CS228 Logic for Computer Science 2023

Lecture 3: Semantics and truth tables

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-01-05

@(P)(S)(9)

Topic 3.1

Semantics - meaning of the formulas

Truth values

We denote the set of truth values as $\mathcal{B} \triangleq \{0, 1\}$.

0 and 1 are only distinct objects without any intuitive meaning.

We may view 0 as false and 1 as true, but it is only our emotional response to the symbols.

Model

Definition 3.1

A model is an element of $Vars \rightarrow \mathcal{B}$.

Example 3.1

 $\{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0, \dots\}$ is a model

Since Vars is countably infinite, the set of models is non-empty and infinite.

A model m may or may not satisfy a formula F.

The satisfaction relation is usually denoted by $m \models F$ in infix notation.

Propositional logic semantics

Definition 3.2

The satisfaction relation \models between models and formulas is the relation that satisfies the following conditions.

- $ightharpoonup m \models \top$
- $ightharpoonup m \models p$ if m(p) = 1
- $ightharpoonup m \models \neg F$ if $m \not\models F$
- $ightharpoonup m \models F_1 \lor F_2$ if $m \models F_1$ or $m \models F_2$
- $ightharpoonup m \models F_1 \wedge F_2$ if $m \models F_1$ and $m \models F_2$
- $ightharpoonup m \models F_1 \oplus F_2$ if $m \models F_1$ or $m \models F_2$, but not both
- $ightharpoonup m \models F_1 \Rightarrow F_2$ if if $m \models F_1$ then $m \models F_2$
- $ightharpoonup m \models F_1 \Leftrightarrow F_2 \quad \text{if } m \models F_1 \text{ iff } m \models F_2$

is an assumption here if some pair is not explicitly mentioned to be in the relation, then it is not in the relation. Unfortunately, we were not initiated with such definitions when we started learning sets and relations. We usually see non-inductive definition of infinite sets. For example, {G|graph G is cyclic}.

One may view the "if"s occured in the definition as iff

and be convinced.

Commentary: The definition defines a relation \models , which is fundamentally a set of pairs. Note that this

definition of defining relations is inductive. There

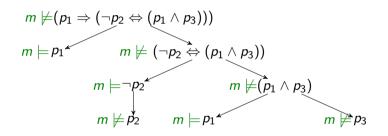
Exercise 3.1

Why \perp is not explicitly mentioned in the above definition?

Example: satisfaction relation

Example 3.2

Consider model $m = \{p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0, \dots\}$ and formula $(p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$



Exercise 3.2

Formally, write the satisfiability checking procedure .

Satisfiable, valid, unsatisfiable

We say

- ightharpoonup m satisfies F if $m \models F$,
- ▶ F is satisfiable if there is a model m such that $m \models F$,
- ightharpoonup F is valid (written $\models F$) if for each model m $m \models F$, and
- ▶ F is *unsatisfiable* (written $\not\models F$) if there is no model m such that $m \models F$.

Exercise 3.3

If F is sat then $\neg F$ is _____.

If F is valid then $\neg F$ is _____.

If F is unsat then $\neg F$ is _____.

A valid formula is also called a tautology.

Overloading \models : set of models

We extend the usage of \models in the following natural ways.

Definition 3.3

Let M be a (possibly infinite) set of models. $M \models F$ if for each $m \in M$, $m \models F$.

Example 3.3

$$\{\{p \rightarrow 1, q \rightarrow 1, ...\}, \{p \rightarrow 1, q \rightarrow 0, ...\}\} \models p \lor q$$

Exercise 3.4

Which of the following hold?

$$\{ \{p \to 1, q \to 1, ...\}, \{p \to 0, q \to 0, ...\} \} \models p$$

Overloading \models : set of formulas

Definition 3.4

Let Σ be a (possibly infinite) set of formulas.

 $\Sigma \models F$ if for each model m that satisfies each formula in Σ , $m \models F$.

- $ightharpoonup \Sigma \models F$ is read Σ implies F.
- ▶ If $\{G\} \models F$ then we may write $G \models F$.

