
cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2023

Lecture 17: Graphs - Depth-first search

Instructor: Ashutosh Gupta

IITB India

Compile date: 2023-10-30

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 2

Topic 17.1

Depth-first search (DFS)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 3

Let us solve the maze again

Breadth-first search is about considering all available options before exploring further.

We can have another strategy of search: explore a choice fully before considering another choice.

a b

entry d

ef

g

exit

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 4

Algorithm: DFS for search

Algorithm 17.1: DFS(Graph G = (V ,E), vertex r , Value x)

1 Stack S;
2 set visited ;
3 S .push(r);
4 while not S .empty() do
5 v := S .pop();
6 if v .label == x then
7 return v

8 if v /∈ visited then
9 visited := visited ∪ {v};

10 for w ∈ G .adjacent(v) do
11 S .push(w)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 5

Example: DFS

Green vertices in the S are already visited vertices and the first unvisited vertex is processed next.

a b

entry d

e

f

g

exit

Initially: S = [entry]

After visiting entry: S = [a]

After visiting a: S = [f , b, entry]

After visiting f: S = [a, b, entry]

After visiting b: S = [a, d , e, entry]

After visiting d: S = [b, g , e, e, entry]

After visiting g: S = [d , e, e, entry]

After visiting e: S = [exit, b, d , e, entry]

After visiting exit: Node is found

Exercise 17.1
Is there a bound that limits the size of S?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 6

Algorithm: Recursive DFS

The recursive description of DFS is easier to follow.

Algorithm 17.2: DFS(graph G = (V ,E), vertex v)

1 for v ∈ V do
2 v .visited := False

3 DFSRec(G , v)

Algorithm 17.3: DFSRec(Graph G , vertex v)

1 v .visited := True;
2 for w ∈ G .adjacent(v) do
3 if w .visited == False then
4 DFSRec(G ,w)

Exercise 17.2
Why is there no stack in the recursive DFS?

v can be in three possible states

▶ v is not visited

▶ v is on the call stack

▶ v is visited and not on the call
stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

DFS Tree

Algorithm 17.4: DFS(graph G = (V ,E), vertex v)

1 global time := 0;
2 for v ∈ V do
3 v .visited := False

4 DFSRec(G , v)

Algorithm 17.5: DFSRec(Graph G , vertex v)

1 v .visited := True;
2 v .arrival := time ++;
3 for w ∈ G .adjacent(v) do
4 if w .visited == False then
5 w .parent := v ;
6 DFSRec(G ,w)

7 v .departure := time ++;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 8

Example: recursive execution
Green numbers are arrival times and blue numbers are the departure times.

a b

entry d

e

f

g

exit

DFSRec(G ,entry) 0

DFSRec(G ,a)

1

DFSRec(G ,f)

2

Exit DFSRec(G ,f)

3

DFSRec(G ,b)
4

DFSRec(G ,d)

5

DFSRec(G ,g)

6

Exit DFSRec(G ,g)

7

DFSRec(G ,e)

8

DFSRec(G ,exit)

9

In the extra edge,
b is an ancestor of
e

Exercise 17.3
What are the exit timings of the remaining nodes?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Non-tree edges
A run of DFS induces a tree. There are two kinds of possible extra edges.

Exercise 17.4
a. Is blue edge possible? yes.
b. Is red edge possible? no.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 10

Reachable coverage

Theorem 17.1
Let G = (V ,E) be a connected graph. For each {v1, v2} ∈ E, v1 is an ancestor of v2 in DFS tree
or vice versa.

Proof.
Without loss of generality, we assume v1.arrival < v2.arrival at the end of DFS.

During the run of DFSRec(G , v1), v2 will be visited in one of the following two ways.

1. DFSRec(G , v2) is called by DFSRec(G , v1). v1 is the parent of v2.

2. DFSRec(G , v2) has been called already, when the loop in DFSRec(G , v1) reaches to v2.

In either case, v2.arrival < v1.departure. Therefore, v1 is ancestor of v2 in the DFS tree. (Why?)

