CS 433 Automated Reasoning 2024

Lecture 2: Substitution and equivalences in propositional logic

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-01-10

Simplifications for formulas

If we wish to develop algorithms for proof generation, we need more structure in our input.

For example, we simplify equations like $2 x+3=1-x$, before solving them.
We will develop methods for simplifications or turning into normal forms.

Topic 2.1

Substitution theorems

Substitutions

Substitution is an important operation in logic.

Intuitively, we should be able to substitute equivalent subformulas without altering the truth values of formulas.

However, we need a proof to enable us.
In the following, we will prove three theorems.

Substitution theorem

Theorem 2.1

Let $F(p), G$, and H be formulas. For some model m,

$$
\text { if } \quad m \models G \text { iff } m \models H \quad \text { then } \quad m \models F(G) \text { iff } m \models F(H)
$$

Proof.
Assume $m \models G$ iff $m \models H$.
We prove the theorem using structural induction over the structure of F.

Base case:

$F(p)$ is atomic.
If $F(p)=p$, then $F(G)=G$ and $F(H)=H$. Therefore, hyp holds.
If $F(p) \neq p$, then $F(p)=F(G)=F(H)$. Again, hyp holds.

Substitution theorem (contd.)

Proof(contd.)

Induction step:

Suppose $F(p)=F_{1}(p) \circ F_{2}(p)$ for some binary connective \circ.
Due to induction hypotheses, $m \models F_{1}(G)$ iff $m \models F_{1}(H)$, and $m \models F_{2}(G)$ iff $m \models F_{2}(H)$.
Due to the semantics of the propositional logic, $m \models F_{1}(G) \circ F_{2}(G)$ iff $m \models F_{1}(H) \circ F_{2}(H)$.
Therefore, $m \models F(G)$ iff $m \models F(H)$.

The negation case is similar.

Equivalence generalization theorem

Theorem 2.2

If $F(p) \equiv G(p)$ then for each formula $H, F(H) \equiv G(H)$.

Proof.

Wlog, we assume p does not appear in H.(why?)

Commentary: If p occurs in H, we split the substitution in two steps. For a fresh q, we first substitute from p to $H[q / p]$ and subsequently q to p. Check if this trick works.

Consider a model m. Let $m^{\prime} \triangleq \begin{cases}m[p \mapsto 1] & \text { if } m \neq H \\ m[p \mapsto 0] & \text { if } m \not \models H .\end{cases}$
Due to the construction of m^{\prime},

$$
\begin{equation*}
m^{\prime} \models p \text { iff } m^{\prime} \models H_{\text {. Why? }} \text {) } \tag{*}
\end{equation*}
$$

Now we will show that $m \models F(H)$ iff $m \models G(H)$.

Equivalence generalization theorem(contd.)

Proof(Contd.)

Commentary: $p \notin \operatorname{Vars}(F(H))$ has a subtle assump-
tion. Did $F(H)$ really replace all $p s$? If we define $F(z)=(z \vee p)$ and use in our theorem for $F(p)$. Then $F(r \vee q)$ has a p. There is a defining step for substitutions like $F(p)$ and it is subsequently used. In our case, the definition is appearing in the theorem.

Therefore, $m \models F(H)$ iff $m \models G(H)$. Therefore, $F(H) \equiv G(H)$.

Exercise 2.1

Extend the above argument for simultaneous substitutions

Writing equivalences

The previous theorem allows us to first prove equivalences between formulas over variables then use it for arbitrary formulas.

We will state equivalences using variables instead of generic formulas.

Example 2.1
Since $\neg \neg p \equiv p$, we can deduce $\neg \neg(q \oplus r) \equiv(q \oplus r)$

Commentary: Let us prove the previous theorem for simultaneous substitution: If $F(p, q) \equiv G(p, q)$ then for each formulae H_{1} and $H_{2}, F\left(H_{1}, H_{2}\right) \equiv G\left(H_{1}, H_{2}\right)$. Proof. Wlog, we assume p and q do not appear in either H_{1} or H_{2} Consider model m.

