CS213/293 Data Structure and Algorithms 2023

Lecture 6: Tree
Instructor: Ashutosh Gupta
IITB India
Compile date: 2023-08-20

Topic 6.1

Tree

Tree

Definition 6.1

A tree is either a node

or the following structure consisting of a node and a set of children trees.

The above is our first recursive definition.

Exercise 6.1

Does the above definition include infinite trees? How would you define an infinite tree?

Example: tree

Example 6.1

An instance of tree.

Some tree terminology(2)

For nodes n_{1} and n_{2} in a tree T.

Definition 6.2

n_{1} is child of n_{2} if n_{1} is immediately below n_{2}. We write $n_{1} \in \operatorname{children}\left(n_{2}\right)$.

Definition 6.3

We say n_{2} is parent of n_{1} if $n_{1} \in \operatorname{children}\left(n_{2}\right)$ and write parent $\left(n_{1}\right)=n_{2}$.
If there is no such n_{2}, we write parent $\left(n_{1}\right)=\perp$.

Definition 6.4

n_{1} is ancestor of n_{2} if $n_{1} \in$ parent $^{*}\left(n_{2}\right)$. We write $n_{1} \in \operatorname{ancestors}\left(n_{2}\right)$.
n_{2} is descendant of n_{1} if $n_{1} \in \operatorname{ancestor}\left(n_{2}\right)$. We write $n_{1} \in \operatorname{descendants}\left(n_{2}\right)$.

Some tree terminology

Definition 6.5

n_{1} and n_{2} are siblings if parent $\left(n_{1}\right)=\operatorname{parent}\left(n_{2}\right)$.
Definition 6.6
n_{1} is a leaf if children $\left(n_{1}\right)=\emptyset$.
n_{1} is an internal node if children $\left(n_{1}\right) \neq \emptyset$.
Definition 6.7
n_{1} is a root if parent $\left(n_{1}\right)=\perp$.

Exercise 6.2

Can the root be an internal node? Can the root be a leaf?

Example: Tree terminology

Example 6.2

B, D, and C are children of A.
D is the parent of G.
A is an ancestor of G and E is a descendant of A.
A is an ancestor of A.
G and E are siblings.
B, E, G, and C are leaves.
A and D are internal nodes.
A is the root.

Degree of nodes

Definition 6.8

We define the degree of a node n as follows.

$$
\operatorname{degree}(n)=|\operatorname{children}(n)|
$$

Example 6.3

$$
\begin{aligned}
& \operatorname{dgree}(A)=3 \\
& \operatorname{dgree}(B)=0 \\
& \operatorname{dgree}(D)=2
\end{aligned}
$$

Label of tree

Usually, we store data on the tree nodes.
We define the label(n) of a node n as the data stored on the node.

Level/Depth and height of nodes

Definition 6.9

We define the level/depth of a node n as follows.

$$
\operatorname{level}(n)= \begin{cases}0 & \text { if } n \text { is a root } \\ \operatorname{level}\left(n^{\prime}\right)+1 & n^{\prime} \in \operatorname{parent}(n)\end{cases}
$$

Definition 6.10

We define the height of a node n as follows.

$$
\operatorname{height}(n)=\max \left(\left\{\operatorname{height}\left(n^{\prime}\right)+1 \mid n^{\prime} \in \operatorname{children}(n)\right\} \cup\{0\}\right)
$$

Exercise 6.3

Why do we need to take a union with 0 in the definition of height?

Example: Level(Depth) and height of nodes

Example 6.4

$$
\operatorname{level}(A)=0 \quad \text { height }(E)=0
$$

$$
\operatorname{height}(D)=1
$$

$$
\operatorname{level}(E)=2
$$

$$
\operatorname{height}(A)=\max (\{\operatorname{height}(B)+1
$$

$$
\text { height }(D)+1
$$

$$
\text { height }(C)+1\} \cup\{0\})
$$

$$
=\max (\{1,2,1\} \cup\{0\})=2
$$

Why do we need trees?

A tree represents a hierarchy.

