## CS228 Logic for Computer Science 2023

## Lecture 19: Terms and unification

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2023-02-16



## Topic 19.1

## Game of terms



## CNF formulas and proofs

#### Example 19.1

Recall we had a proof for 
$$\emptyset \vdash (\forall x. (P(x) \lor Q(x)) \Rightarrow \exists x.P(x) \lor \forall x.Q(x)).$$

Let us try to prove it via FOL CNF.

We first take negation of the formula and transform it into FOL CNF. We obtain

$$\Sigma \triangleq \{ \forall x. \ (P(x) \lor Q(x)), \forall x. \neg P(x), \neg Q(c) \}$$

We have written each clause as a separate formula without dropping quantifiers.

We show that we can derive contradiction from  $\Sigma$ .



## CNF formulas and proofs

Recall

$$\Sigma \triangleq \{ \forall x. \ (P(x) \lor Q(x)), \forall x. \neg P(x), \neg Q(c) \}$$

Here is a proof that derives contradiction from  $\boldsymbol{\Sigma}.$ 

| 1. $\Sigma \vdash \neg Q(c)$                   | Assumption                         |
|------------------------------------------------|------------------------------------|
| 2. $\Sigma \vdash \forall x. (P(x) \lor Q(x))$ | Assumption                         |
| 3. $\Sigma \vdash P(x) \lor Q(x)$              | ∀-Elim applied to 2                |
| 4. $\Sigma \vdash \forall x. \neg P(x)$        | Assumption                         |
| 5. $\Sigma \vdash \neg P(x)$                   | $\forall$ -Elim applied to 4       |
| 6. $\Sigma \vdash Q(x)$                        | Resolution applied to 3 and 5      |
| 7. $\Sigma \vdash \forall x. Q(x)$             | $\forall$ -Intro applied to 6      |
| 8. $\Sigma \vdash Q(c)$                        | $\forall$ -Elim applied to 7       |
| 9. $\Sigma \vdash Q(c) \land \neg Q(c)$        | $\wedge$ -Intro applied to 1 and 8 |

Step 8 introduced c, which is a non-mechanical step, i.e., we need to plan to choose the term.

Example : an extreme example for finding a magic term.

## Example 19.2

Let us derive contradiction from the following. Let  $\Sigma = \{ \forall x_4, x_3, x_2, x_1. f(x_1, x_3, x_2) \neq f(g(x_2), j(x_4), h(x_3, a)) \}$ 

Let us construct a proof for the above.

1. 
$$\Sigma \vdash \forall x_4, x_3, x_2, x_1$$
.  $f(x_1, x_3, x_2) \neq f(g(x_2), j(x_4), h(x_3, a))$ 

- 2.  $\Sigma \vdash \forall x_3, x_2, x_1. f(x_1, x_3, x_2) \neq f(g(x_2), j(x_4), h(x_3, a))$
- 3.  $\Sigma \vdash \forall x_2, x_1. f(x_1, j(x_4), x_2) \neq f(g(x_2), j(x_4), h(j(x_4), a))$
- 4.  $\Sigma \vdash \forall x_1. f(x_1, j(x_4), h(j(x_4), a)) \neq f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$
- 5.  $\Sigma \vdash f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a)) \neq f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$

∀-Elim applied to 1
∀-Elim applied to 2
∀-Elim applied to 3
∀-Elim applied to 4

We need a mechanism to auto detect substitutions such that terms with variables become equal

#### Exercise 19.1

Finish the proof using Reflex and derive contradiction.

@**()**\$0

## How to find the magic terms?

In the previous, example we were asked to equate terms

 $f(x_1, x_3, x_2)$  and  $f(g(x_2), j(x_4), h(x_3, a))$ 

by mapping variables  $x_1$ ,  $x_2$ ,  $x_3$ , and  $x_4$  to terms.

The process of equating terms is called **unification**.

Sometimes, the unification may not even be possible.

## Topic 19.2

## Unification



Unification

# Making terms equal by substitution



## Unifier

#### Definition 19.1

For terms t and u, a substitution  $\sigma$  is a unifier of t and u if  $t\sigma = u\sigma$ . We say t and u are unifiable if there is a unifier  $\sigma$  of t and u.