$$
\text { Let } m^{\prime}= \begin{cases}m[p \rightarrow 1, q \rightarrow 1] & \text { if } m \models H_{1} \text { and } m \models H_{2} \\ m[p \rightarrow 0, q \rightarrow 1] & \text { if } m \not \vDash H_{1} \text { and } m \vDash H_{2} \\ m[p \rightarrow 1, q \rightarrow 0] & \text { if } m \neq H_{1} \text { and } m \not \vDash H_{2} \\ m[p \rightarrow 0, q \rightarrow 0] & \text { if } m \not \vDash H_{1} \text { and } m \not \vDash H_{2}\end{cases}
$$

Due to the construction of $m^{\prime}: m^{\prime} \models p$ iff $m^{\prime} \models H_{1} \ldots$ (1) and $m^{\prime} \models q$ iff $m^{\prime} \models H_{2} \ldots$ (2). We the same procedure as given in the previous slide, except for first using Theorem 6.1 and (1) to substitute H_{1} by p and then using Theorem 6.1 and (2) to substitute H_{2} by q. H_{1} before H_{2} because even if H_{2} is a sub-formula of H_{1}, substitution will not create problems.

Subformula replacement theorem

Theorem 2.3

Let G, H and $F(p)$ be formulas. If $G \equiv H$ then $F(G) \equiv F(H)$.
Proof.
Due to Thm 2.1, trivial.

The above theorem allows us to use known equivalences to modify formulas.

Example 2.2

Since we know $\neg \neg(q \oplus r) \equiv(q \oplus r),(\neg \neg(q \oplus r) \Rightarrow(r \wedge q)) \equiv((q \oplus r) \Rightarrow(r \wedge q))$

Exercise 2.2

a. Complete the arguments in the above proof.
b. extend the argument for simultaneous substitutions.

Topic 2.2

Equivalences

Equivalences

- Let us go over a list of useful and easy equivalences for simplification of formulas
- We need to prove their correctness using truth tables. However, we will not present the truth tables in the slides in this lecture.

Constant connectives

- $\neg \top \equiv \perp$
- $\neg \perp \equiv \top$
- $\top \wedge p \equiv p$
- $\perp \wedge p \equiv \perp$
- $\top \vee p \equiv \top$
- $\perp \vee p \equiv p$
- $\top \oplus p \equiv \neg p$
- $\perp \oplus p \equiv p$
- $\top \Rightarrow p \equiv p$
- $\perp \Rightarrow p \equiv \top$
- $p \Rightarrow \mathrm{~T} \equiv \mathrm{~T}$
- $p \Rightarrow \perp \equiv \neg p$
- $\top \Leftrightarrow p \equiv p$
- $\perp \Leftrightarrow p \equiv \neg p$

Exercise 2.3

Simplify, the following formulas using the above equivalences

Exercise 2.4

Prove $\neg \top \equiv \perp$. Hint: use semantics.

- $\top \Rightarrow \perp$
- $(\top \oplus \top) \oplus \top$
- $p \Rightarrow(\perp \Rightarrow q)$

Associativity

\wedge, \vee, \oplus are associative

- $p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$
- $p \vee(q \vee r) \equiv(p \vee q) \vee r$
- $p \oplus(q \oplus r) \equiv(p \oplus q) \oplus r$

Due to associativity, we do not need parentheses in the following formulas

- $p_{1} \wedge \cdots \wedge p_{k}=\bigwedge_{i=1}^{k} p_{i}$
$-p_{1} \vee \cdots \vee p_{k}=\bigvee_{i=1}^{k} p_{i}$
- $p_{1} \oplus \ldots \oplus p_{k}=\bigoplus_{i=1}^{k} p_{i}$

The drop of parentheses is called flattening.

Exercise 2.5

a. Prove/Disprove \Leftrightarrow is associative. b. Write an inductive proof of flattening.

