
cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2023

Lecture 12: Heap

Instructor: Ashutosh Gupta

IITB India

Compile date: 2023-09-15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 2

Topic 12.1

Priority queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 3

Scheduling problem

On a computational server, users are submitting jobs to run on a single CPU.

▶ A user also declares the expected run time of the job.

▶ Jobs can be preempted.

Policy: shortest remaining processing time, which allows interruption of a job if a new job with
smaller run time is submitted.

The policy minimizes average waiting time.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 4

Scheduling problem operations

We need the following operations for the scheduling problem.

▶ Update the remaining time in every tick

▶ Delete a job when the remaining time is zero

▶ Find the next job to run

▶ Insert a job when arrives

Definition 12.1
In a priority queue, we dequeue the highest priority element from the enqueue elements with
priorities.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 5

Interface of priority queue https://en.cppreference.com/w/cpp/container/priority_queue

▶ priority_queue<T,Container,Compare> q : allocates new queue q

▶ q.push(e) : adds the given element e to the queue.

▶ q.pop() : removes the highest priority element from the queue.

▶ q.top() : access the highest priority element.

▶ Container class defines the physical data structure where the queue will be stored. The
default value is Vector .

▶ Compare class defines the method of comparing priorities of two elements.

Exercise 12.1
Give an implementation for the scheduling problem using the C++ priority queue.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/priority_queue

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 6

Topic 12.2

Implementations of priority queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

Implementation using unsorted linked list/array

In case we use a linked list,

▶ We implement q.push by inserting the element at the front of the linked list, which is O(1)
operation.

▶ We need to scan the entire list to find the maximum for implementing q.pop and q.top

Exercise 12.2
How will we implement a priority queue over unsorted arrays?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 8

Implementation using sorted linked list/array

In case we use a linked list,

▶ The maximum will be at the end of the list. We can implement q.pop and q.top in O(1).

▶ However, q.push(e) needs to scan the entire list to find the right place to insert e, which is
O(n) operation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Priority queue

Priority queue is one of the fundamental containers.

Many other algorithms assume access to efficient priority queues.

We will define a data structure heap that provides an efficient implementation for the priority
queue.

Commentary: Heap is like the the red-black tree, which provides an efficient implementation for ordered maps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

Topic 12.3

Heap - somewhat sorting!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 11

Heap

Definition 12.2
A heap T is a binary tree such that the
following holds.
▶ (structural property) All levels are full

except the last one and the last level is
left filled.

▶ (heap property) for each non-root node n,
key(n) ≤ key(parent(n)).

Example 12.1

An example of heap.

21

20

16 13

19

17

Exercise 12.3
Show that nodes on a path from root to a leaf have keys in non-increasing order.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 12

Exercise: Identify Heap

Exercise 12.4
Which of the following are Heaps?

17

5 11

6

26

22

18 17

21

75

21

17 5

21

17

17

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 13

Algorithm: maximum

Algorithm 12.1: Maximum(Heap T)

1 return T [0]

▶ Correctness
▶ Let us suppose the maximum is not at the root.
▶ There is a node n that has maximum key but parent(n) has greater key, which violates heap

condition.
▶ Contradiction.

▶ Running time is O(1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 14

Height of heap

Let us suppose a heap has n nodes and height h.

The number of nodes in a complete binary tree of height h is 2h − 1.

Therefore,
2h−1 − 1 < n ≤ 2h − 1.

Therefore n = ⌊log2 n⌋

Exercise 12.5
Give an example of a heap that touches the lower bound.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 15

Storing heap
Let us number the nodes of a heap in the order of level.

20

17

8

1 12

11

10 0

19

14

5 9

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

parent(i) = (i − 1)/2, left(i) = 2i + 1, and right(i) = 2i + 2.
We place the nodes on an array and traverse the heap using the above equations.