#### Example 19.3

Find a unifier  $\sigma$  of the following terms

- $\blacktriangleright x_4 \sigma = f(x_1) \sigma$
- $\blacktriangleright x_4 \sigma = f(x_1) \sigma$
- $g(x_1)\sigma = f(x_1)\sigma$
- $\blacktriangleright x_1 \sigma = f(x_1) \sigma$

 $\sigma = \{x_1 \mapsto c, x_4 \mapsto f(c)\}$  $\sigma = \{x_1 \mapsto x_2, x_4 \mapsto f(x_2)\}$ not unifiable not unifiable

©()(S)()

## More general substitution

**Commentary:** The following definition depends on composition of substitutions, which was discussed in earlier lectures. If not clear please look it up.

#### Definition 19.2

Let  $\sigma_1$  and  $\sigma_2$  be substitutions.  $\sigma_1$  is more general than  $\sigma_2$  if there is a substitution  $\tau$  such that  $\sigma_2 = \sigma_1 \tau$ . We write  $\sigma_1 \ge \sigma_2$ .

#### Example 19.4

 $\Theta$ 

• 
$$\sigma_1 = \{x \mapsto f(y, z)\} \ge \sigma_2 = \{x \mapsto f(c, g(z)), y \mapsto c, z \mapsto g(z)\}$$
 because  $\sigma_2 = \sigma_1\{y \mapsto c, z \mapsto g(z)\}.$ 

• 
$$\sigma_1 = \{x \mapsto f(y, z)\} \ge \sigma_2 = \{x \mapsto f(z, z), y \mapsto z\}$$
 because  $\sigma_2 = \sigma_1\{y \mapsto z\}$ .

Exercise 19.2 If  $\sigma_1 \ge \sigma_2$  and  $\sigma_2 \ge \sigma_3$ . Then,  $\sigma_1 \ge \sigma_3$ .

**Commentary:** In the second example of above, please note that  $\{x \mapsto f(y, z)\} \not\geq \{x \mapsto f(z, z)\}$  and  $\{x \mapsto f(z, z)\} \geq \{x \mapsto f(z, z), y \mapsto z\}$ .

## Most general unifier (mgu)

Is mgu unique? Does mgu always exist?

Definition 19.3

Let t and u be terms with variables, and  $\sigma$  be a unifier of t and u.

 $\sigma$  is most general unifier(mgu) of u and t if it is more general than any other unifier.

#### Example 19.5

Consider terms f(x, g(y)) and f(g(z), u). The following are unifiers of the terms.

1. 
$$\sigma_1 = \{x \mapsto g(z), u \mapsto g(y), z \mapsto z, y \mapsto y\}$$
  
2.  $\sigma_2 = \{x \mapsto g(c), u \mapsto g(d), z \mapsto c, y \mapsto d\}$   
3.  $\sigma_3 = \{x \mapsto g(z), u \mapsto g(z), z \mapsto z, y \mapsto z\}$ 

where c and d are constants.

 $\textit{Please note } \sigma_1 \geq \sigma_2 \textit{ and } \sigma_1 \geq \sigma_3. \ \sigma_2 \not\geq \sigma_3 \textit{ and } \sigma_3 \not\geq \sigma_{2.(why?)}$ 



## Uniqueness of mgu

Definition 19.4 A substitution  $\sigma$  is a renaming if  $\sigma$ : Vars  $\rightarrow$  Vars and  $\sigma$  is one-to-one Theorem 19.1 If  $\sigma_1$  and  $\sigma_2$  are mgus of u and t. Then there is a renaming  $\tau$  such that  $\sigma_1 \tau = \sigma_2$ .

#### Proof.

Since  $\sigma_1$  is mgu, therefore there is a substitution  $\hat{\sigma_1}$  such that  $\sigma_2 = \sigma_1 \hat{\sigma_1}$ . Since  $\sigma_2$  is mgu, therefore there is a substitution  $\hat{\sigma_2}$  such that  $\sigma_1 = \sigma_2 \hat{\sigma_2}$ . Therefore  $\sigma_1 = \sigma_1 \hat{\sigma_1} \hat{\sigma_2}$ . (And also,  $\sigma_2 = \sigma_2 \hat{\sigma_2} \hat{\sigma_1}$ .)

Without loss of generality, for each  $y \in Vars$ , if  $y \notin FV(x\sigma_1)$  for each  $x \in Vars$ , then we assume  $y\hat{\sigma_1} = y$ .

