# CS 433 Automated Reasoning 2024 

Lecture 3: Conjunctive normal form and Resolution

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-01-12

## Normal forms

- Grammar of propositional logic is too complex.
- If one builds a tool, one will prefer to handle fewer connectives and simpler structure
- We transform given formulas into normal forms before handling them.

We will look at the following two normal forms

- Negation normal form (seen in the previous lecture)
- Conjunctive normal forms


## Removing $\oplus, \Rightarrow$, and $\Leftrightarrow$.

Please note the following equivalences that remove $\oplus, \Rightarrow$, and $\Leftrightarrow$ from a formula.

- $(p \Rightarrow q) \equiv(\neg p \vee q)$
- $(p \oplus q) \equiv(p \vee q) \wedge(\neg p \vee \neg q)$
- $(p \Leftrightarrow q) \equiv \neg(p \oplus q)$

For the ease of presentation, we will assume you can remove them at will.

## Topic 3.1

## Conjunctive normal form

## Some terminology

- Propositional variables are also referred as atoms
- A literal is either an atom or its negation
- A clause is a disjunction of literals.

Since $V$ is associative, commutative, and absorbs multiple occurrences, a clause may be referred as a set of literals.

## Example 3.1

- $p$ is an atom but $\neg p$ is not.
- $\neg p$ and $p$ both are literals.
- $p \vee \neg p \vee p \vee q$ is a clause.
- $\{p, \neg p, q\}$ is the same clause.


## Conjunctive normal form(CNF)

## Definition 3.1

A formula is in CNF if it is a conjunction of clauses.
Since $\wedge$ is associative, commutative and absorbs multiple occurrences, a CNF formula may be referred as a set of clauses

## Example 3.2

- $\neg p$ and $p$ both are in CNF.
- $(p \vee \neg q) \wedge(r \vee \neg q) \wedge \neg r$ in CNF.
- $\{(p \vee \neg q),(r \vee \neg q), \neg r\}$ is the same CNF formula.
- $\{\{p, \neg q\},\{r, \neg q\},\{\neg r\}\}$ is the same CNF formula.

$$
\begin{aligned}
& \text { Commentary: A set of formulas is interpreted depending on the } \\
& \text { context. There is no requirement that we apply conjunction among } \\
& \text { the elements. A clause is a set of literals. We interpret it as } \\
& \text { disjunction of literals. A CNF formula is a set of clauses, which } \\
& \text { is set of sets of literals. We interpret it as conjunction of clauses. } \\
& \text { The inner part is interpreted as disjunction and the outer set is } \\
& \text { interpreted as conjunction. }
\end{aligned}
$$

## Exercise 3.1

a. Write a formal grammar for CNF
b. How can we represent true and false using CNF formulas?

## CNF conversion

Theorem 3.1
For every formula $F$ there is another formula $F^{\prime}$ in CNF such that $F \equiv F^{\prime}$.

Proof.
Let us suppose we have

- removed $\oplus, \Rightarrow$, $\Leftrightarrow$ using the standard equivalences,
- converted the formula in NNF, and
- flattened $\wedge$ and $\vee$.


## CNF conversion (contd.)

## Proof(contd.)

Now the formulas have the following form with literals at leaves.


After the push formula size grows! Why should the method terminate?
Since $\vee$ distributes over $\wedge$, we can push $\vee$ inside $\wedge$. Eventually, we obtain a CNF formula.

## Example 3.3



Conversion to CNF

$$
(p \Rightarrow(\neg q \wedge r)) \wedge(p \Rightarrow \neg q) \equiv(\neg p \vee(\neg q \wedge r)) \wedge(\neg p \vee \neg q) \equiv(\neg p \vee \neg q) \wedge(\neg p \vee r) \wedge(\neg p \vee \neg q)
$$

## Conjunctive normal form(CNF) more notation

- A unit clause contains only one literal.
- A binary clause contains two literals.
- A ternary clause contains three literals.
- We extend the definition of clauses to the empty set of literals. Say, $\perp$ is the empty clause.

For a clause $C$ and a literal $\ell$, we may write $\ell \cup C$ or $\ell \vee C$ to denote $\{\ell\} \cup C$.

## Example 3.4

- $(p \wedge q \wedge \neg r)$ has three unit clauses
- $(p \vee \neg q \vee \neg s) \wedge(p \vee q) \wedge \neg r$ has a ternary, a binary, and a unit clause


## Exercise 3.2

a. Give a linear time algorithm to prove validity of a CNF formula
b. What is the interpretation of the empty set of clauses?