In case 1, we call {v1, v2} a tree edge. In case 2, we call {v1, v2} a back edge.
Commentary: Answer to the above why: v1 was in the call stack when v2 arrived. The call stack is the ancestor relation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 11

Running time of DFS

Theorem 17.2
The running time of DFS is O(|E |+ |V |).

Proof.
The total number of recursive calls and iterations of initializations is O(|V |).

In call DFSRec(G , v), the loop iteration is bounded by degree(v).

Therefore, the total number of iterations is O(|E |).

Therefore, the running time is O(|E |+ |V |).

Exercise 17.5
Prove that the running time besides initialization is O(|E |).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 12

Algorithm: DFS for not connected graph

Algorithm 17.6: DFSFull(graph G = (V ,E))

1 global time := 0;
2 for v ∈ V do
3 v .visited := False

4 while ∃v such that v .visited == False do
5 DFSRec(G , v)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 13

Parent relation is a Forest

Theorem 17.3
The parent relation after the run of DFSFull(graph G = (V ,E)) induces spanning trees over a
connected components of G.

Proof.
Each call to DFSRec(G , v) will traverse a connected component of G that contains unvisited
node v . (Why?)

If the component has k nodes, then the tree has k − 1 edges, because the parent of v will be Null.

Therefore, the parent relation is a tree over the component.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 14

Topic 17.2

Does the graph have a cycle?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 15

Detecting cycle

If there is a back edge, there is a cycle. We modify our DFSRec as follows.

Algorithm 17.7: DFSRec(Graph G , vertex v)

1 v .arrival := time ++;
2 for w ∈ G .adjacent(v)− {v .parent} do
3 if w .visited == False then
4 w .parent := v ;
5 DFSRec(G ,w)

6 else
7 raise ”Found Cycle”;

8 v .departure := time ++;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 16

Back edge == cycle

Theorem 17.4
A graph has a cycle iff DFSFull(G , v) has a back edge.

Proof.
forward direction:
Due to theorem 17.3, each call to DFSRec without exception will produce a spanning tree over a
connected component of G .
Since there are no extra edges besides the tree, the cycle cannot be formed within the component.

reverse direction:
If the exception ”Found cycle” is raised, then there are two paths between u and w .

▶ Edge {u,w}.
▶ path via the parent relation that does not contain {u,w}.

Therefore, we have a cycle.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 17

Topic 17.3

Checking 2-edge connected graphs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 18

2-edge connected graph

Definition 17.1
A graph G = (V ,E) is 2-edge connected if for each e ∈ E, G − {e} is a connected graph.

2-edge connected graphs are useful for designing resilient networks that are tolerant of link failures.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 19

Example: 2-edge connected graphs

Example 17.1

The following graph is not 2-edge connected. {a, b} is called bridge.

a b

entry d

ef

g

exit

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 20

Example: 2-edge connected graphs (2)

Example 17.2

The following graph is 2-edge connected.

a b

entry d

ef

g

exit

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 21

Näive algorithm for checking 2-edge connectivity

For each edge, delete the edge and check connectedness.

The algorithm will run in O(|E |2).

We are looking for something more efficient.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 22

Idea: 2-edge connectivity via DFS

Observation 1: If we delete any number of back edges, the graph remains connected.

Observation 2: If a tree edge is part of some cycle, the graph remains connected after its deletion.

How can we check this?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 23

Checking participation in a cycle

Example 17.3

The red edge (a, b) in the following DFS tree is part of a cycle if there is a back edge that starts at
one of the decedents of b and ends at an ancestor of a.

a

b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 24

Deepest back edge
We need to track the back edges that cover most edges.

Definition 17.2
The deepest back edge for a vertex is the back edge that goes from the descendent of the vertex
to an ancestor of the lowest level.

