exercise 8.1
Write the reachability equation using wp

Not equality but
implication

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 13

What if we want to compute X without guessing?

Let us try to avoid guessing and compute X .

We need to collect the reachable valuations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 14

Reachability as fixed point equation
For each ℓ′ ∈ L, consider the following function Fℓ′ where X is input and return a set of valuations.

Fℓ′(X) = Xℓ′︸︷︷︸
known reaching valuations in X

∨
∨

(ℓ,ρ,ℓ′)∈E

sp(Xℓ, ρ)︸ ︷︷ ︸
more reaching valuations due to neighbours

Now, let us define the following function.

F (X) = [Fℓ0(X),Fℓ1(X),]

A fixed point of F may be the solution of the reachability problem.

Exercise 8.2
a. Why may?
b. Give the least fixed point of F?
c. Give the greatest fixed point of F?
d. Are the above fixed points are solutions of the reachability?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 15

A specific fixed point

We are interested in a specific fixed point such that

Xℓ0 = ⊤

Xℓe = ⊥

The least fixed point of F violated the first requirement.

The greatest fixed point of F violated the last requirement.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 16

Iterative fixed point computation

(source: wikipedia)

Solving x = cos(x)

Start with initial guess x = −1, keep applying cos, and hope for convergence

cos(cos(....cos(−1)...))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 17

Similarly we may compute fixed point iteratively

Initial assignment to variables and iteratively compute the fixed point

Let X i
ℓ ≜ value of Xℓ at ith iteration. As a vector, X i ≜[X i

ℓ0
, ...]

Initially:
X 0
ℓ0 ≜⊤ and X 0

ℓ ≜⊥

for each ℓ ̸= ℓ0.

At kth iteration, we compute X k

∀ℓ′ ∈ L. X k
ℓ′ = X k−1

ℓ′ ∨
∨
(ℓ,ρ,ℓ′)∈E

sp(X k−1
ℓ , ρ)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 18

Convergence of fixed-point iterations

If X k = X k+1, then we say that the iterations have converged at iteration k and we have
computed the fixed point.

We can prove that the fixed point obtained by the iterative method is a least fixed point of the
following function.

F (X) = [⊤ ∨ Fℓ0(X),Fℓ1(X),]

We will get to the proof later.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 19

Example: Fixed-point equations

Example 8.4

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Fixed-point equations:

Xℓ0 = Xℓ0

Xℓ1 = Xℓ1 ∨ sp(Xℓ0 , x
′ = 0) ∨ sp(Xℓ1 , x

′ = x + 1)

Xℓe = Xℓe ∨ sp(Xℓ1 , x < 0 ∧ x ′ = x)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 20

Example: Iterative fixed point with sp

Example 8.5

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Initial value:

X 0
ℓ0
:= ⊤

X 0
ℓ1
:= ⊥

X 0
ℓe
:= ⊥

Iteration 1

X 1
ℓ0
:= ⊤

X 1
ℓ1
:= X 0

ℓ1
∨ sp(X 0

ℓ1
, x ′ = x + 1) ∨ sp(X 0

ℓ0
, x ′ = 0)

:= ⊥ ∨ sp(⊥, x ′ = x + 1) ∨ sp(⊤, x ′ = 0)
:= ⊥ ∨⊥ ∨ sp(⊤, x ′ = 0) := ⊥ ∨⊥ ∨ x = 0 := (x = 0)

X 1
ℓe
:= sp(X 0

ℓ1
, x < 0 ∧ x ′ = x) := sp(⊥, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 21

Example: Iterative fixed point with sp

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Iteration 2

X 2
ℓ0
:= ⊤

X 2
ℓ1
:= X 1

ℓ1
∨ sp(X 1

ℓ1
, x ′ = x + 1) ∨ sp(X 1

ℓ0
, x ′ = 0)

:= (x = 0) ∨ sp(x = 0, x ′ = x + 1) ∨ sp(⊤, x ′ = 0)
:= (x = 0 ∨ x = 1 ∨ x = 0) := (0 ≤ x ≤ 1)

X 2
ℓe
:= sp(X 1

ℓ1
, x < 0 ∧ x ′ = x) := sp(x = 0, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 22

Example: diverging analysis with sp(contd.)