## Topic 3.2

Tseitin encoding

## CNF is desirable

- Fewer connectives
- Simple structure
- Many problems naturally encode into CNF.

We will see this in couple of lectures.

## How do we get to CNF?

- The transformation using distributivity explodes the formula
- Is there a way to avoid the explosion?
- Yes! there is a way.


## Tseitin encoding

But, with a cost.

## Tseitin encoding : intuition

## Example 3.5

Consider formula $p \vee(q \wedge r)$, which is not in CNF.
We replace offending $(q \wedge r)$ by a fresh $x$ and add clauses to encode that $x$ behaves like $(q \wedge r)$.

$$
(p \vee x) \wedge(x \Rightarrow(q \wedge r))
$$

After simplification,

$$
(p \vee x) \wedge(\neg x \vee q) \wedge(\neg x \vee r)
$$

## Exercise 3.3

a. Ideally, we should have introduced $(x \Leftrightarrow(q \wedge r))$. Why is the above with implication correct?
b. Show that transformation from $(F \vee \neg G)$ to $(F \vee \neg x) \wedge(x \Rightarrow G)$ will not preserve satisfiability. c. Show that transformation from $(F \vee \neg G)$ to $(F \vee \neg x) \wedge(G \Rightarrow x)$ preserves satisfiability.

## Tseitin encoding (Plasted.Greenbaum optimization included)

By introducing fresh variables, Tseitin encoding can translate every formula into an equisatisfiable CNF formula without exponential explosion.

1. Assume input formula $F$ is NNF without $\oplus, \Rightarrow$, and $\Leftrightarrow$.
2. Find a $G_{1} \wedge \cdots \wedge G_{n}$ that is just below an $\vee$ in $F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$
3. Replace $F\left(G_{1} \wedge \ldots \wedge G_{n}\right)$ by $F(p) \wedge \underbrace{\left(\neg p \vee G_{1}\right) \wedge \ldots \wedge\left(\neg p \vee G_{n}\right)}_{p \Rightarrow G_{1} \wedge \cdots \wedge G_{n}}$, where $p$ is a fresh variable
4. goto 2

## Exercise 3.4

Modify the encoding such that it works without the assumptions at step 1

## Example: linear cost of Tseitin encoding

## Example 3.6

Consider formula $\left(p_{1} \wedge \cdots \wedge p_{n}\right) \vee\left(q_{1} \wedge \cdots \wedge q_{m}\right)$
Using distributivity, we obtain the following CNF containing mn clauses.

$$
\bigwedge_{i \in 1 \ldots, ., j \in 1 . . m}\left(p_{i} \vee q_{j}\right)
$$

Using Tseitin encoding, we obtain the following CNF containing $m+n+1$ clauses, where $x$ and $y$ are the fresh Boolean variables.

$$
(x \vee y) \wedge \bigwedge_{i \in 1 . . n}\left(\neg x \vee p_{i}\right) \wedge \bigwedge_{j \in 1 . . m}\left(\neg y \vee q_{j}\right)
$$

## Exercise 3.5

Give a model to the original formula that is not a model of the transformed formula

## Tseitin encoding preserves satisfiability

Let us prove one direction of the equisatisfiability.
Theorem 3.2
if $m \vDash F(p) \wedge\left(\neg p \vee G_{1}\right) \wedge \cdots \wedge\left(\neg p \vee G_{n}\right)$ then $m \vDash F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$
Proof.
Assume $m \models F(p) \wedge\left(\neg p \vee G_{1}\right) \wedge \cdots \wedge\left(\neg p \vee G_{n}\right)$. We have three cases.

First case $m \vDash p$ :

- Therefore, $m \models G_{i}$ for all $i \in 1$..n.
- Therefore, $m \vDash G_{1} \wedge \cdots \wedge G_{n}$.
- Due to the substitution theorem, $m \models F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$.

Second case $m \not \vDash p$ and $m \not \vDash G_{1} \wedge \cdots \wedge G_{n}$ :

- Due to the substitution theorem, $m \models F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$


## Tseitin encoding preserves satisfiability(contd.)

## Proof(contd.)

Third case $m \not \vDash p$ and $m \neq G_{1} \wedge \cdots \wedge G_{n}$ :

- Since $F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$ is in NNF, $p$ occurs only positively in $F(p)$.
- Let us consider model $m[p \mapsto 1]$.

