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Topic 17.1

Depth-first search (DFS)
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Let us solve the maze again

Breadth-first search is about considering all available options before exploring further.

We can have another strategy of search: explore a choice fully before considering another choice.

a b

entry d

ef

g

exit
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Algorithm: DFS for search

Algorithm 17.1: DFS( Graph G = (V ,E ), vertex r , Value x )

1 Stack S;
2 set visited ;
3 S .push(r);
4 while not S .empty() do
5 v := S .pop();
6 if v .label == x then
7 return v

8 if v /∈ visited then
9 visited := visited ∪ {v};

10 for w ∈ G .adjacent(v) do
11 S .push(w)
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Example: DFS

Green vertices in the S are already visited vertices and the first unvisited vertex is processed next.

a b

entry d

e

f

g

exit

Initially: S = [entry ]

After visiting entry: S = [a]

After visiting a: S = [f , b, entry ]

After visiting f: S = [a, b, entry ]

After visiting b: S = [a, d , e, entry ]

After visiting d: S = [b, g , e, e, entry ]

After visiting g: S = [d , e, e, entry ]

After visiting e: S = [exit, b, d , e, entry ]

After visiting exit: Node is found

Exercise 17.1
Is there a bound that limits the size of S?
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Algorithm: Recursive DFS

The recursive description of DFS is easier to follow.

Algorithm 17.2: DFS( graph G = (V ,E ), vertex v )

1 for v ∈ V do
2 v .visited := False

3 DFSRec(G , v)

Algorithm 17.3: DFSRec( Graph G , vertex v )

1 v .visited := True;
2 for w ∈ G .adjacent(v) do
3 if w .visited == False then
4 DFSRec(G ,w)

Exercise 17.2
Why is there no stack in the recursive DFS?

v can be in three possible states

▶ v is not visited

▶ v is on the call stack

▶ v is visited and not on the call
stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 7

DFS Tree

Algorithm 17.4: DFS( graph G = (V ,E ), vertex v )

1 global time := 0;
2 for v ∈ V do
3 v .visited := False

4 DFSRec(G , v)

Algorithm 17.5: DFSRec( Graph G , vertex v )

1 v .visited := True;
2 v .arrival := time ++;
3 for w ∈ G .adjacent(v) do
4 if w .visited == False then
5 w .parent := v ;
6 DFSRec(G ,w)

7 v .departure := time ++;
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Example: recursive execution
Green numbers are arrival times and blue numbers are the departure times.

a b

entry d

e

f

g

exit

DFSRec(G ,entry) 0

DFSRec(G ,a)

1

DFSRec(G ,f )

2

Exit DFSRec(G ,f )

3

DFSRec(G ,b)
4

DFSRec(G ,d)

5

DFSRec(G ,g)

6

Exit DFSRec(G ,g)

7

DFSRec(G ,e)

8

DFSRec(G ,exit)

9

In the extra edge,
b is an ancestor of
e

Exercise 17.3
What are the exit timings of the remaining nodes?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 9

Non-tree edges
A run of DFS induces a tree. There are two kinds of possible extra edges.

Exercise 17.4
a. Is blue edge possible? yes.
b. Is red edge possible? no.
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Reachable coverage

Theorem 17.1
Let G = (V ,E ) be a connected graph. For each {v1, v2} ∈ E, v1 is an ancestor of v2 in DFS tree
or vice versa.

Proof.
Without loss of generality, we assume v1.arrival < v2.arrival at the end of DFS.

During the run of DFSRec(G , v1), v2 will be visited in one of the following two ways.

1. DFSRec(G , v2) is called by DFSRec(G , v1). v1 is the parent of v2.

2. DFSRec(G , v2) has been called already, when the loop in DFSRec(G , v1) reaches to v2.

In either case, v2.arrival < v1.departure. Therefore, v1 is ancestor of v2 in the DFS tree. (Why?)

In case 1, we call {v1, v2} a tree edge. In case 2, we call {v1, v2} a back edge.
Commentary: Answer to the above why: v1 was in the call stack when v2 arrived. The call stack is the ancestor relation.
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Running time of DFS

Theorem 17.2
The running time of DFS is O(|E |+ |V |).

Proof.
The total number of recursive calls and iterations of initializations is O(|V |).

In call DFSRec(G , v), the loop iteration is bounded by degree(v).

Therefore, the total number of iterations is O(|E |).

Therefore, the running time is O(|E |+ |V |).

Exercise 17.5
Prove that the running time besides initialization is O(|E |).
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Algorithm: DFS for not connected graph

Algorithm 17.6: DFSFull( graph G = (V ,E ) )

1 global time := 0;
2 for v ∈ V do
3 v .visited := False

4 while ∃v such that v .visited == False do
5 DFSRec(G , v)
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Parent relation is a Forest

Theorem 17.3
The parent relation after the run of DFSFull( graph G = (V ,E ) ) induces spanning trees over a
connected components of G.