Example 6.5

- Organization structure of an organization

Example: File system

Files are stored in Trees in Linux/Windows.
Example 6.6
Part of a Linux file system.

Topic 6.2

Binary tree

Ordered tree

Definition 6.11

A tree is an ordered tree if we assign an order among children.

Definition 6.12

Let n be a node. In an ordered tree, children (n) is a list instead of a set.

Example 6.7

In a tree, we define the children as follows.
children $(A)=\{B, D, C\}$
In an ordered tree, we define the children as follows. children $(A)=[B, D, C]$

Binary tree

Definition 6.13

An ordered tree T is a binary tree if \mid children $(n) \mid \leq 2$ for each $n \in T$.

We define the left and right child of n as follows.

- if chidren $(n)=\left[n_{1}, n_{2}\right]$,
- $\operatorname{left}(n)=n_{1}$ and $\operatorname{right}(n)=n_{2}$.
- If chidren $(n)=\left[n_{1}\right], n_{1}$ is either left or right child.
- left $(n)=n_{1}$ and $\operatorname{right}(n)=$ Null, or
- left $(n)=$ Null and $\operatorname{right}(n)=n_{1}$.
- If chidren $(n)=[]$,
- $\operatorname{left}(n)=$ Null and $\operatorname{right}(n)=$ Null.

Example: binary tree

Example 6.8

E is the left and G is the right child of $D . C$ is the right child of $B . B$ has no left child.

Usage of binary tree: representing expressions

Example 6.9

Representing mathematical expressions

Exercise 6.4

a. Why do we need an ordered tree?
b. How would you evaluate a mathematical expression that is given as a binary tree?

Usage of binary tree: decision trees in Al

Example 6.10

Does one want to play given the weather?
Given the behavior, we may learn the following tree.

Complete binary tree

Definition 6.14

Example 6.11

A binary tree is complete if the height of the root is h and every level $i \leq h$ has 2^{i} nodes.

Leaves are only at level h.
The number of leaves $=2^{h}$.
Number of internal nodes $=1+2+\ldots+2^{h-1}$

$$
=2^{h}-1
$$

The total number of nodes is $2^{h+1}-1$.

Exercise 6.5

a. Prove/Disprove: if no node in the binary tree has a single child, the binary tree is complete.
b. What fraction of nodes are leaves in a complete binary tree?

Maximum and minimum height of a binary tree

Exercise 6.6

Let us suppose there are n nodes in a binary tree.

- What is the minimum height of the tree?
- What is the maximum height of the tree?

Commentary: For a given height h, a complete binary tree has $2^{h+1}-1$ nodes. All other binary trees with the height h have fewer nodes. Therefore, $n \leq 2^{h+1}-1$. Therefore, $\log _{2} \frac{n+1}{2} \leq h$. The maximum possible height for n nodes is $n-1$. Therefore, $\log _{2} \frac{n+1}{2} \leq h \leq n-1$.

Leaves of binary tree

Theorem 6.1

For a binary tree, \mid leaves $|\leq 1+|$ internal nodes \mid.
Proof.
We will prove the theorem by induction over the structure of a tree (Recall the recursive definition of a tree).

base case:

We have a single node.
\mid leaves $\mid=1$ and \mid internal nodes $\mid=0$. Case holds.

Leaves of binary tree(2)

Proof(continued).

induction step:

We have two cases in the induction step: Root has one child or two children.

Case 1:

Let tree T be constructed as follows.

For T_{1}, let \mid leaves $\mid=\ell_{1}$ and \mid internal nodes $\mid=i_{1}$.
T has ℓ_{1} leaves and $i_{1}+1$ internal nodes.
By the induction hypothesis, $\ell_{1} \leq 1+i_{1}$.
Therefore, $\ell_{1} \leq 1+i_{1}+1$.
Therefore, $\ell_{1} \leq 1+\left(i_{1}+1\right)$. Case holds.

Leaves of binary tree(3)

Proof(continued).

Case 2:

Let tree T be constructed as follows.