Commentary: We have introduced $p$, which is replacing $G_{1} \wedge \ldots \wedge G_{n}$. Since the formula is in NNF, the negation symbols are only on variables. Therefore, they cannot be above $G_{1} \wedge \ldots \wedge G_{n}$ in $F\left(G_{1} \wedge \ldots \wedge G_{n}\right)$. Therefore, $p$ occurs positively in $F(p)$.

- Naturally, $m[p \mapsto 1] \models p$.
- Therefore, $m[p \mapsto 1] \models F(p)$ (Why?).
- Since $p$ does not occur in $G_{i} \mathrm{~s}, m[p \mapsto 1] \vDash G_{1} \wedge \cdots \wedge G_{n}$.
- Due to the substitution theorem, $m[p \mapsto 1] \models F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$
- Therefore, $m \models F\left(G_{1} \wedge \cdots \wedge G_{n}\right)$.

We leave the other direction of equisatisfiability as the following exercise.
Exercise 3.6
Show if $\not \equiv F(p) \wedge\left(\neg p \vee G_{1}\right) \wedge . . \wedge\left(\neg p \vee G_{n}\right)$ then $\not \vDash F\left(G_{1} \wedge . . \wedge G_{n}\right)$
Commentary: Hint: The formulas in the above exercise are not equivalent but equisatisfiable. To prove, we need to choose a model $m$ that satisfies $F\left(G_{1} \wedge \ldots \wedge G_{n}\right)$. Since $p$ does not occur in $F\left(G_{1} \wedge \ldots \wedge G_{n}\right)$, we should be able to freely change the value of $p$ in $m$ without affecting $m \models F\left(G_{1} \wedge \ldots \wedge G_{n}\right)$. We need to choose the value of $p$ appropriately such that $m\left[p \mapsto\right.$ ?] $\models F(p) \wedge\left(\neg p \vee G_{1}\right) \wedge \ldots \wedge\left(\neg p \vee G_{n}\right)$.

## Topic 3.3

## Resolution proof system

## Derivations starting from CNF

Recall the following is a statement. We assume that we have a set of formulas in the lhs, which is treated as conjunction of the formulas.

## $\Sigma \vdash F$

The conjunction of CNF formulas is also a CNF formula.
If all formulas are CNF, we may assume $\Sigma$ as a set of clauses.

## Derivations from CNF formulas

How many rules do we need?
Answer: We need only two rules

- derive clauses from the CNF formula

$$
\text { Assumption } \overline{\Sigma \vdash C} C \in \Sigma
$$

- derive new clauses using resolution

$$
\text { Resolution } \frac{\Sigma \vdash F \vee G \quad \Sigma \vdash \neg F \vee H}{\Sigma \vdash G \vee H}
$$

(We derived the above proof rule)

## Resolution proof rule

Typically $\Sigma$ is clear from the context, so we may not write it explicitly again and again.
Since we are deriving only clauses, we apply resolution rule as follows.

$$
\frac{p \vee C \quad \neg p \vee D}{C \vee D}
$$

- clauses $p \vee C$ and $\neg p \vee D$ are called antecedents
- variable $p$ is called pivot
- clause $C \vee D$ is called resolvent


## Resolution proof system

Resolution proof method takes a set of clauses $\Sigma$ and produces a forest of clauses as a proof. Clauses in the proof are either from $\Sigma$ or consequences of previous clauses.

The aim of the proof method is to find the empty clause, which stands for inconsistency.

The proof systems that aim to derive false are called refutation proof systems.

## Resolution Proofs

## Example 3.7

Consider $F=(p \vee q) \wedge(\neg p \vee q) \wedge(\neg q \vee r) \wedge \neg r$,
We will consider the context of our derivation to be $\Sigma=\{(p \vee q),(\neg p \vee q),(\neg q \vee r), \neg r\}$


Wait! we never derive empty formula in formal proofs. Is it allowed?
It will make sense in a minute.

## Topic 3.4

## Problems

## Convert into CNF

```
Exercise 3.7
Give a CNF formula equivalent to \(p \oplus q \oplus \neg r\).
```


## Exercise: disjunctive normal form(DNF)

## Definition 3.2

A formula is in DNF if it is a disjunction of conjunctions of literals.