Example 17.4

In the following DFS tree, there are two back edges
from the decedents of b.

{b, z} is deeper back edge than {c , a}.

Since there is no other back edge from decedents of b,
{b, z} is the deepest back edge for b.

z

a

b

c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 25

How do we identify the deepest back edge?

By comparing the arrival times of the destinations, we identify the deepest back edge.

We consider all neighbors of vertex v to find the deepest
back edge. There are three possible cases.

1. child on DFS tree: recursively find the deepest
edge

2. parent on the DFS tree: to be ignored

3. back edge: candidate for the deepest edge

..

..

p

v

w ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 26

Algorithm: 2-edge connectedness

Algorithm 17.8: int 2EC(Graph G , vertex v)

1 v .visited := True;
2 v .arrival := time ++;
3 deepest := v .arrival ;
4 for w ∈ G .adjacent(v)−{v .parent} do
5 if w .visited == False then
6 w .parent := v ;
7 deepest ′ := 2EC(G ,w);

8 else
9 deepest ′ := w .arrival ;

10 deepest := min(deepest, deepest ′);

11 v .departure := time ++;
12 if v .parent ̸= Null and v .arrival == deepest then raise ”Bridge found!”;
13 return deepest;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 27

Example: 2-edge connectedness

Exercise 17.6
Consider the following DFS run of the following graph.

a b

c d

ef

g

h

0

12

3

4

5 6

78

What is the deepest back edge for the following nodes?
▶ e

▶ h

▶ g

▶ d

▶ b

▶ f

▶ a

▶ c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 28

Topic 17.4

Depth-first search for directed graph

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 29

DFS for directed graph

There is no change in the code of DFSFull for the directed graph, the code will work as it is.

However, some of the behavior concerning extra edges will change.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 30

Example : DFS on the directed graph

Consider the following directed graph

a b

entry d

ef

g

exit

0

1

2

3
4

5 6

7

8

9

10
11

12

1314

15

Now we have three kinds of extra edges.

▶ Forward edge:(b, e), where b.arrival < e.arrival < e.departure < b.departure

▶ Back edge:(f , entry), where entry .arrival < f .arrival < f .departure < entry .departure

▶ Cross edge:(e, g), where g .arrival < g .departure < e.arrival < e.departure

Are there other kind of edges?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 31

Interleaved intervals are not possible

Theorem 17.5
For each v , v ′ ∈ V , v .arrival < v ′.arrival < v .departure < v ′.departure is not possible.

v.departurev.arrival

v’.departurev’.arrival

Proof.
Let us assume v ′.arrival is between v .departure and v .arrival .

Therefore, v is in the call stack when v ′ is put on the call stack during a run of DFSRec.

v ′ will leave the call stack before v .

Therefore, v ′.departure < v .departure. The ordering of events is not possible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 32

DFS always follows the available edges.

Theorem 17.6
For each (v , v ′) ∈ E, v .arrival < v .departure < v ′.arrival < v ′.departure is not possible.

v.departurev.arrival v’.departurev’.arrival

Proof.
Apply theorem 17.1 after replacing the undirected edges with the directed edges in the
theorem.

Exercise 17.7
a. Prove theorem 17.1 for directed graph.
b. The theorem was proven for DFSRec. Extend it for DFSFull.
Commentary: We need to reword the theorem to show that v′ will be on the call stack before v departs the call stack.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 33

Extra edges
We are left with only the following possibilities for the extra and tree edges. Let (v , v ′) ∈ E .

▶ Forward edge/Tree edge

v.departurev.arrival v’.departurev’.arrival

▶ Back edge:

v.departurev.arrival v’.departurev’.arrival

▶ Cross edge:

v’.departurev’.arrival v.departurev.arrival

Exercise 17.8
a. Show: If v .departure ≤ v ′.departure, (v , v ′) is a back edge.
b. Give the condition that identifies the back or cross edge.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 34

Topic 17.5

Does the directed graph have a cycle?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 35

Idea: Back edge == cyclic

If DFS finds a back edge there is a cycle in a (directed) graph.

