
cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2023

Lecture 2: Containers in C++

Instructor: Ashutosh Gupta

IITB India

Compile date: 2023-08-06

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 2

What are containers?

A collection of C++ objects

▶ int a[10]; //Array

▶ vector<int> b;

Exercise 2.1
Why the use of the word ‘containers’?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 3

More container examples

▶ array

▶ vector<T>

▶ set<T>

▶ map<T,T>

▶ unordered_set<T>

▶ unordered_map<T,T>

Set in C++ ̸≡ Mathematical set

In math, sets are
unordered?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 4

Why do we need containers?

Collections are everywhere

▶ CPUs in a machine

▶ Incoming service requests

▶ Food items on a menu

▶ Shopping cart on a shopping website

Not all collections are the same

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 5

Example: using a container Source: http://www.cplusplus.com/reference/set

#include <iostream >

#include <set >

int main () {

std::set <int > s;

for(int i=5; i>=1; i--) // s: {50 ,40 ,30 ,20 ,10}

s.insert(i*10);

s.insert (20); // no new element inserted

s.erase (20); // s: {50 ,40 ,30 ,10}

if(s.contains (40))

std::cout << "s has 40!\n";

for(int i : s) // printing elements of a container

std::cout << i << ’\n’;

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 6

Why do we need many kinds of containers?

▶ Expected properties and usage patterns define the container

For example,
▶ Unique elements in the collection
▶ Arrival/pre-defined order among elements
▶ Random access vs. sequential access
▶ Only few additions(small collection) and many membership checks
▶ Many additions (large collection) and a few sporadic deletes

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

Different containers are

efficient to use/run

in varied usage patterns

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 8

Choose a container

Exercise 2.2
Which container should we use for the following collections?

▶ CPUs in a machine

▶ Incoming service requests

▶ Food items on a menu

▶ Shopping cart on a shopping website

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Some examples of containers

set<T>

▶ Unique element

▶ insert/erase/contains interface

▶ collection has implicit ordering among elements

map<T,T>

▶ Unique key-value pairs

▶ insert/erase interface

▶ collection has implicit ordering among keys

▶ Finding a key-value pair is not the same as accessing it

▶ Throws an exception if accessed using a non-existent key

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

Containers are abstract data types

The containers do not tell us the implementation details. They provide an interface with
guarantees.

In computer science, we call the libraries abstract data types. The guarantees are called axioms of
abstract data type.

Example 2.1

Axioms of abstract data type set.

▶ std::set<int> s; s.contains(v) == false

▶ s.insert(v); s.contains(v) == true

▶ x = s.contains(u); s.insert(v); s.contains(u) == x , where u! = v .

▶ s.erase(v); s.contains(v) == false

▶ x = s.contains(u); s.erase(v); s.contains(u) == x , where u! = v .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 11

Example: map<T,T> Source: http://www.cplusplus.com/reference/map

#include <iostream >

#include <string >

#include <map >

int main () {

std::map <std::string ,int > cart;

//Set some initial values:

cart["soap"] = 2;

cart["salt"] = 1;

cart.insert(std:: make_pair("pen", 10));

cart.erase("salt");

// access elements

std::cout << "Soap: " << cart["soap"] << "\n";

std::cout << "Hat: " << cart["hat"] << "\n";

std::cout << "Hat: " << cart.at("hat") << "\n";

}

Exercise 2.3 What will happen at the last two calls?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 12

Exceptions in Containers (abstract data types)

Containers must be used under certain conditions.

Example 2.2

Read operation cart.at("shoe") must not be called if the cart does not value for key "shoe" .

Since containers cannot return an appropriate value, they throw exceptions in the situations.

Callers must be ready to catch the exceptions and respond accordingly.

Please ask in tutorial session, if you need explanations related to exceptions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 13

STL: container libraries with unified interfaces

Since the containers are similar

http://www.cplusplus.com/reference

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cplusplus.com/reference

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 14

C++ in flux

Once C++ was set in stone. Now, modern languages have made a dent!

Three major revisions in history!!

▶ c++98

▶ c++11

▶ c++17

▶ c++20 (we will use this compiler!)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 15

Topic 2.1

Array vs. Vector

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 16

Vector

▶ Variable length

▶ Primarily stack-like access

▶ Allows random access

▶ Difficult to search

▶ Overhead of memory management

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 17

Array

▶ Fixed length

▶ Random access

▶ Difficult to search

▶ Low overhead

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

Let us create a test to compare the performance

#include <iostream >

#include <vector >

#include "rdtsc.h"

using namespace std; // unclear !! STOP ME!

int local_vector(size_t N) {

vector <int > bigarray; // initially empty vector

//Fill vector upto length N

for(unsigned int k = 0; k<N; ++k)

bigarray.push_back(k);

//Find the max value in the vector

int max = 0;

for(unsigned int k = 0; k<N; ++k) {

if(bigarray[k] > max)

max = bigarray[k];

}

return max;

} // 3N memory operations

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 19

Let us create a test to compare the performance (2)

// call local_vector M times

int test_local_vector(size_t M, size_t N) {

unsigned sum = 0;

for(unsigned int j = 0; j < M; ++j) {

sum = sum + local_vector(N);

}

return sum;

}

//In total , 3MN memory operations

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 20

Let us create a test to compare the performance (3)

// assumes the 64-bit machine

int main() {

ClockCounter t; // counts elapsed cycles

size_t MN = 4*32*32*32*32*16;

size_t N = 4;

while(N <= MN) {

t.start ();

test_local_vector(MN/N , N);

double diff = t.stop ();

//print average time for 3 memory operations

std::cout << "N = " << N << " : "<< (diff/MN);

N = N*32;

}

}

Exercise 2.4
Write the same test for arrays.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

Topic 2.2

Problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

Exercise: What is the difference between at and ..[..] accesses?