## Exercise 3.8

a. Prove: for every formula $F$ there is another formula $F^{\prime}$ in $D N F$ such that $F \equiv F^{\prime}$.
b. Give the formal grammar of DNF
c. Give a linear time algorithm to prove satisfiability of a DNF formula

## CNF and DNF

## Exercise 3.9

Give an example of a non-trivial formula that is both CNF and DNF

## CNF

## Exercise 3.10

Convert the following formulas into CNF with/without introducing fresh variables

$$
\begin{aligned}
& \text { 1. } \neg((p \Rightarrow q) \Rightarrow((q \Rightarrow r) \Rightarrow(p \Rightarrow r))) \\
& \text { 2. }(p \Rightarrow(\neg q \Rightarrow r)) \wedge(p \Rightarrow \neg q) \Rightarrow(p \Rightarrow r) \\
& \text { 3. }(p \Rightarrow q) \vee(q \Rightarrow \neg r) \vee(r \Rightarrow q) \Rightarrow \neg(\neg(q \Rightarrow p) \Rightarrow(q \Leftrightarrow r))
\end{aligned}
$$

## $\mathrm{P}=\mathrm{NP}$ argument

## Exercise 3.11

What is wrong with the following proof of $P=N P$ ? Give counterexample.

Tseitin encoding does not explode and proving validity of CNF formulas has a linear time algorithm. Therefore, we can convert every formula into CNF in polynomial time and check validity in linear time. As a consequence, we can check satisfiability of $F$ in linear time by checking validity of $\neg F$ in linear time.

## Validity**

## Exercise 3.12

Give a procedure like Tseitin encoding that converts a formula into another equi-valid DNF formula. Prove correctness of your transformation.

## Algebraic normal form(ANF)**

ANF formulas are defined using the following grammar.

$$
\begin{aligned}
A & ::=\top|\perp| p \\
C & :=A \wedge C \mid A \\
A N F & ::=C \oplus A N F \mid C
\end{aligned}
$$

## Exercise 3.13

a. Give an efficient algorithm to covert any formula into equivalent ANF formula.
b. Give an efficient algorithm to covert any formula into equisatisfiable ANF formula.

## CNF vs. DNF***

## Exercise 3.14

Give a class of Boolean functions that can be represented using linear size DNF formula but can only be represented by an exponential size CNF formula.

## Exercise 3.15

Give a class of Boolean functions that can be represented using linear size CNF formula but can only be represented by an exponential size DNF formula.

## Probability of satisfiability***

## Exercise 3.16

a. What is the probability that the conjunction of a random multiset of literals of size $k$ over $n$ Boolean variables is unsatisfiable?
b. What is the probability that the conjunction of a random set of literals of size $k$ over $n$ Boolean variables is unsatisfiable?

## And invertor graphs (AIG)**

AIG formulas are defined using the following grammar.

$$
A::=A \wedge A|\neg A| p
$$

## Exercise 3.17

Give heuristics to minimize the number of inverters in an AIG formula without increasing the size of the formula.

## Resolution proof

## Exercise 3.18

Give resolution proofs of the following formulas.

1. $p_{11} \wedge p_{21} \wedge\left(\neg p_{11} \vee \neg p_{21}\right)$
2. $\left(p_{11} \vee p_{12}\right) \wedge\left(p_{21} \vee p_{22}\right) \wedge\left(p_{31} \vee p_{32}\right) \wedge\left(\neg p_{11} \vee \neg p_{21}\right) \wedge\left(\neg p_{21} \vee \neg p_{31}\right) \wedge\left(\neg p_{31} \vee \neg p_{11}\right) \wedge$ $\left(\neg p_{12} \vee \neg p_{22}\right) \wedge\left(\neg p_{22} \vee \neg p_{32}\right) \wedge\left(\neg p_{32} \vee \neg p_{12}\right)$

## Non-unique resolvents and valid clauses

Between two clauses we may need to choose the pivot to apply the resolution. We may have multiple choices applicable.

## Example 3.8

The following resolutions are between two clauses, with different pivots

$$
\frac{p \vee q \vee r \quad \neg p \vee \neg q \vee r}{q \vee \neg q \vee r} \quad \frac{p \vee q \vee r \quad \neg p \vee \neg q \vee r}{p \vee \neg p \vee r}
$$

## Exercise 3.19

a. There is something wrong with the above resolvents. What is it?
b. If there are multiple choices for resolution, should we do it at all?
c. Prove that if a valid clause (a clause that contains both both $p$ and $\neg p$ for some $p$ ) is generated, we can ignore it for any further derivations without loss of completeness.