20 17 19 8 11 14 4 1 12 10 0 5 9 3 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Since the last level is left filled, we are guaranteed the nodes are contiguously placed.
Instead of writing key(i) of node i in heap T , we will write T [i] to indicate the key.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 16

Topic 12.4

Insert in heap

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 17

Example: Insert in Heap

Example 12.2

Where do we insert 15?

21

13

10

5 8

7

6 15

17

11 2

0

1 2

3 4 5 6

7 8 9 10

Insert at end

Repair heap

21

15

10

5 8

13

6 7

17

11 2

0

1 2

3 4 5 6

7 8 9 10

▶ Insert at the first available place, which is easy to spot. (Why?)

▶ Move up the new key if the heap property is violated.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

Algorithm: Insert

Algorithm 12.2: Insert(Heap T, key k)

1 i := T .size;
2 T [i] := k ;
3 while i > 0 and T [parent(i)] < T [i] do
4 Swap(T, parent(i), i);
5 i := parent(i)

6 T .size := T .size + 1;

▶ Correctness
▶ Structural property holds due to the

insertion position.
▶ Due to the heap property of input T , the

path to i the nodes must be in
non-increasing order.

▶ Let i0 be the value of i when the loop exits.
▶ Insert replaces the keys of the nodes in

the path from i0 to T .size with the keys of
their parents, which implies the keys do not
decrease at the nodes.

▶ Therefore, no introduction of a violation.
▶ Therefore, we will have a heap at the end.

▶ Running time is O(logT .size).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 19

Topic 12.5

Heapify

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 20

Heapify : a basic operation on a heap

▶ Let i be a node of heap T

▶ Let us suppose the binary trees rooted at left(i) and right(i) are valid heaps.

▶ T [i] may be smaller than its children and violates the heap property.

▶ The method Heapify makes the binary tree rooted at i a heap by pushing down T [i] in the
tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

Example: Heapify

Example 12.3

The trees rooted at positions 1 and 2 are heaps. We have a violation at position 0. Heapify will fix
the problem by moving the key down.

9

17

10

5 8

7

6

13

11 2

0

1
2

3 4 5 6

7 8 9

Heapify(0)
17

10

9

5 8

7

6

13

11 2

0

1 2

3 4 5 6

7 8 9

▶ Keep moving down to the child which has the maximum key. (Why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

Algorithm: Heapify

Algorithm 12.3: Heapify(Heap T, i)

1 c := IndexWithLargestKey(T , i , left(i), right(i)) //assume T [i] = −∞ if i ≥ T .size.
2 if c == i then return;
3 Swap(T , c , i);
4 Heapify(T ,c);

▶ Correctness
▶ Same as insert, but we are pushing down.

▶ Running time is O(logT .size).

Commentary: Assumption T [i] = −∞ if i ≥ T .size is a convenience of notation. We may have a situation, where the T [i] exists and has some non-negative infinity key.
Without loss of correctness, we can interpret the as if the key is −∞. We will need this interpretation later for HeapSort.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 23

Topic 12.6

Delete maximum in heap

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 24

Example: DeleteMax

Example 12.4

Let us delete 21 at position 0.

21

17

10

5 8

7

6

13

11 2

0

1
2

3 4 5 6

7 8 9

Swap(T,0,9)

Heapify(0)

17

10

8

5 6

7

13

11 2

0

1 2

3 4 5 6

7 8

▶ Swap with the last position, delete the last position, and run Heapify.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

Algorithm: DeleteMax

Algorithm 12.4: DeleteMax(Heap T)

1 Swap(T , 0,T .size − 1);
2 T .size := T .size − 1;
3 Heapify(T , 0);
4 return T [T .size];

▶ Correctness
▶ The maximum element is removed and

heapify returns a heap.

