
cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2023

Lecture 3: Stack

Instructor: Ashutosh Gupta

IITB India

Compile date: 2023-08-09

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 2

Topic 3.1

Stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 3

Stack

Definition 3.1
Stack is a container where elements are added and deleted according to the last-in-first-out (LIFO)
order.

▶ Addition is called pushing

▶ Deleting is called popping

Example 3.1

▶ Stack of papers in a copier

▶ Undo-redo features in editors

▶ Back button on Browser

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 4

Interface of stack Reference: https://en.cppreference.com/w/cpp/container/stack

Stack supports four interface methods

▶ stack<T> s : allocates new stack s

▶ s.push(e) : Pushes the given element e to the top of the stack.

▶ s.pop() : Removes the top element from the stack.

▶ s.top() : accesses the top element of the stack.

Some support functions

▶ s.empty() : checks whether the stack is empty

▶ s.size() : returns the number of elements

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/stack

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 5

Axioms of stack

Let s1 and s be stacks.

▶ Assume(s1 == s); s.push(e); s.pop();Assert(s1==s);

▶ s.push(e); Assert(s.top()==e) ;

Assume(s1 == s) means that we assume that the content of s1 and s are the same.
Assert(s1 == s) means that we check that the content of s1 and s are the same.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 6

Exercise: action on the empty stack

Exercise 3.1

Let s be an empty stack in C++.

▶ What happens when we run s.top()?

▶ What happens when we run s.pop()?

Ask ChatGPT.

Commentary: Answer: s.top() will cause a segmentation fault. s.pop() will not cause any error and exit without any effect.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

Topic 3.2

Implementing stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 8

Array-based stack

Let us look at a simplified array-based implementation of an array of integers.

The stack consists of three variables.

▶ N specifies the currently available space in the stack

▶ S is the integer array of size N

▶ h is the position of the head of the stack

S 5 6 8 0 0 0

h

N

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Implementing stack

class arrayStack {

int N = 2; // Capacity

int* S = NULL; // pointer to array

int h = -1; // Current head of the stack

public:

arrayStack () { S = (int*) malloc(sizeof(int)*N); }

int size() { return h+1; }

bool empty() { return h<0; }

int top() { return S[h]; } // On empty stack what happens?

void push(int e) {

if(size() == N) expand (); // Expand capacity of the stack

S[++h] = e;

}

void pop() { if(!empty()) h--; }

Commentary: The behavior of the above implementation may not match with the behavior of the C++ stack library. To ensure segmentation fault in top() when the stack
is empty one may use the following code. if(empty()) return *(int*)0; else return S[t];

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

Implementing stack (expanding when full)

private:

void expand () {

int new_size = N*2; // We observed the growth in our lab!!

int* tmp = (int*) malloc(sizeof(int)* new_size);//New array

for(unsigned i =0; i < N; i++) {// copy from the old array

tmp[i] = S[i];

}

free(S); // Release old memory

S = tmp; // Update local fields

N = new_size; //

}

};

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 11

Efficiency

All operations are performed in O(1) if there is no expansion to stack capacity.

What is the cost of expansion?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 12

Topic 3.3

Why exponential growth strategy?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 13

Growth strategy

Let us consider two possible choices for growth.

▶ Constant growth: new_size = N + c (for some fixed constant c)

▶ Exponential growth: new_size = 2*N

Which of the above two is better?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 14

Analysis of constant growth

Let us suppose initially N = 0 and there are n consecutive pushes.

After every cth push, there will be an expansion operation.

Therefore, the expansion operation at (ci + 1)th push will

▶ allocate memory of size c(i + 1)

▶ copy ci integers

S 5 6 7 8 9

ci

0 0 0

h

c

Cost of ith expansion: c(2i + 1).
Commentary: We are assuming that allocating memory of size k costs k time, which may be more efficient in practice. Bulk memory copy can also be sped up by vector
instructions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 15

Analysis of constant growth(2)

For n pushes, there will be n/c expansions.

The total cost of expansions:

c(1 + 3 + ...+ (2
n

c
+ 1)) = c(n/c)2 ∈ O(n2)

Non-linear cost!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 16

Analysis of exponential growth

Let us suppose initially N = 1 and there are n = 2r consecutive pushes.

The expansion operations will only occur at 2i + 1th push, where i ∈ [0, r − 1].

The expansion operation at 2i + 1th push will

▶ allocate memory of size 2i+1

▶ copy 2i integers

S 5 6 7 8 9

2i

0 0 0 0 0

h

2i

Cost of the expansion: 3 ∗ 2i .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 17

Analysis of exponential growth(2)

For 2r pushes, the last expansion would be at 2r−1 + 1.

The total cost of expansions:

3(20 ++ 2r−1) = 3 ∗ (2r − 1) = 3 ∗ (n − 1)

Linear cost! The average cost of push remains O(1).

Exercise 3.2
Why double? Why not triple? Why not 1.5 times? Is there a trade-off?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

Topic 3.4

Applications of stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 19

Stacks are everywhere

Stack is a foundational data structure.

It shows up in a vast range of algorithms.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 20

Example: matching parentheses

Problem:
Given an input text check if it
has matching parentheses.

Examples:

▶ ”{a[sic]tik}”✓

▶ ”{a[sic}tik}”✗

bool parenMatch(string text) {

std::stack <char > s;

for(char c : text) {

if(c == ’{’ or c == ’[’) s.push(c);

if(c == ’}’ or c == ’]’) {

if(s.empty()) return false;

if(c-s.top() != 2) return false;

s.pop();

}

}

if(s.empty()) return true;

return false;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

Topic 3.5

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

Use of stack

Exercise 3.3
The span of a stock’s price on ith day is the maximum number of consecutive days (up to ith day)
the price of the stock has been less than or equal to its price on day i .

Example: for the price sequence 2 4 6 3 5 7 of a stack, the span of prices is 1 2 3 1 2 6.

Give a linear-time algorithm that computes si for a given price series.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 23

Flipping Dosa

Exercise 3.4
There is a stack of dosas on a tava, of distinct radii. We want to serve the dosas of increasing
radii. Only two operations are allowed: (i) serve the top dosa, (ii) insert a spatula (flat spoon) in
the middle, say after the first k, hold up this partial stack and flip it upside-down and put it back.
Design a data structure to represent the tava, input a given tava, and to produce an output in
sorted order. What is the time complexity of your algorithm?
This is also related to the train-shunting problem.

Commentary: Milind notes!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 24

Exponential growth

Exercise 3.5
a. Do the analysis of performance of exponential growth if the growth factor is three instead of
two? Does it give us better or worse performance than doubling policy?
b, Can we do the similar analysis for growth factor 1.5?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

End of Lecture 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Stack
	Implementing stack
	Why exponential growth strategy?
	Applications of stack
	Problems