## Uniqueness of mgu (contd.)

## Proof(contd.)

claim: for each  $y \in Vars$ ,  $y\hat{\sigma_1} \in Vars$ 

Consider a variable x such that  $y \in FV(x\sigma_1)$ . Three possibilities for  $y\hat{\sigma_1}$ .

- 1. If  $y\hat{\sigma_1} = f(..)$ ,  $x\sigma_1\hat{\sigma_1}$  is longer than  $x\sigma_1$ . Therefore,  $x\sigma_1\hat{\sigma_1}\hat{\sigma_2}$  is longer than  $x\sigma_1$ . Contradiction.
- 2. If  $y\hat{\sigma_1} = c$ ,  $\hat{\sigma_2}$  will not be able to rename c back to y in  $x\sigma_1$ .
- 3. Therefore, we must have the third possibility, i.e.,  $y\hat{\sigma_1} \in \mathbf{Vars}$  is a variable.

**claim:** for each  $y_1 \neq y_2 \in$ **Vars**,  $y_1 \hat{\sigma_1} \neq y_2 \hat{\sigma_1}$ 

Assume  $y_1 \hat{\sigma_1} = y_2 \hat{\sigma_1}$ .  $\hat{\sigma_2}$  will not be able to rename the variables back to distinct variables.<sub>(why?)</sub> Contradiction.

 $\hat{\sigma_1}$  is a renaming.

## Topic 19.3

## Unification algorithm



We need to identify where terms are not in agreement.

Apply substitutions to fix the disagreement.



## Disagreement pairs

#### Definition 19.5

For terms t and u,  $d_1$  and  $d_2$  are disagreement pair if

- 1.  $d_1$  and  $d_2$  are subterms of t and u respectively.
- 2. the path to  $d_1$  in t is same as and the path to  $d_2$  in u, and
- 3. roots of  $d_1$  and  $d_2$  are different.

#### Example 19.6

Consider terms t = f(g(c), h(x, d)) and u = f(g(y), d)



Disagreement pairs: h(x, d) and d CS228 Logic for Computer Science 2023  $\Theta$ 

Instructor: Ashutosh Gupta

Disagreement pairs: c and y 16

IITB. India

## Robinson algorithm for computing mgu

Algorithm 19.1:  $MGU(t, u \in T_S)$  $\sigma := \{\};$ while  $t\sigma \neq u\sigma$  do choose disagreement pair  $d_1, d_2$  in  $t\sigma$  and  $u\sigma$ : if both  $d_1$  and  $d_2$  are non-variables then return FAIL; if  $d_1 \in Vars$  then If MGU is sound and always terminates then  $\mathbf{x} := d_1; s := d_2;$ mgus for unifiable terms always exist. else  $x := d_2; s := d_1;$ if  $\mathbf{x} \in FV(s)$  then return FAIL;  $\sigma := \sigma\{\mathbf{x} \mapsto \mathbf{s}\}$ // update the substitution return  $\sigma$ 

#### Exercise 19.3

Let  $\sigma_0$ ,  $\sigma_1$ ,... be the sequence of observed substitutions during the run of MGU. Show  $\sigma_i \geq \sigma_{i+1}$ .

000

## Example: run of Robinson's algorithm

Example 19.7

Consider call  $MGU(f(x_1, x_3, x_2), f(g(x_2), j(x_4), h(x_3, a)))$ Initial  $\sigma = \{\}$ 



Disagreement pairs := {  $(x_1, g(x_2)), (x_3, j(x_4)), (x_2, h(x_3, a))$  } Choose a disagreement pair:  $(x_1, g(x_2))$ After update  $\sigma = \{x_1 \mapsto g(x_2)\}$ Input terms after applying  $\sigma$ :  $f(g(x_2), x_3, x_2)$  and  $f(g(x_2), j(x_4), h(x_3, a))$  Example: run of Robinson's algorithm II (contd.)

Input terms now:



Disagreement pairs in the new terms:= {  $(x_3, j(x_4)), (x_2, h(x_3, a))$  } Choose a disagreement pair:  $(x_3, j(x_4))$ After update  $\sigma = \{x_1 \mapsto g(x_2), x_3 \mapsto j(x_4)\}$ Input terms after applying  $\sigma$ :  $f(g(x_2), j(x_4), x_2)$  and  $f(g(x_2), j(x_4), h(j(x_4), a))$ 



Example: run of Robinson's algorithm III(contd.)