Proof.
Each call to DFSRec(G , v) will traverse a connected component of G that contains unvisited
node v . (Why?)

If the component has k nodes, then the tree has k − 1 edges, because the parent of v will be Null.

Therefore, the parent relation is a tree over the component.
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Topic 17.2

Does the graph have a cycle?
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Detecting cycle

If there is a back edge, there is a cycle. We modify our DFSRec as follows.

Algorithm 17.7: DFSRec( Graph G , vertex v )

1 v .arrival := time ++;
2 for w ∈ G .adjacent(v)− {v .parent} do
3 if w .visited == False then
4 w .parent := v ;
5 DFSRec(G ,w)

6 else
7 raise ”Found Cycle”;

8 v .departure := time ++;
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Back edge == cycle

Theorem 17.4
A graph has a cycle iff DFSFull(G , v) has a back edge.

Proof.
forward direction:
Due to theorem 17.3, each call to DFSRec without exception will produce a spanning tree over a
connected component of G .
Since there are no extra edges besides the tree, the cycle cannot be formed within the component.

reverse direction:
If the exception ”Found cycle” is raised, then there are two paths between u and w .

▶ Edge {u,w}.
▶ path via the parent relation that does not contain {u,w}.

Therefore, we have a cycle.
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Topic 17.3

Checking 2-edge connected graphs
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2-edge connected graph

Definition 17.1
A graph G = (V ,E ) is 2-edge connected if for each e ∈ E, G − {e} is a connected graph.

2-edge connected graphs are useful for designing resilient networks that are tolerant of link failures.
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Example: 2-edge connected graphs

Example 17.1

The following graph is not 2-edge connected. {a, b} is called bridge.

a b

entry d

ef

g

exit
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Example: 2-edge connected graphs (2)

Example 17.2

The following graph is 2-edge connected.

a b

entry d

ef

g

exit
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Näive algorithm for checking 2-edge connectivity

For each edge, delete the edge and check connectedness.

The algorithm will run in O(|E |2).

We are looking for something more efficient.
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Idea: 2-edge connectivity via DFS

Observation 1: If we delete any number of back edges, the graph remains connected.

Observation 2: If a tree edge is part of some cycle, the graph remains connected after its deletion.

How can we check this?
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Checking participation in a cycle

Example 17.3

The red edge (a, b) in the following DFS tree is part of a cycle if there is a back edge that starts at
one of the decedents of b and ends at an ancestor of a.

a

b
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Deepest back edge
We need to track the back edges that cover most edges.

Definition 17.2
The deepest back edge for a vertex is the back edge that goes from the descendent of the vertex
to an ancestor of the lowest level.

Example 17.4

In the following DFS tree, there are two back edges
from the decedents of b.

{b, z} is deeper back edge than {c , a}.

Since there is no other back edge from decedents of b,
{b, z} is the deepest back edge for b.

z

a

b

c
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How do we identify the deepest back edge?

By comparing the arrival times of the destinations, we identify the deepest back edge.

We consider all neighbors of vertex v to find the deepest
back edge. There are three possible cases.

1. child on DFS tree: recursively find the deepest
edge

2. parent on the DFS tree: to be ignored

3. back edge: candidate for the deepest edge

..

..

p

v

w ...
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Algorithm: 2-edge connectedness

Algorithm 17.8: int 2EC( Graph G , vertex v )

1 v .visited := True;
2 v .arrival := time ++;
3 deepest := v .arrival ;
4 for w ∈ G .adjacent(v)−{v .parent} do
5 if w .visited == False then
6 w .parent := v ;
7 deepest ′ := 2EC(G ,w);

8 else
9 deepest ′ := w .arrival ;

10 deepest := min(deepest, deepest ′);

11 v .departure := time ++;
12 if v .parent ̸= Null and v .arrival == deepest then raise ”Bridge found!”;
13 return deepest;
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Example: 2-edge connectedness

Exercise 17.6
Consider the following DFS run of the following graph.

a b

c d

ef

g

h

0

12

3

4

5 6

78

What is the deepest back edge for the following nodes?
▶ e

▶ h

▶ g

▶ d

▶ b

▶ f

▶ a

▶ c
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Topic 17.4

Depth-first search for directed graph
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DFS for directed graph

There is no change in the code of DFSFull for the directed graph, the code will work as it is.

However, some of the behavior concerning extra edges will change.
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Example : DFS on the directed graph

Consider the following directed graph

a b

entry d

ef

g

exit

0

1

2

3
4

5 6

7

8

9

10
11

12

1314

15

Now we have three kinds of extra edges.