Example 3.4

 $\{p,q\} \models p \lor q$

Exercise 3.5

Which of the following hold?

$$ightharpoonup \{p,q\} \models p \land q$$

$$(P \rightarrow q, q \rightarrow P) \vdash P \leftrightarrow q$$

$$\blacktriangleright \{p \Rightarrow q, q\} \models p \oplus q$$

Commentary: If Σ is finite, the definition of $\Sigma \models F$ means $\bigwedge \Sigma \Rightarrow F$ is valid. Why are we inventing a new notation? Because, Σ can be an infinite set. \wedge is not applicable on an infinite set. (why?)

Equivalent

Definition 3.5

Let $F \equiv G$ if for each model m

$$m \models F \text{ iff } m \models G.$$

Example 3.5

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Equisatisfiable

Definition 3.6

Formulas F and G are equisatisfiable if

F is sat iff G is sat.

Commentary: The concept of equisatisfiable is used in formula transformations. We often say that after a transformation the formula remained equisatisfiable. The

Topic 3.2

Decidability of SAT

Notation alert: decidable

A problem is decidable if there is an algorithm to solve the problem.

Propositional satisfiability problem

The following problem is called the satisfiability problem

For a given $F \in \mathbf{P}$, is F satisfiable?

Theorem 3.1

The propositional satisfiability problem is decidable.

Proof.

Let $n = |\mathbf{Vars}(F)|$.

We need to enumerate 2^n elements of $Vars(F) \rightarrow \mathcal{B}$.

If any of the models satisfy the formula, then F is sat. Otherwise, F is unsat.

Exercise 3.6

Give a procedure to decide the validity of a formula.

Complexity of the decidability question?

- ▶ If we enumerate all models to check satisfiability, the cost is exponential
- ▶ We do not know if we can do better.
- ► However, there are several tricks that have made satisfiability checking practical for the real-world formulas.

Topic 3.3

Truth tables

Truth tables

Truth tables was the first method to decide propositional logic.

The method is usually presented in slightly different notation. We need to assign a truth value to every formula.

Truth function

A model m is in $Vars \rightarrow \mathcal{B}$.

We can extend m to $\mathbf{P} \to \mathcal{B}$ in the following way.

$$m(F) = egin{cases} 1 & m \models F \\ 0 & otherwise. \end{cases}$$

The extended m is called truth function.

Since truth functions are natural extensions of models, we did not introduce new symbols.

Truth functions for logical connectives

Let F and G be logical formulas, and m be a model.

Due to the semantics of the propositional logic, the following holds for the truth functions.

m(F)	$m(\neg F)$
0	1
1	0

m(F)	m(G)	$m(F \wedge G)$	$m(F \vee G)$	$m(F \oplus G)$	$m(F \Rightarrow G)$	$m(F \Leftrightarrow G)$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Truth table

For a formula F, a truth table consists of $2^{|Vars(F)|}$ rows. Each row considers one of the models and computes the truth value of F for each of them.

Example 3.6

Consider $(p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$. We will not write m(.) in the top row for brevity.

1- I	F 2	1-3	(1-1		•	F 2		1º I		F3 ///
0	0	0	0	1	1	0	0	0	0	0
0	0	1	0	1	1	0	0	0	0	1
0	1	0	0	1	0	1	1	0	0	0
0	1	1	0	1	0	1	1	0	0	1
1	0	0	1	0	1	0	0	1	0	0
1	0	1	1	1	1	0	1	1	1	1
1	1	0	1	1	0	1	1	1	0	0
1	1	1	1	0	0	1	0	1	1	1
			·							

 p_1 p_2 $p_3 \parallel (p_1 \Rightarrow (\neg p_2 \Leftrightarrow (p_1 \land p_3)))$

The column under the leading connective has 1s therefore the formula is sat. But, there are some

Proving equivalences via DeMorgan law

Example 3.7

Let us show equivalence $p \lor q \equiv \neg(\neg p \land \neg q)$ via truth table. It is called DeMorgan law.

0	0	0	0	1	0	1	1	0	
0	1	1	1	1	0	0	0	1	
1	0	1	1	0	1	0	1	0	
1	1	0 1 1 1	1	0	1	0	0	1	

 $p \mid q \mid \mid (p \lor q) \mid \mid \neg \quad (\neg \quad p \quad \land \quad \neg \quad q)$

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

Exercise 3.7

Show $p \land q \equiv \neg(\neg p \lor \neg q)$ using a truth table

Tedious truth tables

We need to write 2ⁿ rows even if a simple observation about the formula can prove (un)satisfiability.