Commutativity and Absorption law

$\wedge, \vee, \oplus, \Leftrightarrow$ are commutative

- $(p \wedge q) \equiv(q \wedge p)$
- $(p \vee q) \equiv(q \vee p)$
- $(p \oplus q) \equiv(q \oplus p)$
- $(p \Leftrightarrow q) \equiv(q \Leftrightarrow p)$
\wedge and \vee absorb multiple occurrences
- $p \wedge p \equiv p$
- $p \vee p \equiv p$

Due to associativity, commutativity and absorption law, we define the following notation
$-\bigwedge\left\{p_{1}, \ldots, p_{k}\right\} \triangleq p_{1} \wedge \cdots \wedge p_{k}$

- $\bigvee\left\{p_{1}, \ldots, p_{k}\right\} \triangleq p_{1} \vee \cdots \vee p_{k}$

Distributivity

\wedge, \vee distribute over each other

- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$

Properties of \oplus

- $\top \oplus p \equiv \neg p$
- $\perp \oplus p \equiv p$
- $p \oplus p \equiv \perp$
- $p \oplus \neg p \equiv \top$
- $(p \oplus q) \equiv(p \vee q) \wedge(\neg p \vee \neg q)$
- $(p \Leftrightarrow q) \equiv(p \vee \neg q) \wedge(q \vee \neg p)$

Topic 2.3

Negation normal form

Negation and the other connectives

- $\neg \neg p \equiv p$
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
(DeMorgan's Law)
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
(DeMorgan's Law)
- $\neg(p \Rightarrow q) \equiv p \wedge \neg q$
- $\neg(p \oplus q) \equiv \neg p \oplus q \equiv p \Leftrightarrow q$
- $\neg(p \Leftrightarrow q) \equiv p \oplus q$

Exercise 2.6

Show that the above equivalences are derivable. For example, $\emptyset \vdash \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$

Expanded DeMorgan

Theorem 2.4

$$
\neg\left(\bigvee_{i=0}^{m} p_{i}\right) \equiv \bigwedge_{i=0}^{m} \neg p_{i}
$$

Proof.

We prove it by induction over m.

Base case:

If $m=0$, there is nothing to prove because both sides are same.

Induction step:

Let us assume $\neg\left(\bigvee_{i=0}^{m} p_{i}\right) \equiv \bigwedge_{i=0}^{m} \neg p_{i}$
Now consider

$$
\neg\left(\bigvee_{i=0}^{m+1} p_{i}\right) \equiv \neg\left(\bigvee_{i=0}^{m} p_{i} \vee p_{m+1}\right) \equiv \underbrace{\bigvee_{i=0}^{m} p_{i} \wedge \neg p_{m+1}}_{\text {Binary DeMorgan Rule }} \equiv \underbrace{\bigwedge_{i=0}^{m} \neg p_{i} \wedge \neg p_{m+1}}_{\text {Subsitution theorem }} \equiv \bigwedge_{i=0}^{m+1} \neg p_{i}
$$

Negation normal form(NNF)

Definition 2.1

A formula is in NNF if \neg appears only in front of the propositional variables.
Theorem 2.5
For every formula F, there is a formula F^{\prime} in NNF such that $F \equiv F^{\prime}$.

Proof.

Due to the standard equivalences, we can always push \neg under the logical connectives.

Example 2.3

Consider $\neg(q \Rightarrow((p \vee \neg s) \oplus r))$
$\equiv q \wedge \neg((p \vee \neg s) \oplus r) \equiv q \wedge(\neg(p \vee \neg s) \oplus r) \equiv q \wedge((\neg p \wedge \neg \neg s) \oplus r) \equiv q \wedge((\neg p \wedge s) \oplus r)$

- There are negations hidden inside \oplus, \Rightarrow, and \Leftrightarrow.

Sometimes users want to also remove the symbols, while producing NNF.

Exercise: NNF

Exercise 2.7

Convert the following formulas into NNF

- $\neg(p \Rightarrow q)$
- $\neg((p \Rightarrow q) \Rightarrow(p \Rightarrow q))$
- $\neg(\neg((s \Rightarrow \neg(p \Leftrightarrow q))) \oplus(\neg q \vee r))$
- $\neg \neg \neg p$

Exercise 2.8

In the above exercises, remove $\Rightarrow, \Leftrightarrow$, and \oplus before turning the above into NNF.

Exercise 2.9

Let us suppose we have access to the parse tree of a formula, which is represented as a directed acyclic graph (DAG) (not as a tree). Write an algorithm that produces negation normal form (NNF) of the formula in linear time in the size of the DAG. You may assume the costs of reading from and writing to a map data structure are constant time.