Choose the last disagreement pair:  $(x_2, h(j(x_4), a))$ . After applying new mapping  $\sigma := \sigma\{x_2 \mapsto h(j(x_4), a)\}$  $= \{x_1 \mapsto g(x_2), x_3 \mapsto j(x_4)\}\{x_2 \mapsto h(j(x_4), a)\}$   $= \{x_1 \mapsto g(h(j(x_4), a)), x_3 \mapsto j(x_4), x_2 \mapsto h(j(x_4), a)\}$ 

Terms after applying  $\sigma$ :  $f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$  and  $f(g(h(j(x_4), a)), j(x_4), h(j(x_4), a))$ Since no disagreement pairs, we are done.

## Unification in proving

#### Example 19.8

Consider again  $\forall x_1, x_2, x_3, x_4$ .  $f(x_1, x_3, x_2) \neq f(g(x_2), j(x_4), h(x_3, a))$ 

Given the above, one may ask

Are  $f(x_1, x_3, x_2)$  and  $f(g(x_2), j(x_4), h(x_3, a))$  unifiable?

If we run the unification algorithm on the above terms, we obtain

$$\begin{array}{c} x_1 \mapsto g(h(j(x_4), a)) \\ x_2 \mapsto h(j(x_4), a) \\ x_3 \mapsto j(x_4) \end{array} \end{array}$$
 We will integrate simpler resolution

The above instantiations are not magic anymore!



unification with a proof system.

## Topic 19.4

Problems



## MGU

#### Exercise 19.4

Find mgu of the following terms

- 1.  $f(g(x_1), h(x_2), x_4)$  and  $f(g(k(x_2, x_3)), x_3, h(x_1))$
- 2. f(x, y, z) and f(y, z, x)
- 3. MGU(f(g(x), x), f(y, g(y)))

#### Exercise 19.5

Let  $\sigma_1$  and  $\sigma_2$  be the MGUs in the above exercise. Give unifiers  $\sigma'_1$  and  $\sigma'_2$  for the problems respectively such that they are not MGUs. Also give  $\tau_1$  and  $\tau_2$  such that

1. 
$$\sigma'_1 = \sigma_1 \tau_1$$

**2**. 
$$\sigma'_2 = \sigma_2 \tau_2$$

## Maximum and minimal substitutions

#### Exercise 19.6

- a. Give two maximum general substitutions and two minimal general substitutions.
- b. Show that maximum general substitutions are equivalent under renaming.



## Multiple unification

#### Definition 19.6

Let  $t_1, ..., t_n$  be terms. A substitution  $\sigma$  is a unifier of  $t_1, ..., t_n$  if  $t_1\sigma = ... = t_n\sigma$ . We say  $t_1, ..., t_n$  are unifiable if there is a unifier  $\sigma$  of them.

#### Exercise 19.7

Write an algorithm for computing multiple unifiers using the binary MGU.



## Concurrent unification

#### Definition 19.7

Let  $t_1, ..., t_n$  and  $u_1, ..., u_n$  be terms. A substitution  $\sigma$  is a concurrent unifier of  $t_1, ..., t_n$  and  $u_1, ..., u_n$  if

$$t_1\sigma = u_1\sigma, \quad .., \quad t_n\sigma = u_n\sigma.$$

We say  $t_1, ..., t_n$  and  $u_1, ..., u_n$  are concurrently unifiable if there is a unifier  $\sigma$  for them.

#### Exercise 19.8

Write an algorithm for concurrent unifiers using the binary MGU.

## Saturating substitutions

#### Exercise 19.9

Consider a substitution  $\sigma$ . Let  $\sigma^1 = \sigma$  and  $\sigma^{i+1} = \sigma^i \sigma$ . Prove/disprove: for each  $\sigma$  there is a number n such that for each number k > n,  $\sigma^k = \sigma^i$  for some number  $i \le n$ .



## Topic 19.5

## Extra slides: Correctness of Robinson algorithm



## Termination of MGU

#### Theorem 19.2

MGU always terminates.

#### Proof.

Total number of variables in  $t\sigma$  and  $u\sigma$  decreases in every iteration.<sub>(why?)</sub>

Since initially there were finite variables in t and u, MGU terminates.



## Soundness of $\operatorname{MGU}$

Theorem 19.3

MGU(t, u) returns unifier  $\sigma$  iff t and u are unifiable. Furthermore,  $\sigma$  is a mgu.