▶ Running time is O(logT .size).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 26

Topic 12.7

Build heap

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 27

Build heap https://en.cppreference.com/w/cpp/algorithm/make_heap

▶ Input: A binary tree T that has the structural property
▶ If structural property holds, then the T is an array

▶ Output: A heap over elements of T

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/algorithm/make_heap

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 28

Algorithm: BuildHeap

Algorithm 12.5: BuildHeap(Heap T)

1 for i := T .size − 1 downto 0 do
2 Heapify(T , i)

Order of processing in BuildHeap.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 29

Example: BuildHeap

Example 12.5

Consider sequence 1 17 19 20 11 9 4 8 12 10 0 5 14 3 2. Let us fill them in the following tree.

1

17

20

8 12

11

10 0

19

9

5 14

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

BuildHeap traverses the tree bottom up. Heapify calls apply the following swap operations.

▶ Heapify(T,5): Swap(T,5,12)

▶ Heapify(T,1): Swap(T,1,3)

▶ Heapify(T,0): Swap(T,0,1); Swap(T,1,3); Swap(T,3,8);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 30

Correctness of BuildHeap

▶ Correctness by induction
▶ Base case:

If i does not have children, it is already a heap.
▶ Induction step:

We know left(i) > i or right(i) > i .
Due to the induction hypothesis, both the subtrees are heap before processing i .
Therefore, Heapify(T , i) will return a heap rooted at i .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 31

Running time of BuildHeap

Heapify for i has O(height(i)) swaps.

Let us suppose T is a complete tree with n nodes.

At height h the number of nodes is ⌈n/2h+1⌉ and the height of T is ⌊log n⌋.

The total running time of BuildHeap is

⌊log n⌋∑
h=0

O(h)⌈n/2h+1⌉ = O(
n

2

⌊log n⌋∑ h

2h
)

Since
∑∞

h=0

h

2h
= 2, the running time is O(n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 32

Some calculation

We know
∞∑
i=0

x i =
1

1− x

After differentiating over x ,
∞∑
i=0

ix i−1 =
1

(1− x)2

After multiplying with x ,
∞∑
i=0

ix i =
x

(1− x)2

After putting x = 1/2,
∞∑
i=0

i

2i
= 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 33

Topic 12.8

Heapsort

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 34

Heapsort

Algorithm 12.6: HeapSort(Tree T)

1 T .size = |nodes of T|;
2 BuildHeap(T);
3 while T .size > 0 do
4 DeleteMax(T)

▶ Since DeleteMax moves maximum to
T .size − 1 position, the array is sorted in place.

▶ Running time:
▶ BuildHeap is O(n)
▶ DeleteMax(T) is O(log i) at size i .

▶ Total running time: O(n log n).

Exercise 12.6
Both BuildHeap and the above loop have iterative runs of Heapify in them.
Why are their running time complexities different?

Commentary: Please solve the above exercise to clearly understand the relevant mathematics.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 35

Example: Heapsort
Consider the following Heap obtained after running BuildHeap.

20

17

8

1 12

11

10 0

19

14

5 9

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

After the first DeleteMax,

19

17

8

1 12

11

10 0

14

9

5 2

4

3 20

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 36

Example: Heapsort(2)

After the second DeleteMax,

17

11

8

1 12

10

3 0

14

9

5 2

4

19 20

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

DeleateMax has placed 19 and 20 at their sorted position.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 37

Topic 12.9

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 38

Exercise: Why heap?

Exercise 12.7
Can a Priority Queue be implemented as a red-black tree? What advantages does a heap
implementation has over a red-black tree implementation?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 39

Exercise: 2D-matrix

Exercise 12.8
Suppose we have a 2D array where we maintain the following conditions: for every (i,j), we have
A(i , j) ≤ A(i + 1, j) and A(i , j) ≤ A(i , j + 1). Can this be used to implement a priority queue?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 40

Topic 12.10

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 41

End of Lecture 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Priority queue
	Implementations of priority queue
	Heap - somewhat sorting!
	Insert in heap
	Heapify
	Delete maximum in heap
	Build heap
	Heapsort
	Tutorial problems
	Problems