For example,

- \blacktriangleright $(a \lor (c \land a))$ is sat (why? no negation)
- $(a \lor (c \land a)) \land \neg (a \lor (c \land a))$ is unsat (why?- contradiction at the top level)
- ▶ We should be able to take such shortcuts?

We will see methods that will allow us to take such shortcuts.

Topic 3.4

Expressive power of propositional logic

Boolean functions

A finite Boolean function is in $\mathcal{B}^n \to \mathcal{B}$.

A formula F with $Vars(F) = \{p_1, \dots, p_n\}$ can be viewed as a Boolean function f that is defined as follows.

for each model
$$m, f(m(p_1), \ldots, m(p_n)) = m(F)$$

We say F represents f.

Example 3.8

Formula $p_1 \lor p_2$ represents the following function

$$f = \{(0,0) \to 0, (0,1) \to 1, (1,0) \to 1, (1,1) \to 1\}$$

A Boolean function is another way of writing truth table.

Theorem 3.2

For each finite Boolean function f, there is a formula F that represents f.

Proof

Let $f: \mathcal{B}^n \to \mathcal{B}$. We construct a formula F to represent f.

Let $p_i^0 \triangleq \neg p_i$ and $p_i^1 \triangleq p_i$.

$$\mathsf{For}\;(b_1,\ldots,b_n)\in\mathcal{B}^n,\;\mathsf{let}\quad F_{(b_1,\ldots,b_n)}\triangleq \begin{cases} (p_1^{b_1}\wedge\cdots\wedge p_n^{b_n}) &\mathsf{if}\; f(b_1,\ldots,b_n)=1\\ \bot &\mathsf{otherwise}. \end{cases}$$

$$F \triangleq \underbrace{F_{(0,\dots,0)} \vee \dots \vee F_{(1,\dots,1)}}_{\text{All Boolean combinations}} \qquad \text{We used only three logical connectives to construct } F$$

Exercise 3.8

@(I)(S)(D)

Workout if F really represents f.

Insufficient expressive power

If we do not have sufficiently many logical connectives, we cannot represent all Boolean functions.

Example 3.9

∧ alone can not express all Boolean functions.

To prove this we show that Boolean function $f = \{0 \to 1, 1 \to 1\}$ can not be achieved by any combination of $\wedge s$.

We setup induction over the sizes of formulas consisting a variable p and \wedge .

Commentary: We are assuming that only one variable occurs in the formula, since there is exactly one input to f. Our definition of "represents" requires the number of variables must match the arity of the function CS228 Logic for Computer Science 2023 IITB, India Instructor: Ashutosh Gupta 26

Insufficient expressive power II

base case:

Only choice is $p_{\cdot,(why?)}$ For p=0, the function does not match.

induction step:

Let us assume that formulas F and G of size less than n-1 do not represent f.

We construct a longer formula in the following way.

$$(F \wedge G)$$

The formula does not represent f, because we can $pick_{(why?)}$ a model when F produces 0.

Therefore \wedge alone is not fully expressive.

Minimal logical connectives

We used

- 2 0-ary,
- ▶ 1 unary, and
- ► 5 binary

connectives to describe the propositional logic.

However, it is not the minimal set needed for the full expressivity.

Example 3.10

- \neg and \lor define the whole propositional logic.
 - $ightharpoonup \top \equiv p \lor \neg p$ for some $p \in \mathbf{Vars}$
 - \blacksquare \bot = \neg T

- $(p \oplus q) \equiv (p \land \neg q) \lor (\neg p \land q)$
- \triangleright $(p \Rightarrow a) \equiv (\neg p \lor a)$
- \triangleright $(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

Exercise 3.9

a. Show \neg and \land can define all the other connectives

b. Show \oplus alone can not define \neg IITB, India Instructor: Ashutosh Gupta

Topic 3.5

Problems

Exercise: prove the following equivalences via truth table

Exercise 3.10

Prove the following equivalences via truth table.

- $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- $(p \oplus q) \equiv (\neg p \wedge q) \vee (p \wedge \neg q)$

Semantics

Exercise 3.11

Show $F[\perp/p] \wedge F[\top/p] \models F \models F[\perp/p] \vee F[\top/p]$.

