
cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2023

Lecture 5: Dictionary

Instructor: Ashutosh Gupta

IITB India

Compile date: 2023-08-21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 2

Topic 5.1

Problem of dictionary

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 3

Storing maps/dictionary

Definition 5.1
A Dictionary stores values so that they can be found efficiently using keys.

Example 5.1

A dictionary may contain bank accounts.

▶ Bank account number is the key
▶ The information about your account is the value

▶ current amount, name, address, etc

▶ To take any action on an account, one needs the key

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 4

Dictionary (Map) container Reference: https://en.cppreference.com/w/cpp/container/map

In C++ and many languages, dictionaries are called maps.

map supports the following interface.

▶ map<Key,T> m : allocates new map m

▶ m.at(e) : access specified value (throws an exception when value is missing)

▶ m[key] = e : Inserts key-value pair.

▶ m.erase(key) : removes key-value pair.

Some support functions

▶ m.empty() : checks whether the map is empty

▶ m.size() : returns the number of key-value pairs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/map

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 5

Order over keys

Two kinds of keys:

▶ Ordered: keys are compared using less than, greater than, and equality
▶ The default map in C++ assumes keys are ordered.

Reference: https://en.cppreference.com/w/cpp/container/map

▶ Unordered: keys are compared only using equality
▶ For unordered keys, use unordered_map in C++.

Reference: https://en.cppreference.com/w/cpp/container/unordered_map

Since all data is bit-vector, we can always define order over keys. However, the user decides if the
keys are ordered or unordered.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 6

Implementation choices

▶ arrays, linked lists

▶ Hash table (unordered_map in C++)

▶ Binary trees

▶ Red/black trees (map in C++)

▶ AVL trees

▶ B-trees

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

Actions on dictionary

We need to design a dictionary data structure keeping in mind the following three important
actions on dictionaries.

▶ Insertion

▶ Deletion

▶ Search

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 8

Topic 5.2

Design choices for dictionaries

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Cost of searching for keys

We have seen in lecture 1 the cost of searching for the position of a key.

Ordered keys

▶ Binary search is O(log n)

Unordered keys

▶ Linear search is O(n)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

Dictionaries via unordered keys

[2,10,8,19,34,23]

▶ Searching and deletion is O(n)

▶ Insertion is O(1)

Application: Log files, (frequent insertion, but rare searches and deletion)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 11

Dictionaries via ordered keys on arrays

[2,8,10,19,23,34]

▶ Searching is O(log n)
▶ Insertion and deletion is O(n)

▶ Need to shift keys before insertion/after deletion

Application: Look-up tables (e.g. precomputed values for trigonometric functions),
(frequent searches, but rare insertion and deletion)

Exercise 5.1
Can we use a linked list?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 12

One crazy idea: direct addressing!

Consider application: caller id. We need a map from phone numbers to names.

We have 10-digit-long phone numbers. So let us allocate an array A of size 1010.

Names are stored at the phone number index.

Null Ashutosh Null Null Divya Null

9898927391 9898927392 9898927393 9898927394 9898927395 9898927396

▶ All operations are O(1)

▶ Huge waste of space.

Exercise 5.2
Do we have O(1) cost in the above?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 13

Topic 5.3

Hash table

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 14

Can we improve direct addressing?

Can we somehow avoid the waste of space and still get the benefit of direct addressing?

Let the table size be m and the number of keys be n.

We will design a data structure, where O(1) expected time for all operations and the needed
storage is O(m + n).

m is roughly equal to n.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 15

Hashing

We choose a function, called the hash function,

h : Keys → HashValues

such that |HashValues| = m.

We use h(key) to index the storage array instead of keys.

We assume the time to compute h(key) is Θ(1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 16

Example: Hashing

Example 5.2

Let us suppose we want to store caller IDs of phone numbers from your contacts in your phone.

You probably have less than 1000 contacts.

Let us use h(number) = (number mod 1000).

We create an array of 1000 entries and store the contact names as follows. Let us suppose
Ashutosh’s phone number is 9898927392 and Divya’s phone number is 9869755395.

