Puzzle: switch positions of dark and white knights

A useful example: verification of Al

Slightly altered images give wrong output in Google cloud vision

CS 433 Automated Reasoning 2024

Lecture 1: Introduction and background

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-01-19

Topic 1.1

What is automated reasoning?

Automated reasoning (logic)

\checkmark

```
We will use reasoning and logic synonymously.
```

- Have you ever said to someone, "be reasonable"?
- whatever your intuition was that is reasoning
- Why we care?

Logic is the calculus of computer science

Example: applying logic

Logic is inferring conclusions from given premises

Example 1.1

1. Humans are mortal
2. Socrates is a human

Socrates is mortal

1. Apostles are twelve
2. Peter is an apostle

Peter is twelve
Invalid reasoning?

Automated reasoning aims to

enable machines to

identify the valid reasoning!!

Automated reasoning is a backbone technology!!

Applications in verification, synthesis, solving NP-hard problems, and so on.

Automated reasoning for verification tools is like engines for the cars.

Topic 1.2

Why do we need need automated reasoning? - Solving hard problems

Computers solve problems

Business processes

Search

- Weather prediction

Example 1.2

What have computers done for you?

Problems are

Play chess

Easy, Hard, or Impossible

What is computational complexity?

Time used by best known algorithm to solve a problem in terms of input size.

Example 1.3

How much time it takes to sort an array?

Hard problems: $O\left(2^{n}\right)$

- Scheduling
- Sudoku solving
- Optimal circuits
- Playing Chess
- Password cracking
- Protein folding
- Traveling salesman
- SAT problem

A subclass of hard problems: non-deterministic polynomial(NP)

Hard to find solution, but checking the solution is easy!!

- Scheduling
- Sudoku solving
- Password cracking
- SAT problem

Open question: Are NP problems really hard?

We do not have a proof that there are no easy algorithm for the problems.

Outside of NP

Hard to find solution and hard to check the solution!!

- Playing Chess
- Protein folding
- Traveling salesman

Even when we have the folded structure of the protein, we cannot easily prove that this is the minimum energy configuration.

Hard problems

- Everywhere and important

- Needs solving

Impossible problems

There are problems for which we have a proof that there is no algorithm for them.

- Program correctness
- Synthesis

How do we solve?

- Saam: Clever algorithms

Daam: Brute force

- Dand: Heuristics

Bhed: Al based approximate solving (e.g. AlphaFold)

Limited resources

- How much computation per second? 10^{9}
- How much time? 10^{5}
- How many computers? 10^{5}

$$
\approx 10^{19} \text { is a hard limit. }
$$

Can you solve?

- 2-body problem
- 3-body problem
10^{23}-body problem
Medium sized problems are unsolved, e.g., biology.

Topic 1.3

Spectra of logic

Spectra of logic

Logic has been divided into increasing complexity of classes.

1. Propositional logic (PL)
2. First-order logic (FOL)
3. First-order logic with theories $(\operatorname{FOL}(\mathcal{T}))$
4. Higher-order logic (HOL)

Propositional logic (PL)

Propositional logic

- deals with propositions,
- only infers from the structure over the propositions, and
- does not look inside the propositions.

Example : propositional logic

Example 1.4

Is the following argument valid?
If the seed catalog is correct then if seeds are planted in April then the flowers bloom in July. The flowers do not bloom in July. Therefore, if seeds are planted in April then the seed catalog is not correct.

Let us symbolize our problem

If c then if s then f. not f. Therefore, if s then not c.

- $c=$ the seed catalogue is correct
- $s=$ seeds are planted in April
- $f=$ the flowers bloom in July

PL reasons over propositional symbols and logical connectives

First-order logic (FOL)

First-order logic

- looks inside the propositions,
- much more expressive,
- includes parameterized propositions and quantifiers over individuals, and
- can express lots of interesting math.

Example 1.5

Is the following argument valid?
Humans are mortal. Socrates is a human. Therefore, Socrates is mortal.

In the symbolic form,
For all x if $H(x)$ then $M(x) . H(s)$. Therefore, $M(s)$.

- $H(x)=x$ is a human
- $M(x)=x$ is mortal

$$
\begin{aligned}
& \text { FOL is not the most general logic. } \\
& \text { Many arguments can not be expressed in FOL }
\end{aligned}
$$

FOL+logical theories

In a theory, we study validity of FOL arguments under specialized assumptions (called axioms).
Example 1.6
The number theory uses symbols $0,1, . .,<,+$, with specialized meanings

The following sentence has no sense until we assign the meanings to $>$ and .

$$
\forall x \exists p\left(p>x \wedge\left(\forall v_{1} \forall v 2\left(v_{1}>1 \wedge v_{2}>1 \Rightarrow p \neq v_{1} \cdot v_{2}\right)\right)\right)
$$

Under the meanings it says that there are arbitrarily large prime numbers.

> In the earlier example, we had no interpretation of predicate ' x is human'. Here we precisely know what is predicate ' $x<y^{\prime}$.