Exercise 17.9
How can we use BFS to find cycles?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 36

Algorithm: Has Cycle?

Algorithm 17.9: HasCycle(directed graph G = (V ,E))

1 DFSFull(G , v);
2 if ∃(v , v ′) ∈ E such that v .departure ≤ v ′.departure then
3 return True;

4 return False;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 37

Back edge == Cycle

Theorem 17.7
A directed graph G = (V ,E) has a cycle iff DFSFull(G) has a back edge.

Proof.
forward direction:
Suppose there is no back edge. Therefore, ∀(v , v ′) ∈ E , v .departure > v ′.departure.
Sort all the nodes by their departure times.
All edges will be going in one direction of the sorted sequence. Therefore, there is no cycle.

reverse direction:
Let us suppose there is a back edge (v , v ′) ∈ E . Therefore, v .departure ≤ v ′.departure.
Due to properties of the back edge, v ′ must be on call stack when v departs.
Therefore, there is a path from v ′ to v . Therefore, there is a cycle.

Commentary: Does the above argument work when v and v′ are equal?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 38

Topic 17.6

Topological sort

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 39

Topological order

Definition 17.3
For a DAG G = (V ,E), the topological order < is an order of vertices of V such that if
(v , v ′) ∈ E then v < v ′.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 40

Algorithm: topological sort

Algorithm 17.10: HasCycle(directed graph G = (V ,E))

1 DFSFull(G , v);
2 if ∃(v , v ′) ∈ E such that v .departure ≤ v ′.departure then
3 return ”Cycle found: Sorting not possible”;

4 return sorted vertices of V in the decreasing order of departure.

Exercise 17.10
Can we avoid sorting after the DFS run?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 41

Topic 17.7

Is strongly connected?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 42

Strongly connected (Recall)

Consider a directed graph G = (V ,E).

Definition 17.4
G is strongly connected if for each v , v ′ ∈ V there is a path v ,, v ′ in E .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 43

Näive algorithm

Run DFS from each vertex, and check if all vertices are reached.

The running time complexity is O(|V ||E |).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 44

Strongly connected via DFS

Condition 1: If DFS(v) visits all vertices in G then there is a path from v to each vertex in G .

Condition 2: There is a path from every node in G to v .

We can check condition 1 using DFS 1. How can we check condition 2?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 45

Kosaraju’s algorithm

Run DFS on G and GR (All edges of G are reversed) from some vertex v .

If BOTH DFSs cover all nodes, G is strongly connected.

The running time complexity is O(|V |+ |E |).

Exercise 17.11
Can we use BFS here?

Can we avoid two passes of the graph?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 46

How can we check if we can reach the root of DFS?

Example 17.5

Consider vertex b. We must be able to escape the subtree of b to reach to the root.

There are only two ways to escape a subtree.

▶ Back edge

▶ Cross edge

Can both routes to escape be useful?
b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 47

Lower arrival times

Observation: both back and cross edges take us to lower arrival times.

Induction: If we can escape from the subtree of each vertex, we are guaranteed to reach the root.

All we have to do is to show that we can escape from each vertex.

Use earliest escape edge? (Same idea as 2EC?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 48

Algorithm: SC

Algorithm 17.11: int SC(Graph G , vertex v)

1 v .visited := True;
2 v .arrival := time ++;
3 earliest := v .arrival ;
4 for w ∈ G .adjacent(v) do
5 if w .visited == False then
6 w .parent := v ;
7 earliest ′ := SC(G ,w);

8 else
9 earliest ′ := w .arrival ;

10 earliest := min(earliest, earliest ′);

11 v .departure := time ++;
12 if v .parent ̸= Null and v .arrival == earliest then raise ”Not strongly connected!”;
13 return earliest;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 49

Topic 17.8

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 50

Exercise: 2-vertex connected graph

Definition 17.5
A graph G = (V ,E) is 2-vertex connected if for each v ∈ V , G − {v} is a connected graph.