Null Ashutosh Null Null Divya Null

391 392 393 394 395 396

One problem: Let us suppose Akhil’s phone number is 9868733392. We have a collision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 17

Collision resolution: chaining

In the case of h(k1) = h(k2), we cannot store two values in the same place on the array.

We maintain a linked list for key-value pairs that have the same hash value of their keys and a
table (array) indexed by the hash values points to the linked lists.

NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

Collision resolution: chaining(2)

To search/insert/delete a (key,value) pair

▶ using h(key) find position in the table

▶ search/insert/delete the pair in the linked list of the position.

NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 19

Example: telephone directory

NULL

NULL

(9898927392,Ashutosh) (9868733392,Akhil)

NULL

NULL

NULL

(9869755395,Divya)

391

392

393

394

395

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 20

Topic 5.4

Analysis of hash functions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

A good hash function

A good hash function

▶ distributes keys evenly amongst the positions.

▶ has a low probability of collision.

▶ is quick to compute.

Good hash functions are rare - Birthday paradox!

Exercise 5.3
What is a bad hash function?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

Load factor

If n >> m, there is a greater chance of collisions.

We define load factor α =
n

m
.

Keep α roughly around 1.

▶ If α is too small, we are wasting space.

▶ If α is too large, we have long chains.

Exercise 5.4
What to do if α is not known upfront?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 23

Topic 5.5

Designing hash functions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 24

Hash function design

h : Keys → {0, ...,m − 1}

Keys can be of a variety of types.

▶ Biometric fingerprints

▶ Addresses

▶ Words of language dictionaries

Usually, h is the composition of the following functions.

▶ encode : Keys → Z
▶ compression : Z → {0, ...,m − 1}

h = compression ◦ encode

m is the size of
hash table!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

Useful functions for encode

▶ Integer cast: Interpret the bit representation of the key as an integer, if the representation is
less than the size of a word (32 bits/64 bits)

▶ Component sum: If the representation is longer than a word, sum the blocks of 8-bits to
compute the integer code.

Example 5.3

encode(“Disaster”) = ’D’+ ’i’+’s’+’a’+’s’+’t’+’e’+’r’
= 0x44 + 0x69 + 0x73 + 0x61 + 0x73 + 0x74 + 0x65 + 0x72 = 0x33F

Example 5.4

Is this a good coding scheme?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 26

Useful functions for code: polynomial accumulation

▶ Let a0, ..., ak be the list of 8-bit blocks of the binary representation of the key .

encode(a0a1....ak) = a0 + a1x + a2x
2 + ...+ akx

k

where x is a constant.

▶ The idea is borrowed from error-correcting codes (e.g. Reed-Solomon codes)

▶ Observation: the choice of x = 33, 37, 39, or 41 gives at most 6 collisions in English
vocabulary of 50K+ words. (Please check the claim!)

Exercise 5.5
How can we efficiently compute the polynomial?

Commentary: Usually the polynomial is computed using Horner’s rule or precomputed values of xk . This kind of encoding is widely used in ai . Overflow is ignored in the
computation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 27

unordered_map in C++ uses Murmurhash2 for encode
size_t _Hash_bytes(const char* buf , size_t len , size_t seed) {

const size_t m = 0x5bd1e995;

size_t hash = seed ^ len;

while(len >= 4) { // Mix 4 bytes at a time into the hash.

size_t k = *((const size_t *)buf);

k *= m; k ^= k >> 24; k *= m;

hash *= m; hash ^= k;

buf += 4;len -= 4;

}

size_t k;

switch(len) { // Handle the last few bytes of the input array.

case 3: k = buf [2]; hash ^= k << 16;

case 2: k = buf [1]; hash ^= k << 8;

case 1: k = buf [0]; hash ^= k; hash *= m;

};

hash ^= hash >> 13; hash *= m; hash ^= hash >> 15;//Do final mixes.

return hash;

}
Commentary: The above code is from https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/hash_bytes.cc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/hash_bytes.cc

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 28

Design of compression

Remainder compression:

compression(e) = e mod m

Here the size of the table matters.