[Not in the course] Higher-order logic (HOL)

Higher-order logic

- includes quantifiers over "anything",
- consists of hierarchy first order, second order, third order and so on,
- most expressive logic.

Example 1.7

$$
\forall P \forall x .(P(x) \vee \neg P(x))
$$

The quantifier is over proposition P. Therefore, the formula belongs to the second-order logic.

Topic 1.4

Satisfiability problem

Satisfiability for reasoning

How to covert a reasoning problem into a computational question?

Answer: satisfiability problem understand the satisfiability problem. We will see that we can translate all logical problems into satisfiability problem, which is a computational question.

Example: satisfaction

Let x, y be rational variables.
Choose a value of x and y such that the following formula holds true.

$$
x+y=3
$$

We say

$$
\{x \mapsto 1, y \mapsto 2\} \models x+y=3 .
$$

Evaluation

For a given model m and formula F,

$m \equiv F ?$

Example 1.8

$$
\{x \mapsto 1, y \mapsto 2\} \models x+y=3
$$

Exercise 1.1

- $\{x \rightarrow 1\} \models x>0$?
- $\{x \rightarrow 1, y \rightarrow 2\} \models x+y=3 \wedge x>0$?
- $\{x \rightarrow 1, y \rightarrow 2\} \models x+y=3 \wedge x>0 \wedge y>10$?

Exercise 1.2

Can we say something more about the last formula?

Satisfiablity problem

Satisfiability $==$ Is there any model?

Is F SAT?

Harder problem!

Exercise 1.3

Are the following formulas sat?

- $x+y=3 \wedge x>0$
- $x+y=3 \wedge x>0 \wedge y>10$
- $x>0 \vee x<1$
disjunction

Exercise 1.4

Can we sav something more about the last formula?
Commentary: If one does not know that a formula has a model or not. Then one may ask if a given formula is satisfiable or not. A formula can be valid, i.e., all models satisfy the formula. A formula can be satisfiable, unsatisfiable, or valid.

Reasoning $==$ Satisfiability problem

All reasoning problems can be reduced to satisfiability problems.

Often abbreviated to SAT problem

Exercise 1.5

a. How to convert checking a valid argument into a SAT problem?
b. Convert argument "if $x \geq 2$ then $x \geq 1$." into a SAT problem.

Example: SAT problem(contd.)

Let x, y be rational variables.
Choose a value of x and y such that the following formula holds true.

$$
x+y=3 \wedge y>10 \wedge x>0 \quad \text { theory formulas }
$$

$$
x+y=3 \wedge y>10 \wedge(x>0 \vee x<-4)
$$

quantifier-free formulas

Quantifier-free formulas

Quantifier-free formulas consists of

- theory atoms and
- Boolean structure

Example 1.9

Propositional formulas

Propositional formulas are a special case, where the theory atoms are Boolean variables.

Example 1.10

Let p_{1}, p_{2}, p_{3} be Boolean variables

$$
p_{1} \wedge \neg p_{2} \wedge\left(p_{3} \vee p_{2}\right)
$$

A satisfying model:

$$
\left\{p_{1} \mapsto 1, p_{2} \mapsto 0, p_{3} \mapsto 1\right\} \models p_{1} \wedge \neg p_{2} \wedge\left(p_{3} \vee p_{2}\right)
$$

A bit of jargon

- Solvers for quantifier-free propositional formulas are called

SAT solvers.

- Solvers for quantifier-free formulas with the other theories are called

SMT solvers.

SMT = satisfiability modulo theory

Theory solvers

SMT solvers are divided into two components.

- SAT solver: it solves the Boolean structure
- Theory solver: it solves the theory constraints

Example 1.11

Let x, y be rational variables.

$$
x+y=3 \wedge y>10 \wedge x>0
$$

Since the formula has no \vee (disjunction), a solver of linear rational arithmetic can find satisfiable model using simplex algorithm.

Exercise

Exercise 1.6

Give satisfying assignments of the following formulas
$-\neg p_{1} \wedge\left(p_{1} \vee \neg p_{2}\right)$

- $x<3 \wedge y<1 \wedge(x+y>5 \vee x-y<3)$

Topic 1.5

Course contents and logistics

Content of the course

We will study the following topics

- Background: propositional and first-order logic (FOL) basics
- SAT solvers: satisfiability solvers for propositional logic
- SMT solvers: satisfiability modulo theory solvers
- Decision procedures: algorithms for solving theory constraints
- Al based approximate reasoning

Evaluation and website

Light evaluation

- Programming assignments: 41% ($6 \% 10 \% 15 \% 10 \%$)
- Online simple quizzes: 24% (2% each)
- Midterm presentation: 10% (15 min) [topics will be floated]
- Final presentation: 10\% (15 min)
- Final: 15% [if happens; may be take home exam]

For the further information
https://www.cse.iitb.ac.in/~akg/courses/2024-ar/
All the assignments and slides will be posted on the website.

