CS213/293 Data Structure and Algorithms 2023

Lecture 13: Data compression

Instructor: Ashutosh Gupta
IITB India

Compile date: 2023-10-17

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

Data compression

You must have used Zip, which reduces the space used by a file.

How does Zip work?

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Fixed-length vs. Variable-length encoding

» Fixed-length encoding. Example: An 8-bit ASCII code encodes each character in a text file.
» Variable-length encoding: each character is given a different bit length encoding.
» We may save space by assigning fewer bits to the characters that occur more often.

» We may have to assign some characters more than 8-bit representation.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: Variable-length encoding

Example 13.1

Consider text: “agra”

» |n a text file, the text will take 32 bits of space.
> (01100001011001110111001001100001

» There are only three characters. Let us use encoding, a = 0", g = “10", and r = "11".
The text needs six bits.

> 010110

Exercise 13.1
Are the six bits sufficient?

lCommentary: If the encoding depends on the text content, we also need to record the encoding along with the text.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: decoding variable-length encoding

Example 13.2
Consider encoding a = "0", g = "10", and r = “11" and the following encoding of a text.

101100001110

The text is “graaaarg” .

We scan the encoding from the left. As soon as a match is found, we start matching the next
symbol.

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: decoding bad variable-length encoding

Example 13.3
Consider encoding a = "0", g = "01", and r = "11" and the following encoding of a text.

0111000011001

We cannot tell if the text starts with a “g” or an "a".

Prefix condition: Encoding of a character cannot be a prefix of encoding of another character.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Encoding trie

Definition 13.1
An encoding trie is a binary trie that has the following
properties.
» FEach terminating leaf is labeled with an encoded
character.

» The left child of a node is labeled 0 and the right
child of a node is labeled 1

Exercise 13.2
Show: An encoding trie ensures that the prefix Character encoding/codewords:
condition is not violated. C=00 A=010, R =011,

D =10, and B =11.

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: Decoding from a Trie

Encoding: 01011011010000101001011011010

Text: ABRACADABRA

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Encoding length

Example 13.4
Let us encode ABRACADABRA using the following two tries.

Encoding:(29 bits) Encoding:(24 bits)
01011011010 0001010 01011011010 00111000 01000011 00111000

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Drawing with tries without labels

Since we know the label of an internal node by observing that a node is a left or right child, we will
not write the labels.

Commentary: We can assign any bit to a node as long as the sibling will use a different bit.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 13.1

Optimal compression

@O0

CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Optimal compression

Different tries will result in different compression levels.

Design principle: We encode a character that occurs more often with fewer bits.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta

IITB India

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

frequency

Definition 13.2
The frequency f. of a character c in a text T is the number of times ¢ occurs in T.

Example 13.5
The frequencies of the characters in ABRACADABRA are as follows.
> fa=5
> fg =2
> fr=2
> fc=1
> fp=1

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Characters encoding length

Definition 13.3
The encoding length |- of a character c in a trie is the number of bits needed to encode c.

Example 13.6

In the left trie, the encoding length of the characters are

as follows.
> [h=2
> g =2
> p=2
> Ic=3
> Ip=3

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Weighted path length == number of encoded bits

The total number of bits needed to store a text is

Z fole.

c€lLeaves

Example 13.7

The number of bits needed for ABRACADABRA using
the left trie is the following sum.

faxla+fexlc+fpxlp+frxlp+fexlg

=5%2+1%3+1%x3+2%x2+2%x2=24

Is this the best trie for compression? How can we find the best trie?

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Huffman encoding

Algorithm 13.1: HUFFMAN(Integers £, ...

o fe)

[a—y

for i € [1, k] do
N := CREATENODE(ck, Null, Null);
T; := CREATENODE(f, , N, Null);

4 return BuildTree(Ty, ..., T)

w N

Algorithm 13.2: BUILDTREE(Nodes Ty, ...

) Tk)

1 if k ==1 then
2 L return T,

3 Find T; and T; such that T;.value and T;.value are minimum;
4 T; := CREATENODE(T;.value + Tj.value, T;, T;)

5 return BuiIdTree(Tl, . Tj,1, 7}'+1, . Tk)

[RIORIE) CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: Huffman encoding

We choose nodes labeled with 1 to join and create a larger tree.

Example 13.8
After initialization.

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: Huffman encoding(2)

After the next recursive step After another recursive step:
()

() @ @

B @ @]2 (@)

RO O HIONN©
c] [o] c] (o]

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Example: Huffman encoding(3)

After the final recursive step: We scrub the frequency labels.

Exercise 13.3
How many bits do we need to encode ABRACADABRA?

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta

IITB India

19

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 13.2

Proof of optimality of Huffman encoding

@O0

CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta

IITB India

20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Minimum weighted path length

Definition 13.4
Given frequencies fc,, ..., fc,, minimum weighted path length MWPL(f.,, ..., f.,) is the weighted

path length for the encoding trie for which the sum is minimum.

We say a trie is a witness of MWPL(f.,, ..., f;,) if it has the c1,... ,ck are the leaves and produces
encoding of length MWPL(f.,, ..., f;,) for a text with frequencies f., ..., f,

Commentary: The definition of MWPL does not mention the trie. It is the property of occurrence rate distribution

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

A recursive relation

Theorem 13.1
MWPL(fe,, ..., fe,) < fe + fe, + MWPL(fe, + fo,, feyy ooy fe,)
Proof.