## Pure literals

## Definition 3.3

If a literal occurs in a CNF formula and its negation does not then it is a pure literal.

## Exercise 3.20

Show that the removal of clauses containing the pure literals in a CNF preserves satisfiability.

## Superset clauses are redundant

## Exercise 3.21

For clauses $C$ and $D$, show that if $D \subset C$ and $\perp$ can be derived using $C$ then it can be derived using $D$.

If clause $C$ is superset of clause $D$, then $C$ is redundant.

## Example 3.9

Consider $\{q, \neg q \vee r, r, \neg r\}$. We say $\neg q \vee r$ is redundant because $r \subset \neg q \vee r$.

A proof using $\neg q \vee r$ :


A modified proof using the shorter clause.


## Resolution: redundancy in resolution proofs

## Exercise 3.22

Let us suppose we have a resolution proof deriving $\perp$. We have discussed that valid clauses should not be used for resolution. However, nobody stops us in producing them and then further using them for the resolution. Let us suppose we have valid clauses occurring somewhere in the middle of our proof. Give a linear (or close to linear) time algorithm in terms of the size of the proof that removes the valid clauses from the proof.

## More redundancies

## Exercise 3.23

Each resolution removes a single literal. Therefore, if downstream resolutions reintroduce the literal, then purpose the earlier resolution is defeated. For example,


The resolution producing $b$ is redundant in both the paths to $\perp$, because $\neg$ a was reintroduced.

Therefore, our proof may be unnecessarily large. Give an algorithm to remove the redundancies.

## Topic 3.5

## Extra slides: termination of CNF conversion

## CNF conversion terminates

## Theorem 3.3

The procedure of converting a formula into CNF terminates.

## Proof.

For a formula $F$, let $\nu(F) \triangleq$ the maximum height of $\vee$ to $\wedge$ alternations in $F$.
Consider a formula $F(G)$ such that

$$
G=\bigvee_{i=0}^{m} \bigwedge_{j=0}^{n_{i}} G_{i j}
$$

After the push we obtain $F\left(G^{\prime}\right)$, where

$$
G^{\prime}=\bigwedge_{j_{1}=0}^{n_{1}} \cdots \bigwedge_{j_{m}=0}^{n_{m}} \underbrace{\bigvee_{i=0}^{m} G_{i j_{i}}}
$$

Observations

Commentary: $\vee$ formula means that the top symbol
in the formula is $V$

- $G_{i j}$ is either a literal or an $\vee$ formula


## CNF conversion terminates (contd.)

## (contd.)

Due to König lemma, the procedure terminates.[König lemma slides are at the end.](Why?)

## Exercise 3.24

Consider a set of balls that are labelled with positive numbers. We can replace a $k$ labelled ball with any number of balls with labels less than $k$. Using König lemma, show that the process always terminates.

Hint: in the above exercise, the bag is the subformulas of $F(G)$.

## Exercise 3.25

Show $F^{\prime}$ obtained from the procedure may be exponentially larger than $F$.

## König Lemma

## Theorem 3.4

For an infinite connected graph $G$, if degree of each node is finite then there is an infinite simple path in $G$ from each node.

Proof.
We construct an infinite simple path $v_{1}, v_{2}, v_{3}, \ldots$ as follows.

## Base case:

Choose any $v_{1} \in G$. Let $G_{1} \triangleq G$.

## Induction step:

1. Assume path $v_{1}, . ., v_{i}$ and an infinite connected graph $G_{i}$ such that $v_{i} \in G_{i}$ and $v_{1} . . v_{i-1} \notin G_{i}$.
2. In $G_{i}$, there is a neighbour $v_{i+1} \in G_{i}$ of $v_{i}$ such that infinite nodes are reachable from $v_{i+1}$ without visiting $v_{i}$.(Why?)
3. Let $S$ be the reachable nodes. Let $G_{i+1} \triangleq G_{i} \mid s$.

## Exercise 3.26

Prove that any finitely-branching infinite tree must have an infinite branch.

## Topic 3.6

## Extra slides: Implementation issues in resolution

## Efficient implementation of a proof method

A proof method implicitly defines a non-deterministic proof search algorithm

In implementing such an algorithm, one needs to ensure that one is not doing unnecessary work.

Now we only worry about a single rule. We may be more effective in finding the proof strategy.

We will discuss some simple observations that may cut huge search spaces.

This discussion is a preview of much detailed discussion about SAT solvers.

## End of Lecture 3