ℓ0

ℓ1

ℓe

x := 0

x < 0

x ++;

Iterates(contd.):

X 3
ℓ0
:= ⊤,X 3

ℓ1
:= (0 ≤ x ≤ 2),X 3

ℓe
:= ⊥

...
X n
ℓ0
:= ⊤,X n

ℓ1
:= (0 ≤ x ≤ n − 1),X n

ℓe
:= ⊥

...will never converge

How to compute fixed point effectively?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 23

Abstract post sp#

Now we introduce the key method of verification

Let us define abstract post.

sp# : Σ(V)× Σ(V ,V ′) → Σ(V)

Abstract post must satisfy the following condition

sp(F , ρ) ⇒ sp#(F , ρ)

It is up to us how we choose sp# that satisfies the above condition

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 24

Example: abstract post

Example 8.6

Consider the following widening function

wideOne(X) = {n + 1, n|n ∈ X}

We may define the following abstract post

sp#(F , ρ) = wideOne(sp(F , ρ))

Example 8.7

Apply the abstract post on the following
▶ sp#(x > 0, x > 1 ∧ x ′ = x) = x > 1

▶ sp#(x > 0, x < 10 ∧ x ′ = x) = 11 > x > 0

Exercise 8.3
Apply the abstract post on the following
▶ sp#(x > 0, x ′ = x + 1)

▶ sp#(x < 5, x ′ = x + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 25

Abstract Fixed point

Replace sp by sp# for faster convergence

initially: X 0
ℓ0
≜ ⊤ and X 0

ℓ ≜ ⊥ for each ℓ ̸= ℓ0
and at each iteration

X k+1
ℓ0

= ⊤

∀ℓ′ ∈ L \ {ℓ0}. X k+1
ℓ′ = X k

ℓ′ ∨
∨
(ℓ,ρ,ℓ′)∈E

sp#(X k
ℓ , ρ)

After convergence, Xℓ will be a superset of reachable states at ℓ.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 26

Example: Abstract fixed-point equation

Example 8.8

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Fixed-point equations:

Xℓ0 = Xℓ0

Xℓ1 = Xℓ1 ∨ sp#(Xℓ0 , x
′ = 0) ∨ sp#(Xℓ1 , x

′ = x + 1)

Xℓe = Xℓe ∨ sp#(Xℓ1 , x < 0 ∧ x ′ = x)

Let us use the following abstract post

sp#(F , ρ) = wideOne(sp(F , ρ))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 27

Example: Iterative fixed point with sp#

Example 8.9

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Initial value:

X 0
ℓ0
:= ⊤

X 0
ℓ1
:= ⊥

X 0
ℓe
:= ⊥

Iteration 1

X 1
ℓ0
:= ⊤

X 1
ℓ1
:= X 0

ℓ1
∨ sp#(X 0

ℓ1
, x ′ = x + 1) ∨ sp#(X 0

ℓ0
, x ′ = 0)

:= ⊥ ∨ sp#(⊥, x ′ = x + 1) ∨ sp#(⊤, x ′ = 0)
:= ⊥ ∨⊥ ∨ 0 ≤ x ≤ 1 := 0 ≤ x ≤ 1

X 1
ℓe
:= sp#(X 0

ℓ1
, x < 0 ∧ x ′ = x) := sp#(⊥, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 28

Example: Iterative fixed point with sp#

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Iteration 2

X 2
ℓ0
:= ⊤

X 2
ℓ1
:= X 1

ℓ1
∨ sp#(X 1

ℓ1
, x ′ = x + 1) ∨ sp#(X 1

ℓ0
, x ′ = 0)

:= (0 ≤ x ≤ 1) ∨ sp#(0 ≤ x ≤ 1, x ′ = x + 1)∨ sp#(⊤, x ′ = 0)
:= (0 ≤ x ≤ 1 ∨ 1 ≤ x ≤ 3 ∨ 0 ≤ x ≤ 1)
:= (0 ≤ x ≤ 3)

X 2
ℓe
:= sp#(X 1

ℓ1
, x < 0∧x ′ = x) := sp#(0 ≤ x ≤ 1, x < 0∧x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 29

Example: diverging analysis with sp#(contd.)

ℓ0

ℓ1

ℓe

x := 0

x < 0

x ++;

Iterates(contd.):

X 3
ℓ0
:= ⊤,X 3

ℓ1
:= (0 ≤ x ≤ 5),X 3

ℓe
:= ⊥

...
X n
ℓ0
:= ⊤,X n

ℓ1
:= (0 ≤ x ≤ 2n − 1),X n

ℓe
:= ⊥

...will never converge

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 30

Example: another abstract post

Example 8.10

Consider the following widening function

wideAny(X) = {n + j |n ∈ X , j ≥ 0}

Let us define the following abstract post

sp#(F , ρ) = wideAny(sp(F , ρ))

Example 8.11

Apply the abstract post on the following
▶ sp#(x > 0, x > 1 ∧ x ′ = x)

▶ sp#(x > 0, x < 10 ∧ x ′ = x)

Exercise 8.4
Apply the abstract post on the following
▶ sp#(x > 0, x ′ = x + 1)