Exercise 2.5
What is the difference between “at” and “..[..]” accesses in C++ maps?

Commentary: Solution: The at function can throw an exception when the accessed element is not in range. The [] operator calls the default constructor of the value
type and then returns the allocated object. This may be considered bad behavior because a read action causes changes in the data structure, which is undesirable. If there
are many out-of-range reads to the map, the map will be filled with many dummy entries. On the other hand, throwing exceptions is not ideal from a programmer’s
perspective. They have to constantly add code that handles exceptions. If such a code is not added, then the exceptions may cause failure of the entire system.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 23

Exercise: smart pointers

Exercise 2.6
C++ does not provide active memory management. However, smart pointers in C++ allow us the
capability of a garbage collector. The smart pointer classes in C++ are
▶ shared_ptr

▶ unique_ptr

▶ weak_ptr

▶ auto_ptr
Write programs that illustrate the differences among the above smart pointers.

Commentary: Solution: Memory leak occurs when a program allocates some memory and stops referencing it. C++ does not automatically deallocate memory when a
program does not reference a part of memory. However, the language supports smart pointers. Smart pointers are classes that count references to an object. If the number
of references hits zero, the memory is deallocated. shared_ptr allows one to allocate memory without worrying about memory leaks. unique_ptr is like shared_ptr but
it does not allow a programmer to have two references to an address. weak_ptr allows one to refer to an object without having the reference counted. This kind of pointer
is needed in case of cycles among pointers. Due to the cycle, the reference counter never goes to zero even if the program stop referencing the memory. weak_ptr is
used to break the cycle. The program in later slides illustrates the difference between weak and shared pointers. auto_ptr is now a deprecated class. It was replaced by
shared_ptr etc in C++11.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 24

Exercise: named requirements

Exercise 2.7
Some of the containers have named requirements in their description. For example, “std::vector
(for T other than bool) meets the requirements of Container, AllocatorAwareContainer (since
C++11), SequenceContainer, ContiguousContainer (since C++17), and ReversibleContainer.”.

What are these? Can you describe the meaning of these? How these conditions are checked?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

Topic 2.3

Extra slides: weak pointers

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 26

An illustrative example of weak pointer usage (continued)
#include <iostream >

#include <memory >

class Node {

public:

Node(int value) : value(value) {std::cout << "Node " << value << " created." << std::endl; }

// Functions to set/get the next node/weak ref to previous node/shared ref to previous node

void setNext (std::shared_ptr <Node > next) { nextNode = next; }

void setWeakPrev(std::shared_ptr <Node > next) { prevWeakNode = next; }

void setPrev (std::shared_ptr <Node > next) { prevNode = next; }

std::shared_ptr <Node > getNext () const { return nextNode; }

std::shared_ptr <Node > getPrev () const { return prevNode; }

std::shared_ptr <Node > getWeakPrev () const { return prevWeakNode.lock (); }

// Function to display the value of the node

void display () const { std::cout << "Node value: " << value << std::endl; }

private:

int value;

std::shared_ptr <Node > nextNode;

std::shared_ptr <Node > prevNode;

std::weak_ptr <Node > prevWeakNode;

};

void print_list(std::weak_ptr <Node > current) {

for (int i = 0; i < 5; ++i) {

auto current_ref = current.lock ();

if (current_ref) {

current_ref ->display ();

current = current_ref ->getNext ();

} else {

std::cout << "Next node is nullptr." << std::endl; break;

}

}

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 27

An example of weak pointer usage (2)
// Creating a doubly linked list via shared_ptr/weak_ptr

std::weak_ptr <Node > shared_test () {

auto node1 = std:: make_shared <Node >(1);

auto node2 = std:: make_shared <Node >(2);

auto node3 = std:: make_shared <Node >(3);

// Create a circular reference

node1 ->setNext(node2);

node2 ->setNext(node3);

node2 ->setPrev(node1); // shared pointer pointing to previous node is causing a reference cycle

node3 ->setPrev(node2);

return node1;

}

std::weak_ptr <Node > weak_test () {

auto node1 = std:: make_shared <Node >(1);

auto node2 = std:: make_shared <Node >(2);

auto node3 = std:: make_shared <Node >(3);

node1 ->setNext(node2);

node2 ->setNext(node3);

node2 ->setWeakPrev(node1); // weak pointer pointing to previous node breaks cyclic reference counting

node3 ->setWeakPrev(node2);

return node1;

}

int main() {

std::cout << "Testing shared pointer:" << std::endl;

auto current = shared_test ();

print_list(current);

std::cout << "Testing weak pointer:" << std::endl;

current = weak_test ();

print_list(current);

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 28

End of Lecture 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Array vs. Vector
	Problem
	Extra slides: weak pointers