Exercise: associativity and distributivity

Exercise 3.12

Prove/disprove using truth tables

- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$
- $(p \Leftrightarrow q) \Leftrightarrow r \equiv p \Leftrightarrow (q \Leftrightarrow r)$
- $(p \Rightarrow q) \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$

Exercise 3.13

Prove/disprove using truth tables prove that \land distributes over \lor and vice-versa.

Truth tables

Exercise 3.14

Prove/disprove validity of the following formulas using truth tables.

- 1. $(p \Rightarrow (q \Rightarrow r)) \Leftrightarrow ((p \land q) \Rightarrow r))$
- 2. $p \land (q \oplus r) \Leftrightarrow (p \land q) \oplus (q \land r)$
- 3. $(p \lor q) \land (\neg q \lor r) \Leftrightarrow (p \lor r)$
- 4. $\perp \Rightarrow F$ for any F

Expressive power

Exercise 3.15

Show \neg and \oplus is not as expressive as propositional logic.

Exercise 3.16

Prove/disprove that the following subsets of connectives are fully expressive.

- ▶ ∨, ⊕
 - \vee, \oplus
- $ightharpoonup \perp, \oplus$
- ightharpoonup \Rightarrow , \oplus

- \triangleright \vee , \wedge
- ightharpoonup \Rightarrow , \perp

Expressive power(2)

Exercise 3.17

Prove/disprove: if-then-else is fully expressive

Exercise 3.18

Show \Rightarrow alone can not express all the Boolean functions

Distinguishing power

Let $P' \subseteq P$ be a set of formulas that is obtained by allowing a subset of logical connectives in propositional logic. Let us define the following definition.

Definition 3.7

P' has distinguishing power over $M \subseteq Vars \to \mathcal{B}$, if for each distinct pair $m, m' \in M$ there is a formula $F \in P'$ such that $m \models F$ and $m' \not\models F$.

Exercise 3.19

Claim: P' can express all Boolean functions if and only if P' has distinguishing power over $Vars \rightarrow \mathcal{B}$. Prove/Disprove both the directions of the claim.

All minimal combinations*

Exercise 3.20

List all minimal subsets of the logical connectives that are fully expressive.

Encode Boolean functions***

Exercise 3.21

Find smallest formulas that encode the following functions over n inputs

- Encode parity function
- ► Encode majority function

Majority function is one of the important functions in understanding Boolean functions. AFAIK, it can not be efficiently encoded using the basic operators. There is an area of research called "circuit complexity". They are trying to prove lower bounds of circuit size to represent several

function using basic operators. Majority is one of the bad ones. Many lower bounds are unknown.

 \models vs. \Rightarrow

Exercise 3.22

Using truth table prove the following

- $ightharpoonup F \models G \text{ if and only if } \models (F \Rightarrow G).$
- ▶ $F \equiv G$ if and only if $\models (F \Leftrightarrow G)$.

Exercise: downward saturation

Exercise 3.23

Let us suppose we only have connectives \land , \lor , or \neg in our formulas. Consider a set Σ of formulas such that

- 1. for each $p \in \mathbf{Vars}$, $p \notin \Sigma$ or $\neg p \notin \Sigma$
- 2. if $\neg \neg F \in \Sigma$ then $F \in \Sigma$
- 3. if $(F \wedge G) \in \Sigma$ then $F \in \Sigma$ and $G \in \Sigma$
- if ¬(F ∨ G) ∈ Σ then ¬F ∈ Σ and ¬G ∈ Σ
 if (F ∨ G) ∈ Σ then F ∈ Σ or G ∈ Σ
- 6. if $\neg (F \land G) \in \Sigma$ then $\neg F \in \Sigma$ or $\neg G \in \Sigma$

Show that Σ is satisfiable, i.e., there is a model that satisfies every formula in Σ .

Exercise 3.24

Give an algorithm that extends a set Σ such that it satisfies the above. Can we use the algorithm as a satisfiability checker?

Commentary: Please note that the above does not hold if we drop any of the six conditions. You also need to show that all six are needed and nothing else is needed.

The saturated sets are called Hintikka sets.

The downward saturation is an important proof technique. It explicates the intention of the logic. You will see many uses of the technique.

Exercise: counting models (quiz 2020)

Exercise 3.25

Let propositional variables p, q, are r be relevant to us. There are eight possible models to the variables. Out of the eight, how many satisfy the following formulas?