▶ Forward edge:(b, e), where b.arrival < e.arrival < e.departure < b.departure

▶ Back edge:(f , entry), where entry .arrival < f .arrival < f .departure < entry .departure

▶ Cross edge:(e, g), where g .arrival < g .departure < e.arrival < e.departure

Are there other kind of edges?
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Interleaved intervals are not possible

Theorem 17.5
For each v , v ′ ∈ V , v .arrival < v ′.arrival < v .departure < v ′.departure is not possible.

v.departurev.arrival

v’.departurev’.arrival

Proof.
Let us assume v ′.arrival is between v .departure and v .arrival .

Therefore, v is in the call stack when v ′ is put on the call stack during a run of DFSRec.

v ′ will leave the call stack before v .

Therefore, v ′.departure < v .departure. The ordering of events is not possible.
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DFS always follows the available edges.

Theorem 17.6
For each (v , v ′) ∈ E, v .arrival < v .departure < v ′.arrival < v ′.departure is not possible.

v.departurev.arrival v’.departurev’.arrival

Proof.
Apply theorem 17.1 after replacing the undirected edges with the directed edges in the
theorem.

Exercise 17.7
a. Prove theorem 17.1 for directed graph.
b. The theorem was proven for DFSRec. Extend it for DFSFull.
Commentary: We need to reword the theorem to show that v′ will be on the call stack before v departs the call stack.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2023 Instructor: Ashutosh Gupta IITB India 33

Extra edges
We are left with only the following possibilities for the extra and tree edges. Let (v , v ′) ∈ E .

▶ Forward edge/Tree edge

v.departurev.arrival v’.departurev’.arrival

▶ Back edge:

v.departurev.arrival v’.departurev’.arrival

▶ Cross edge:

v’.departurev’.arrival v.departurev.arrival

Exercise 17.8
a. Show: If v .departure ≤ v ′.departure, (v , v ′) is a back edge.
b. Give the condition that identifies the back or cross edge.
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Topic 17.5

Does the directed graph have a cycle?
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Idea: Back edge == cyclic

If DFS finds a back edge there is a cycle in a (directed) graph.

Exercise 17.9
How can we use BFS to find cycles?
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Algorithm: Has Cycle?

Algorithm 17.9: HasCycle( directed graph G = (V ,E ) )

1 DFSFull(G , v);
2 if ∃(v , v ′) ∈ E such that v .departure ≤ v ′.departure then
3 return True;

4 return False;
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Back edge == Cycle

Theorem 17.7
A directed graph G = (V ,E ) has a cycle iff DFSFull(G ) has a back edge.

Proof.
forward direction:
Suppose there is no back edge. Therefore, ∀(v , v ′) ∈ E , v .departure > v ′.departure.
Sort all the nodes by their departure times.
All edges will be going in one direction of the sorted sequence. Therefore, there is no cycle.

reverse direction:
Let us suppose there is a back edge (v , v ′) ∈ E . Therefore, v .departure ≤ v ′.departure.
Due to properties of the back edge, v ′ must be on call stack when v departs.
Therefore, there is a path from v ′ to v . Therefore, there is a cycle.

Commentary: Does the above argument work when v and v′ are equal?
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Topic 17.6

Topological sort
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Topological order

Definition 17.3
For a DAG G = (V ,E ), the topological order < is an order of vertices of V such that if
(v , v ′) ∈ E then v < v ′.
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Algorithm: topological sort

Algorithm 17.10: HasCycle( directed graph G = (V ,E ) )

1 DFSFull(G , v);
2 if ∃(v , v ′) ∈ E such that v .departure ≤ v ′.departure then
3 return ”Cycle found: Sorting not possible”;

4 return sorted vertices of V in the decreasing order of departure.

Exercise 17.10
Can we avoid sorting after the DFS run?
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Topic 17.7

Is strongly connected?
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Strongly connected (Recall)

Consider a directed graph G = (V ,E ).

Definition 17.4
G is strongly connected if for each v , v ′ ∈ V there is a path v , ...., v ′ in E .
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Näive algorithm

Run DFS from each vertex, and check if all vertices are reached.

The running time complexity is O(|V ||E |).
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Strongly connected via DFS

Condition 1: If DFS(v) visits all vertices in G then there is a path from v to each vertex in G .

Condition 2: There is a path from every node in G to v .

We can check condition 1 using DFS 1. How can we check condition 2?
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Kosaraju’s algorithm

Run DFS on G and GR (All edges of G are reversed) from some vertex v .

If BOTH DFSs cover all nodes, G is strongly connected.

The running time complexity is O(|V |+ |E |).