▶ sp#(x < 5, x ′ = x + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 31

Example: Iterative fixed point with another sp#

Example 8.12

Now we are using sp#(F , ρ) = wideAny(sp(F , ρ))

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Initial value: usual

X 0
ℓ0
:= ⊤, X 0

ℓ1
:= ⊥, X 0

ℓe
:= ⊥

Iteration 1

X 1
ℓ0
:= ⊤

X 1
ℓ1
:= X 0

ℓ1
∨ sp#(X 0

ℓ1
, x ′ = x + 1) ∨ sp#(X 0

ℓ0
, x ′ = 0)

:= ⊥ ∨ sp#(⊥, x ′ = x + 1) ∨ sp#(⊤, x ′ = 0)
:= ⊥ ∨⊥ ∨ 0 ≤ x := 0 ≤ x

X 1
ℓe
:= sp#(X 0

ℓ1
, x < 0 ∧ x ′ = x) := sp#(⊥, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 32

Example: Iterative fixed point with another sp#

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Iteration 2

X 2
ℓ0
:= ⊤

X 2
ℓ1
:= X 1

ℓ1
∨ sp#(X 1

ℓ1
, x ′ = x + 1) ∨ sp#(X 1

ℓ0
, x ′ = 0)

:= (0 ≤ x) ∨ sp#(0 ≤ x , x ′ = x + 1) ∨ sp#(⊤, x ′ = 0)
:= (0 ≤ x ∨ 1 ≤ x ∨ 0 ≤ x) := (0 ≤ x)

X 2
ℓe
:= sp#(X 1

ℓ1
, x < 0∧x ′ = x) := sp#(0 ≤ x , x < 0∧x ′ = x) := ⊥

We have converged. Congratulations!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 33

Yet another abstract post

Example 8.13

Consider the following widening function

wideNegAny(X) = {n − j |n ∈ X , j ≥ 0}

Let us define the following abstract post

sp#(F , ρ) = wideNegAny(sp(F , ρ))

Example 8.14

Apply the abstract post on the following
▶ sp#(x > 0, x > 1 ∧ x ′ = x)

▶ sp#(x > 0, x < 10 ∧ x ′ = x)

Exercise 8.5
Apply the abstract post on the following
▶ sp#(x > 0, x ′ = x + 1)

▶ sp#(x < 5, x ′ = x + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 34

Example: Iterative fixed point with yet another sp#

Example 8.15

Now we are using sp#(F , ρ) = wideNegAny(sp(F , ρ))

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Initial value: usual

X 0
ℓ0
:= ⊤, X 0

ℓ1
:= ⊥, X 0

ℓe
:= ⊥

Iteration 1

X 1
ℓ0
:= ⊤

X 1
ℓ1
:= X 0

ℓ1
∨ sp#(X 0

ℓ1
, x ′ = x + 1) ∨ sp#(X 0

ℓ0
, x ′ = 0)

:= ⊥ ∨ sp#(⊥, x ′ = x + 1) ∨ sp#(⊤, x ′ = 0)
:= ⊥ ∨⊥ ∨ x ≤ 0 := x ≤ 0

X 1
ℓe
:= sp#(X 0

ℓ1
, x < 0 ∧ x ′ = x) := sp#(⊥, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 35

Example: Iterative fixed point with yet another sp#

Consider program:

Xℓ0

Xℓ1

Xℓe

x := 0

x < 0

x ++;

Iteration 2

X 2
ℓ0
:= ⊤

X 2
ℓ1
:= X 1

ℓ1
∨ sp#(X 1

ℓ1
, x ′ = x + 1) ∨ sp#(X 1

ℓ0
, x ′ = 0)

:= (x ≤ 0) ∨ sp#(x ≤ 0, x ′ = x + 1) ∨ sp#(⊤, x ′ = 0)
:= (x ≤ 0 ∨ x ≤ 1 ∨ 0 ≤ x) := (x ≤ 1)

X 2
ℓe
:= sp#(X 1

ℓ1
, x < 0 ∧ x ′ = x) := sp#(x ≤ 0, x < 0 ∧ x ′ = x) := x < 0

Xℓe is not false. Bad abstraction!!

We will stop iterating, since Xℓe will not get smaller in future iterations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 36

Abstraction choices

Some abstractions

1. move slow and no convergence. Bad and no clue when to give up

2. converge without reaching error location. Good, which is our goal

3. overshoot and reach error location. Not so bad, because we get an evidence

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 37

How do we choose sp#?

We will learn lattice theory to guide us in choosing sp# such that we have
better guarantee of convergence.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS766: Analysis of concurrent programs (first half) 2023 Instructor: Ashutosh Gupta IITB, India 38

End of Lecture 8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Labeled transition system (reminder)
	Reachability and Abstraction