▶ If m = 2k , the least significant bits of e determine the position in the table. If the output of
encode is not uniformly distributed, we do not have enough randomization.

▶ If m is a prime, compression(e) will return uniformly distributed output. Rule of thumb: stay
away from powers of 2.

Example 5.5

Let us suppose, we want to store 2000 keys and we are ok with three collisions.

A good choice of m is 701, which is prime near 2000/3 and away from powers of 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 29

Design of compression(2)

Multiplicative compression:

compression(e) = ⌊m{ae}⌋,

where a ∈ (0, 1) is a constant.

▶ Here the size of the table does not matter.

▶ However, some values work better than others. Folklore,

√
5− 1

2
(golden ratio) works well!

Exercise 5.6
Show compression(e) ∈ {0, ..,m − 1}

Commentary: For extended discussion look at The Art of Computer Programming. Volume 3. Sorting and Searching, by Donald Knuth

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 30

Design of compression(3)

MAD(multiplication, add, divide) compression:

compression(e) = |ak + b| mod m,

where a, b ∈ Z are constants.

▶ Eliminates patterns in input keys if m does not divide a.

▶ The technique is borrowed from pseudo-random generators!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 31

Topic 5.6

Open addressing: an alternative to chaining!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 32

Open addressing

Open addressing is another way of handling collision.

▶ The method needs α ≤ 1

▶ Each table entry has a key or Null

▶ We may have to examine many positions for the search

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 33

Hash function for open addressing

A slight modification of the hash function.

h : Keys × {0, ..,m − 1} → {0, ..,m − 1}

such that h(k , 0),, h(k ,m − 1) is a permutation of 0,,m − 1 for any key k .

Example 5.6

Let m = 5.

For some key k,
h(k , 0),, h(k , 4) = 3, 0, 2, 4, 1.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 34

Hash function for open addressing(2)

▶ h(key , 0) is our usual hash function to place the key.

▶ h(key , i) is an alternative available choice to place the key if earlier choices h(key , j) for each
j < i are occupied.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 35

Open addressing insert

Algorithm 5.1: OpenAddressInsert(key)

1 if Table is full then
2 error;

3 i := 0;
4 do
5 probe := h(k,i);
6 i = i + 1;

7 while table[probe] is occupied ;
8 table[probe] = k;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 36

Linear probing

Linear probing is a special case of open addressing.

In linear probing, we chose h as follows

h(k, i) = (h(k , 0) + i) mod m for each i > 0.

If a position is occupied, take the next one.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 37

Example: insertion in linear probing

Example 5.7

Let m = 11 and h(k , 0) = k mod 11.

Let us consider the following sequence of insertions: 41, 22, 44, 59, 32, 31, 74

m = 11

0 1 2 3 4 5 6 7 8 9 10

4122 44 59 323174

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 38

Open addressing search

Algorithm 5.2: OpenAddressSearch(key)

1 i := 0;
2 do
3 probe := h(k,i);
4 if table[probe] == k then
5 return probe;

6 i = i + 1;

7 while (table[probe] is occupied or has tombstone) and i < m;
8 return -1;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 39

Example: search in linear probing

Example 5.8

Let m = 11 and h(k , 0) = k mod 11.

Let us search for 33 in the following table. We will examine locations from 0 to 3.

m = 11

0 1 2 3 4 5 6 7 8 9 10

4122 44 59 323174

Exercise 5.7
How many locations will we examine for the following searches?
▶ 74

▶ 44

▶ 61

▶ 43

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 40

Example: deletion in open addressing

Example 5.9

Let m = 11 and h(k , 0) = k mod 11.

Let us the delete key at position 1 in the following table. Will it be correct?