Let trie T be a witness of MWPL(f, + fe,, fes,

..., fc,) containing a node labeled with f., + f., with
a terminal child.

fe, + fo,

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

A recursive relation(2)

Proof(contd.)

We construct a trie for frequencies fc, ..., f,, such that the weighted path length of the trie is
fe, + fo, + MWPL(fe, + foy, fes, ..., e,).

Therefore, MWPL(f,,, ..., f,) must be less than equal to the above expression.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

23

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Reverse recursive relation

Theorem 13.2

If fo, and f, are the minimum two, MWPL(f., ..., fc,) = fo, + fc, + MWPL(fe, + fc,, fes, -0 e,).
Proof.

There is a witness of MWPL(f,,, ..., f,,) where the parents of ¢; and ¢ are siblings.why?)

Commentary: Explaining why: Show that smallest frequency symbol can always be moved to last level to improve weighted path length. There must be a sibling at the last
level. The second last frequency symbol can also be moved to the sibling to improve the weighted path length.

@O0 CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta IITB India 24

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Reverse recursive relation(2)

Proof(contd.)

We construct a tree for frequencies f., + fe,, fe,, ..., fc, such that the weighted path length of the
tree is MWPL(fe,, ..., fe,) — fe, — fey.

fC1 + fcl

[-]

Therefore, MWPL(fe,, ..., fe,) — fe, — fe, > MWPL(fe, + foy, fe, -y e,).

Due to the previous theorem, MWPL(f.,, ..., fe,) = fe, + fe, + MWPL(f, + 1y, fey, oo T,)- O

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Commentary: In the proof, the induction step is non-
trivial to understand.

Correctness of BUILDTREE

Theorem 13.3
HUFFMAN(f,,, ..., fe,) always returns a tree that is a witness of MWPL(f,,, ..., fc,).

Proof.
We prove this inductively.
In the call Encode(Ty, .., Tx), we assume T; is a witness of the respective MWPL. (For which frequencies?)

Base case:
Trivial. There is a single tree and we return the tree.

Induction step:
Since we are updating trees by combining trees with minimum weight, we have the following due
to the previous theorem.

MWPL(Ty.value, ..., Ty.value) = T;.value + T;.value + MWPL(T;.value + T;.value,)

-~
We will have the witness of the frequencies due to the construction. witness returned due to the induction hypothesis

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 26

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Practical Huffman

When we compress a file, we do not compute the frequencies for the entire file in one go.

» We compute the encoding trie of a block of bytes.
» we check if the data allows compression, if it does not we do not compress the block

» If the block is small, we use a precomputed encoding trie is used.

Exercise 13.4
How many bits are needed per character for 8 characters if frequencies are all equal?

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

27

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 13.3

Handling repetitions (LZ77)

@O0

CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

28

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Repeated string
In LZ77, if a string is repeated within the sliding window on the input stream, the repeated
occurrence is replaced by a reference, which is a pair of the offset and length of the string.

The references are viewed as yet another symbols on the input stream.

Example 13.9

Before encoding ABRACADABRA using a trie, the string will be transformed to
ABRACADI7,4].

We run Huffman on the above string.

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 29

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Multiple repetitions

Example 13.10
Consider the following input text of 16 characters.

abababababababab

We will transformed the text as follows.

ab[2,14]

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta

IITB India

30

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 13.4

Deflate

@O0

CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

31

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

DEFLATE

In addition to encoding trie, the Linux utility gzip uses the LZ77 algorithm for compression.

The combined algorithm is called DEFLATE, which compresses a file in blocks. Each block may be
compresses in one of three modes.

» No compression

» Dynamically computed Huffman coding

» Fixed encoding

To compress multiple file, we need tar utility concatenate them in one file.

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 32

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

gzip output file format

gzip implements DEFLATE, which is a combination LZ77 and Huffman encoding.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

36

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Topic 13.5

Tutorial problems

@O0

CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

34

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Single-bit Huffman code

Exercise 13.5 5
a. In an Huffman code instance, show that if there is a character with frequency greater than T

then there is a codeword of length 1.

1
b. Show that if all frequencies are less than 3 then there is no codeword of length 1.

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

35

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Predictable text

Exercise 13.6

Suppose that there is a source that has three characters a,b,c. The output of the source cycles in
the order of a,b,c followed by a again, and so on. In other words, if the last output was a b, then
the next output will either be a b or a c. Each letter is equally probable. Is the Huffman code the

best possible encoding? Are there any other possibilities? What would be the pros and cons of
this?

[RIORIE) CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 36

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

Compute Huffman code tree

Exercise 13.7
Given the following frequencies, compute the Huffman code tree.
a| 20
7
8
4
6
25
8
2
6
1
i |12
] 1

| O | X ||| T|— |0k |

@O0 CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

End of Lecture 13

@O0

CS213/293 Data Structure and Algorithms 2023

Instructor: Ashutosh Gupta

IITB India

38

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Optimal compression
	Proof of optimality of Huffman encoding
	Handling repetitions (LZ77)
	Deflate
	Tutorial problems