Exercise 17.11
Can we use BFS here?

Can we avoid two passes of the graph?
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How can we check if we can reach the root of DFS?

Example 17.5

Consider vertex b. We must be able to escape the subtree of b to reach to the root.

There are only two ways to escape a subtree.

▶ Back edge

▶ Cross edge

Can both routes to escape be useful?
b
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Lower arrival times

Observation: both back and cross edges take us to lower arrival times.

Induction: If we can escape from the subtree of each vertex, we are guaranteed to reach the root.

All we have to do is to show that we can escape from each vertex.

Use earliest escape edge? (Same idea as 2EC?)
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Algorithm: SC

Algorithm 17.11: int SC( Graph G , vertex v )

1 v .visited := True;
2 v .arrival := time ++;
3 earliest := v .arrival ;
4 for w ∈ G .adjacent(v) do
5 if w .visited == False then
6 w .parent := v ;
7 earliest ′ := SC(G ,w);

8 else
9 earliest ′ := w .arrival ;

10 earliest := min(earliest, earliest ′);

11 v .departure := time ++;
12 if v .parent ̸= Null and v .arrival == earliest then raise ”Not strongly connected!”;
13 return earliest;
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Topic 17.8

Tutorial problems
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Exercise: 2-vertex connected graph

Definition 17.5
A graph G = (V ,E ) is 2-vertex connected if for each v ∈ V , G − {v} is a connected graph.

Exercise 17.12
Give an algorithm that checks if a graph is 2-vertex connected?
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Exercise: Change in DFS

Suppose that we have a graph and we have run DFS starting at a vertex s and obtained a DFS
tree. Next, suppose that we add an edge (u,v). Under what conditions will the DFS tree change?
Give examples.
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2-edge-connectedness in theory

Exercise 17.13
Let G(V,E) be a graph. We define a relation on edges as follows: two edges e and f are related
(denoted by e f iff there is a cycle containing both.) Show that this is an equivalence relation. The
equivalence class [e] of an edge e is called its connected component. What is the property of the
equivalence relation when we say the graph is 2-edge connected.
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Exercise: SCCs via Kosaraju’s algorithm

Exercise 17.14
Modify Kosaraju’s algorithm to identify all SCCs of a graph.

Exercise 17.15
Give similar modification for the algorithm SC
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Exercise: Classification of edges via BFS

Exercise 17.16
If we run BFS on a directed graph, can we define the same classes of edges, i.e., cross, tree, back,
and forward edges? Give conditions for each class.
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Detecting cycle during the run for a directed graph!

Exercise 17.17
Let us modify DFSRec to detect cycles during the run. Give the expression for the condition to
detect the cycles.

Algorithm 17.12: DFSRec( Graph G , vertex v )

1 v .visited := True;
2 v .arrival := time ++;
3 for w ∈ G .adjacent(v) do
4 if w .visited == False then
5 DFSRec(G ,w)
6 else
7 if condition then
8 throw ”Found Cycle”

9 v .departure := time ++;
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Topic 17.9

Problems
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Exercise: another search
Exercise 17.18
We have a new search algorithm that uses a set S for which we have two functions (i) Add(x,S) which adds
x to S, and (ii) y = select(S) which returns an element of S following a certain rule and removes y from S.

Algorithm 17.13: int mysearch( Graph G = (V ,E ), vertex s )

1 for v ∈ V do v .visited = False;
2 for e ∈ E do e.found = False;
3 S=empty;Add(s,S);nos := 1;record [nos] := s;
4 while not S .empty() do
5 s := select(S); nos := nos + 1; record[nos] = y;
6 for w ∈ G .adjacent(v) do
7 if w .visited == False then w .visited := True; found [{u, v}] = true; Add(v ,S) ;

1. Compare the bfs and dfs algorithms with the above code. Take special care in understanding visited.

2. Let us look at the sequence record[1],record[2],...,record[n]. Show that there is a path from record[i] to
record[i+1] using only edges which have been found at that point.

3. Compare BFS and DFS in terms of the above path lengths.
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Topic 17.10

Extra slides: Topological sort
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Algorithm: Topological sort using DFS

An implementation with cycle detection and in-place sorting.

Algorithm 17.14: TopologicalSort( Directed graph G = (V ,E ) )

1 Stack Sorted;
2 while ∃v such that v .visited == False do visit(v) ;

Algorithm 17.15: Visit( Graph G = (V ,E ), vertex v )

1 if v .visited then return;
2 if v .onPath then throw Cycle found ;
3 v .onPath = True;
4 for w ∈ G .adjacent(v) do
5 Visit(w)

6 v .onPath = False;
7 v .visited = True;
8 Sorted .push(v);
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End of Lecture 17
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