We need to place a marker (tombstone) to indicate that something was here such that we continue
to search 74 correctly.

m = 11

0 1 2 3 4 5 6 7 8 9 10

4122 4444X 59 323174

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 41

Deletion in open addressing

Algorithm 5.3: OpenAddressDelete(key)

1 probe = OpenAddressSearch(key);
2 if probe ≥ 0 then
3 table[probe] = ’X’ // Tombstone marker ’X’ indicates that the place was occupied!

Exercise 5.8
After many deletions, the performance of the search degrades. How can we recover performance?

We can reuse the tombstone location for insertion
but assume it is occupied for search.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 42

Topic 5.7

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 43

Problem: birthday paradox

Exercise 5.9
Given that k elements have to be stored using a hash function with target space n. What is the
probability of the hash function having an inherent collision? What is an estimate of the
probability of a collision in the insertion of N elements?

Hint: Stirling’s approximation
√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 44

Problem: analysis of linear probing

Exercise 5.10
Let C (i) be the chain of array indices that are queried to look for a key k in linear probing where
h(k) = i .
a. How does this chain extend by an insertion, and how does it change by a deletion?
b. A search for a key k ends when an empty cell is encountered. What if we mark the end of C (i)
with an end marker. We stop the search when this marker is encountered. Would this work?
Would this be efficient?
c. Is there a way of not using tombstones?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 45

Exercise: Double hashing

Exercise 5.11

Let m = 11, h1(k) = (k mod 11), h2 = 6− (k mod 6).

Let us use the following hash function for an open addressing scheme.

h(k , i) = h1(k) + i ∗ h2(k).

What will be the state of the table after the following sequence of insertions?

41, 22, 44, 59, 32, 31, 74

Commentary: Double hashing avoids the problem of bunching up the keys, therefore improving search.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 46

Problem: searchable by both keys and values

Exercise 5.12
Suppose you want to store a large set of key-value pairs, for example, (name,address). You have
operations, which are addition, deletion, and search of elements in this set. You also have queries
whether a particular name or address is there in the set, and if so then count them and delete all
such entries. How would you design your hash tables?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 47

Topic 5.8

Extra slides: Binary search in recursive representation!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 48

Search for ordered keys
If keys are stored in order, then we use the binary search that we have discussed in lecture 1.

Algorithm 5.4: BinarySearch(A, key, low, high)

1 if low > high then
2 return -1

3 mid := (low+high)/2;
4 if A[mid] == key then
5 return mid

6 if key < A[mid] then
7 return BinarySearch(A,key, low, mid-1)

8 return BinarySearch(A,key, mid+1, high)

Exercise 5.13
We earlier saw the iterative version of the Binary search. Can we write any recursive algorithm as
iterative algorithm?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 49

Topic 5.9

Extra slides: Performance analysis for chaining.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 50

Simple uniform fictional hash function

▶ An ideal hash function would pick a position uniformly at random and assign the key to it.

▶ However, this is not a real hash function, because we will not be able to search later.

▶ Only for our analysis, we will use this simple uniform hash function

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 51

Cost of unsuccessful search

▶ Simple uniform hashing will result in the average list length of α

▶ Number of elements traversed is α

▶ Search time is O(1 + α)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 52

Cost of successful search

▶ Assume that a new key-value pair is inserted at the end of the linked list

▶ Upon insertion of ith key-value pair the expected length of the list is
i − 1

m
▶ In the case of a successful search of the ith key, the expected number of keys examined is 1

more than the number of keys examined when the ith key-value pair was inserted.

▶ Expected number of key-value pairs examined for each key search

1

n

n∑
i=1

(1 +
i − 1

m
) = 1 +

1

mn

n∑
i=1

(i − 1) = 1 +
1

mn

n(n − 1)

2
= 1 +

n

2m
− 1

2m

▶ Including the time for computing the hash function we obtain

2 +
n

2m
− 1

2m
∈ Θ(1 + α)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 53

End of Lecture 5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Problem of dictionary
	Design choices for dictionaries
	Hash table
	Analysis of hash functions
	Designing hash functions
	Open addressing: an alternative to chaining!
	Problems
	Extra slides: Binary search in recursive representation!
	Extra slides: Performance analysis for chaining.