#### Proof.

Since MGU must terminate, if t and u are not unifiable then MGU must return FAIL.

Let us suppose t and u are unifiable and  $\tau$  is a unifier of t and u. claim:  $\tau = \sigma \tau$  is the loop invariant of MGU.

#### base case:

Initially,  $\sigma$  is identity. Therefore, the invariant holds initially.

#### induction step:

Induction hypothesis:  $\tau=\sigma\tau$  holds at the loop head.



. . .

# Soundness of MGU(contd.) Proof(contd.)

**claim:**  $t\sigma$  and  $u\sigma$  are unifiable.

$$t\sigma\tau = t\tau = u\tau = u\sigma\tau$$
.  
Ind. Hyp. Assumption Ind. Hyp.

claim:  $x\tau = s\tau$ .

Since  $t\sigma\tau = u\sigma\tau$ , and x and s are disagreement pairs in  $t\sigma$  and  $u\sigma$ ,  $x\tau = s\tau$ .

**claim:**  $\{x \mapsto s\}\tau = \tau$ . Choose  $y \in Vars$ . If y = x,  $y\{x \mapsto s\}\tau = s\tau = x\tau = y\tau$ . If  $y \neq x$ ,  $y\{x \mapsto s\}\tau = y\tau$ . Therefore,  $\{x \mapsto s\}\tau = \tau$ .

## Soundness of MGU(contd.)

## Proof(contd.)

We now show that if we assume the invariant at the loop head, then FAIL is not returned.

**claim:** no FAIL at the first if condition One of  $d_1$  and  $d_2$  is a variable. Otherwise  $t\sigma$  and  $u\sigma$  are not unifiable.

**claim:** no FAIL at the last if condition Since  $x\tau = s\tau$ , x cannot occurs in s. Otherwise, no unifier can make them equal<sub>(why?)</sub>.



. . .

## Soundness of MGU(contd.)

## Proof(contd.)

Since there is no fail, we show that invariant will continue to hold after the iteration.

**claim:**  $\sigma\{x \mapsto s\}\tau = \tau$ Since  $\{x \mapsto s\}\tau = \tau$ ,  $\sigma\{x \mapsto s\}\tau = \sigma\tau$ . By induction hypothesis,  $\sigma\{x \mapsto s\}\tau = \tau$ .

Due to the invariant  $\tau = \sigma \tau$ ,  $\sigma$  is mgu at the termination.



## Topic 19.6

## Extra slides: algorithms for unification



## Robinson is exponential

Robinson algorithm has worst case exponential run time.

Example 19.9

Consider unification of the following terms  $f(x_1, g(x_1, x_1), x_2, ...)$  $f(g(y_1, y_1), y_2, g(y_2, y_2), ...)$ 

The mgu:

- $\blacktriangleright x_1 \mapsto g(y_1, y_1)$
- ▶  $y_2 \mapsto g(g(y_1, y_1), g(y_1, y_1))$
- .... (size of term keeps doubling)

After discovery of a substitution  $x \mapsto s$ , Robinson checks if  $x \in FV(s)$ . Therefore, Robinson has worst case exponential time.



## Martelli-Montanari algorithm

This algorithm is lazy in terms of applying occurs check

Algorithm 19.2: MM-MGU( $t, u \in T_S$ )

 $\sigma := \lambda x.x; M = \{t = u\};$ while change in M or  $\sigma$  do if  $f(t_1,...,t_n) = f(u_1,...,u_n) \in M$  then  $M := M \cup \{t_1 = u_1, ..., t_n = u_n\} - \{f(t_1, ..., t_n) = f(u_1, ..., u_n)\};$ if  $f(t_1,...t_n) = g(u_1,...u_n) \in M$  then return FAIL: if  $x = x \in M$  then  $M := M - \{x = x\}$ ; if  $x = t' \in M$  or  $t' = x \in M$  then if  $x \in FV(t')$  then return *FAIL* :  $\sigma := \sigma[x \mapsto t']; M := M\sigma$ 

return  $\sigma$ 

Commentary: Please find more details on https://pdfs.semanticscholar.org/3cc3/338b59855659ca77fb5392e2864239c0aa75.pdf

©()\$0

## Escalada-Ghallab Algorithm

There is also Escalada-Ghallab Algorithm for unification.



# End of Lecture 19