Exercise 17.12
Give an algorithm that checks if a graph is 2-vertex connected?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 51

Exercise: Change in DFS

Suppose that we have a graph and we have run DFS starting at a vertex s and obtained a DFS
tree. Next, suppose that we add an edge (u,v). Under what conditions will the DFS tree change?
Give examples.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 52

2-edge-connectedness in theory

Exercise 17.13
Let G(V,E) be a graph. We define a relation on edges as follows: two edges e and f are related
(denoted by e f iff there is a cycle containing both.) Show that this is an equivalence relation. The
equivalence class [e] of an edge e is called its connected component. What is the property of the
equivalence relation when we say the graph is 2-edge connected.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 53

Exercise: SCCs via Kosaraju’s algorithm

Exercise 17.14
Modify Kosaraju’s algorithm to identify all SCCs of a graph.

Exercise 17.15
Give similar modification for the algorithm SC

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 54

Exercise: Classification of edges via BFS

Exercise 17.16
If we run BFS on a directed graph, can we define the same classes of edges, i.e., cross, tree, back,
and forward edges? Give conditions for each class.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 55

Detecting cycle during the run for a directed graph!

Exercise 17.17
Let us modify DFSRec to detect cycles during the run. Give the expression for the condition to
detect the cycles.

Algorithm 17.12: DFSRec(Graph G , vertex v)

1 v .visited := True;
2 v .arrival := time ++;
3 for w ∈ G .adjacent(v) do
4 if w .visited == False then
5 DFSRec(G ,w)
6 else
7 if condition then
8 throw ”Found Cycle”

9 v .departure := time ++;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 56

Topic 17.9

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 57

Exercise: another search
Exercise 17.18
We have a new search algorithm that uses a set S for which we have two functions (i) Add(x,S) which adds
x to S, and (ii) y = select(S) which returns an element of S following a certain rule and removes y from S.

Algorithm 17.13: int mysearch(Graph G = (V ,E), vertex s)

1 for v ∈ V do v .visited = False;
2 for e ∈ E do e.found = False;
3 S=empty;Add(s,S);nos := 1;record [nos] := s;
4 while not S .empty() do
5 s := select(S); nos := nos + 1; record[nos] = y;
6 for w ∈ G .adjacent(v) do
7 if w .visited == False then w .visited := True; found [{u, v}] = true; Add(v ,S) ;

1. Compare the bfs and dfs algorithms with the above code. Take special care in understanding visited.

2. Let us look at the sequence record[1],record[2],...,record[n]. Show that there is a path from record[i] to
record[i+1] using only edges which have been found at that point.

3. Compare BFS and DFS in terms of the above path lengths.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 58

Topic 17.10

Extra slides: Topological sort

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 59

Algorithm: Topological sort using DFS

An implementation with cycle detection and in-place sorting.

Algorithm 17.14: TopologicalSort(Directed graph G = (V ,E))

1 Stack Sorted;
2 while ∃v such that v .visited == False do visit(v) ;

Algorithm 17.15: Visit(Graph G = (V ,E), vertex v)

1 if v .visited then return;
2 if v .onPath then throw Cycle found ;
3 v .onPath = True;
4 for w ∈ G .adjacent(v) do
5 Visit(w)

6 v .onPath = False;
7 v .visited = True;
8 Sorted .push(v);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 60

End of Lecture 17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Depth-first search (DFS)
	Does the graph have a cycle?
	Checking 2-edge connected graphs
	Depth-first search for directed graph
	Does the directed graph have a cycle?
	Topological sort
	Is strongly connected?
	Tutorial problems
	Problems
	Extra slides: Topological sort