For T_{1}, let \mid leaves $\mid=\ell_{1}$ and \mid internal nodes $\mid=i_{1}$.
For T_{2}, let \mid leaves $\mid=\ell_{2}$ and \mid internal nodes $\mid=i_{2}$.
T has $\ell_{1}+\ell_{2}$ leaves and $i_{1}+i_{2}+1$ internal nodes.
By induction hypothesis, $\ell_{1} \leq 1+i_{1}$ and $\ell_{2} \leq 1+i_{2}$.
Therefore, we have $\ell_{1}+\ell_{2} \leq 2+i_{1}+i_{2}$.
Therefore, $\ell_{1}+\ell_{2} \leq 1+\left(i_{1}+i_{2}+1\right)$. Case holds.

Maximum and minimum number of leaves

Let n be the number of nodes in a binary tree T.
Due to the previous theorem, we know |leaves $|\leq 1+|$ internal nodes \mid.
Since |leaves $|+|$ internal nodes $|=n$,$| leaves |\leq 1+n-|$ leaves \mid.
\mid leaves $\left\lvert\, \leq \frac{(n+1)}{2}\right.$.

Exercise 6.7

a. When do |leaves| meet the inequality?
b. When is the number of leaves minimum?

Topic 6.3

Representing Tree

Container for tree

There is no $\mathrm{C}++$ container for tree.

Trees are the backbone of many abstract data structures.

For some reason, it is not explicitly there.

Exercise 6.8

Why there is no tree container in $C++S T L$? (Let us ask ChatGPT)

Commentary: I guess that we rarely explicitly need trees in our programming. We usually have higher goals such as stack,queue, set, and map, which may need a tree as an internal data structure, but users need not be exposed. However, there are applications where there is a clear need for trees. For example, the representation of arithmetic expressions. In my programming, whenever I needed a tree. I have implemented it myself.

Representation of a binary tree on a computer

Definition 6.15
A binary tree consists of nodes containing four pointer fields.

- left child
- parent
- right child
- label

An additional root pointer points to the root of the tree.

Exercise 6.9

Do we need the parent pointer?
The pointers that are not pointing anywhere are NULL.

Representation of a tree on a computer

Exercise 6.10

Are we representing an ordered tree or an unordered tree?

Topic 6.4

Problems

Exercise: paths in a tree

Exercise 6.11

Given a tree with a maximum number of children as k. We give a label between 0 and k - 1 to each node with the following simple rules. (i) the root is labeled 0 . (ii) For any vertex v, suppose that it has r children, then arbitrarily label the children as $0, . ., r-1$. This completes the labeling. For such a labeled tree T, and a vertex v, let seq(v) be the labels of the vertices of the path from the root to v. Let $\operatorname{Seq}(T)=\{\operatorname{seq}(w) \mid$ win $T\}$ be the set of label sequences. What properties does $\operatorname{Seq}(T)$ have? If a word w appears what words are guaranteed to appear in Seq(T)? How many times does a word w appear as a prefix of some words in $\operatorname{Seq}(T)$?

Lowest common ancestor(LCA)

Definition 6.17

For two nodes n_{1} and n_{2} in a tree $T, \operatorname{LCA}\left(n_{1}, n_{2}, T\right)$ is a node in ancestors $\left(n_{1}\right) \cap$ ancestors $\left(n_{2}\right)$ that has the largest level.

Exercise 6.12

Write a function that returns Ica(v,w,T). What is the time complexity of the program?

Exercise: paths in a tree

Exercise 6.13

Given $n \in T$, Let $f(n)$ be a vector, where $f(n)[i]$ is the number of nodes at depth i from n.

- Give a recursive equation for $f(n)$.
- Give a pseudo code to compute the vector $f(\operatorname{root}(T))$. How is the time complexity of the program?

Exercise: mean level

Exercise 6.14

a. Suppose that you are given a binary tree, where, for any node v, the number of children is no more than 2. We want to compute the mean of $h t(v)$, i.e., the mean level of nodes in T. Write a program to compute the mean level.
b. Suppose that we are given the level of all leaves in the tree. Can we compute the mean height? Given a sequence $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ of the levels of k leaves, is there a binary tree with exactly k leaves at the given levels?

End of Lecture 6