- 1. p
- 2. $p \vee q$
- 3. $p \lor q \lor r$
- 4. $p \lor \neg p \lor r$

Exercise: universal connective

Let $\overline{\wedge}$ be a binary connective with the following truth table

m(F)	m(G)	$m(F\overline{\wedge}G)$
0	0	1
0	1	1
1	0	1
1	1	0

Exercise 3.26

- a. Show $\overline{\wedge}$ can define all other connectives
- b. Are there other universal connectives?

Expressive power (quiz 2021)

Exercise 3.27

Consider two variable formulas using only \Rightarrow . How many different Boolean functions can they represent? Prove your count, i.e., show that all the counted functions can be represented and no other function can be represented using only \Rightarrow .

Exercise: equisatisfiable (quiz 2022)

Exercise 3.28

- ▶ Prove/Disprove: For any propositional formula F, F and $F[\neg p/p]$ are equisatisfiable.
- ▶ Prove/Disprove: For any propositional formula F, F and $F[(p \land q)/p]$ are equisatisfiable.
- ▶ Prove/Disprove: For any propositional formula F, F and $F[(p \lor q)/p]$ are equisatisfiable.

Topic 3.6

Extra slides: sizes of models

Size of models

A model must assign value to all the variable, since it is a complete function.

However, we may not want to handle such an object.

In practice, we handle partial models. Often, without explicitly mentioning this.

Partial models

Let
$$m|_{\mathsf{Vars}(F)}: \mathsf{Vars}(F) o \mathcal{B}$$
 and for each $p \in \mathsf{Vars}(F)$, $m|_{\mathsf{Vars}(F)}(p) = m(p)$

Theorem 3.3

If
$$m|_{\mathsf{Vars}(F)} = m'|_{\mathsf{Vars}(F)}$$
 then $m \models F$ iff $m' \models F$

Proof sketch.

The procedure to check $m \models F$ only looks at the **Vars**(F) part of m. Therefore, any extension of $m|_{\mathbf{Vars}(F)}$ will have same result either $m \models F$ or $m \not\models F$.

Definition 3.8

We will call elements of Vars $\hookrightarrow \mathcal{B}$ as partial models.

Exercise 3.29

Write the above proof formally.

Topic 3.7

Extra slides: Important equivalences proven via truth table

Example : definition of \Rightarrow

Example 3.11

Let us show $p \Rightarrow q \equiv (\neg p \lor q)$.

p	q	$(p\Rightarrow q)$	(¬	p	\vee	q)
0	0	1	1	0	1	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	1	1	0	1	1	1

Since the truth values of both the formulas are same in each row, the formulas are equivalent.

It appears that \Rightarrow is a redundant symbol. We can write it in terms of the other symbols.

Example : definition of \Leftrightarrow

Example 3.12

Let us show $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.

p	q	$(p \Leftrightarrow q)$	(p	\Rightarrow	q)	\wedge	(q	\Rightarrow	p)	
0	0	1	0	1	0	1	0	1	0	
0	1	0	0	1	1	0	1	0	0	
1	0	0	1	0	0	0	0	1	1	
1	1	1								

Example: definition of \oplus

Example 3.13

Let us show $(p \oplus q) \equiv (\neg p \land q) \lor (p \land \neg q)$ using truth table.

p	q	$ \begin{array}{ c } \hline (p \oplus q) \\ \hline 0 \\ \hline \end{array} $	(¬	p	\wedge	q)	\vee	(<i>p</i>	\wedge	\neg	q)
0	0	0	1	0	0	0	0	0	0	1	0
0	1	1	1	0	1	1	1	0	0	0	1
1	0	1	0	1	0	0	1	1	1	1	0
1	1	1 1 0	0	1	0	1	0	1	0	0	1

Exercise 3.30

Show $(p \oplus q) \equiv (\neg p \lor \neg q) \land (p \lor q)$

Example: associativity

Example 3.14

Let us show $(p \land q) \land r \equiv p \land (q \land r)$

p	q	r	(<i>p</i>	\wedge	q)	\wedge	r	p	\wedge	(q	\wedge	r)
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	1	0	0	1	1	1
1	0	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	1	0	0	0	1
1	1	0	1	1	1	0	0	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1

End of Lecture 3