Topic 1.6

Problems

SMT solvers

Exercise 1.7
 Which of the following are true about SMT solvers?
 1. SMT solvers can make tea for us
 2. SMT solvers can natively handle quantified formulas
 3. Z3 is an SMT solver
 4. The theory solvers in SMT solvers can only check satisfiability of conjunction of literals

Propagating equality

Exercise 1.8

In which of the following formulas, we can propagate equality $x=t$ in F.

1. $\forall x .(x=t \Rightarrow F)$
2. $\exists x \cdot(x=t \Rightarrow F)$
3. $\forall x \cdot(x=t \wedge F)$
4. $\exists x \cdot(x=t \wedge F)$

Topic 1.7

Extra slides: understanding quantified formulas

Quantified formulas

Quantified formulas also include quantifiers.

Example 1.12

The following formulas says: give x such that for each y the body holds true.

$$
\forall y \cdot \underbrace{(x+y=3 \Rightarrow y>10 \wedge(x>0 \vee x<-4))}_{\text {Body }}
$$

A satisfying model:

$$
\{x \rightarrow-8\} \models \forall y .(x+y=3 \Rightarrow y>10 \wedge(x>0 \vee x<-4))
$$

Exercise 1.9

Can we eliminate y in the above formula to obtain constraints just over x ?

Example: understanding quatified formula

Example 1.13

Consider the following formula and the model again.

$$
\{x \rightarrow-8\} \models \forall y .(x+y=3 \Rightarrow y>10 \wedge(x>0 \vee x<-4))
$$

Substitute the value of x in the formula

$$
\forall y \cdot(-8+y=3 \Rightarrow y>10 \wedge(-8>0 \vee-8<-4))
$$

After simplification, we obtain

$$
\forall y .(y=11 \Rightarrow y>10)
$$

The above is clearly true.(Why?)

```
Exercise 1.10
Is \(\forall y\). \((y=11 \wedge y>10)\) true?
```


Exercise

Exercise 1.11

Give satisfying assignments of the following formula

- $\forall x(x>y \Rightarrow \exists z(2 z=x))$

Topic 1.8

Extra slides: derived problems in logic

Problems in logic

A logical problem may come in several forms.

- Validity
- Implication
- Quantifier elimination
- Induction
- Maximum satisfiability
- Interpolation
- Abduction

A typical solver needs to be able to handle the above.

Validity

Is the formula true for all models?

$\equiv F ?$

Is it harder problem than the SAT problem?
We can simply check satisfiability of $\neg F$.

Example 1.14
$x>0 \vee x<1$ is valid because $x \leq 0 \wedge x \geq 1$ is unsatisfiable.

Implication

$F \Rightarrow G ?$

We need to check $F \Rightarrow G$ is a valid formula.
We check if $\not \models \neg(F \Rightarrow G)$, which is equivalent to checking if $\not \vDash F \wedge \neg G$.

Example 1.15

Consider implication $(x=y+1 \wedge y \geq z+3) \Rightarrow x \geq z$.

After negating the implication, we obtain $x=y+1 \wedge y \geq z+3 \wedge x<z$.
After simplification, we obtain $x-z \geq 4 \wedge x-z<0$.
Therefore, the negation is unsatisfiable and the implication is valid.

Quantifier elimination

given F, find G such that $G(y) \equiv \exists x . F(x, y)$

Is this a harder problem? yes(Why?)

Example: quantifier elimination

Example 1.16

Consider formula $\exists x . x>0 \wedge x^{\prime}=x+1$
After substituting x by $x^{\prime}-1, \exists x . x^{\prime}-1>0$.
Since x is not in the formula, we drop the quantifier and obtain $x^{\prime}>1$.

Exercise 1.12

a. Eliminate quantifiers: $\exists x, y . x>2 \wedge y>3 \wedge y^{\prime}=x+y$
b. What do we do when \vee is in the formula?
c. How to eliminate universal quantifiers?

Induction principle

$$
\begin{gathered}
F(0) \wedge \forall n \cdot F(n) \Rightarrow F(n+1) \\
\Rightarrow \\
\forall n \cdot F(n)
\end{gathered}
$$

Very difficult to automate.
Because, we need to prove $\forall n: G(n)$, but the induction proof technique fails on G.

Then, we need to find $F(n)$ such that $\forall n: F(n) \Rightarrow G(n)$ and induction works on $F(n)$.

Example : induction principle

Example 1.17

We prove $F(n)=\left(\sum_{i=0}^{n} i=n(n+1) / 2\right)$ by induction principle as follows

- $F(0)=\left(\sum_{i=0}^{0} i=0(0+1) / 2\right)$
- We show that implication $F(n) \Rightarrow F(n+1)$ is valid, which is

$$
\left(\sum_{i=0}^{n} i=n(n+1) / 2\right) \Rightarrow\left(\sum_{i=0}^{n+1} i=(n+1)(n+2) / 2\right)
$$

Exercise 1.13

Show the above implication holds using a satisfiability checker.

End of Lecture 1