Formal derivation for NNF

Theorem 2.6

Let F^{\prime} be the NNF of F. If we have $\Sigma \vdash F$, then we can derive $\Sigma \vdash F^{\prime}$.
Proof.
We combine the following pieces of proofs for each step of the transformation.

- Derivations for substitutions.
- Derivations for pushing negations inside connectives.

Therefore, we have the derivations.

Simplify

- All tools include a simplify procedure using the presented equivalences
- \oplus and \Leftrightarrow are difficult connectives, because they result in larger formula if one aims to remove them. We will learn soon how to deal with the operators.

Topic 2.4

Problems

Extended distributivity

Exercise 2.10

Using induction and the distributivity property, show the following

$$
\bigvee_{i=0}^{m} \bigwedge_{j=0}^{n_{i}} p_{i j} \equiv \bigwedge_{j_{0}=0}^{n_{0}} \ldots \bigwedge_{j_{m}=0}^{n_{m}} \bigvee_{i=0}^{m} p_{i j i}
$$

Simplifications

Exercise 2.11

Show $p_{1} \oplus \ldots \oplus p_{n}$ count odd number of one's in $p_{1}, . ., p_{n}$.

Exercise 2.12

Similar to the above problem characterize the following.

$$
\underbrace{p_{1} \Leftrightarrow \ldots \Leftrightarrow p_{n}}_{n}
$$

Exercise 2.13

Simplify

$$
\underbrace{p \oplus \ldots \oplus p}_{n} \oplus \underbrace{\neg p \oplus \ldots \oplus \neg p}_{k} \equiv ?
$$

Exercise 2.14

Simplify

$$
(p \vee(p \oplus y)) \Rightarrow(p \wedge q) \wedge(r \wedge \neg p)
$$

Encoding if-then-else

Some propositional logic may also include a ternary operator ite (p, q, r), which encodes that if p is true then q is true, otherwise r is true.

Exercise 2.15

Show the following two encodings of ite (p, q, r) are equivalent.

1. $(p \wedge q) \vee(\neg p \wedge r)$
2. $(p \Rightarrow q) \wedge(\neg p \Rightarrow r)$

Simplify

Exercise 2.16

Let $G(x)$ be a formula. Show that the following equivalences hold.

- $F \vee G(F) \equiv F \vee G(\perp)$
- $F \wedge G(F) \equiv F \wedge G(T)$
- $F \Rightarrow G(F) \equiv F \Rightarrow G(\top)$

Monotonic NNF

Definition 2.2

Let $\operatorname{pos}(m, F)$ be the set of literals that are true in m and appear in F.

Example 2.4

$\operatorname{pos}\left(\neg p_{2} \wedge\left(p_{1} \vee p_{2}\right),\left\{p_{1} \mapsto 1, p_{2} \mapsto 0\right\}\right)=\left\{p_{1}, \neg p_{2}\right\}$

Exercise 2.17

Let F be in NNF and does not contain \oplus, \Rightarrow, and \Leftrightarrow. Show that if $m \models F$ and $\operatorname{pos}(m, F) \subseteq \operatorname{pos}\left(m^{\prime}, F\right)$ then $m^{\prime} \models F$.

Exercise: prove distributivity

Exercise 2.18
 Prove/Disprove the following equivalences
 - $p \oplus(q \wedge r) \equiv(p \oplus q) \wedge(p \oplus r)$
 - $p \Leftrightarrow(q \wedge r) \equiv(p \Leftrightarrow q) \wedge(p \Leftrightarrow r)$
 - $p \Rightarrow(q \wedge r) \equiv(p \Rightarrow q) \wedge(p \Rightarrow r)$
 - $p \Rightarrow(q \vee r) \equiv(p \Rightarrow q) \vee(p \Rightarrow r)$
 - $(p \wedge q) \Rightarrow r \equiv(p \Rightarrow r) \wedge(q \Rightarrow r)$
 - $(p \vee q) \Rightarrow r \equiv(p \Rightarrow r) \vee(q \Rightarrow r)$

End of Lecture 2

