CS 433 Automated Reasoning 2024

Lecture 9: Going retro : binary decision diagram

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-02-08

Retro technology

Let us go back to 90's

Topic 9.1

Binary Decision Diagrams

First practical SAT solving

Binary Decision Diagram(BDD) is a data structure that enabled the first practical SAT solver.

BDDs came to prominence in early 90s.
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 10^{20} states and beyond. Information and Computation, 1992.

CDCL has outsmarted BDD, but it is worth exploring.

Partial evaluation

Let us suppose a partial model m s.t. $\operatorname{Vars}(F) \nsubseteq \operatorname{dom}(m)$.
We can assign meaning to $m(F)$, which we will denote with $\left.F\right|_{m}$.

Definition 9.1

Let F be a formula and $m=\left\{p_{1} \mapsto b_{1}, ..\right\}$ be a partial model.

$$
\text { Let }\left.F\right|_{x_{i} \mapsto b_{i}} \triangleq \begin{cases}F\left[\top / x_{i}\right] & \text { if } b_{i}=1 \\ F\left[\perp / x_{i}\right] & \text { if } b_{i}=0\end{cases}
$$

The partial evaluation $\left.F\right|_{m}$ be $\left.\left.F\right|_{p_{1} \mapsto b_{1}}\right|_{p_{2} \mapsto b_{2}} \mid \ldots$ after some simplifications.
For short hand, we may write $\left.F\right|_{p}$ for $\left.F\right|_{p \mapsto 1}$ and $\left.F\right|_{\neg p}$ for $\left.F\right|_{p \mapsto 0}$.

Exercise 9.1
$\operatorname{Prove}\left(\left.F\right|_{p} \wedge p\right) \vee\left(\left.F\right|_{\neg p} \wedge \neg p\right) \equiv F$

Example : partial evaluation

Example 9.1

Consider $F=(p \vee q) \wedge r$
$\left.F\right|_{p}=((p \vee q) \wedge r)[T / p]=(T \vee q) \wedge r \equiv T \wedge r \equiv r$

Exercise 9.2

Compute

- $\left.((p \vee q) \wedge r)\right|_{\neg p}$
- $\left.\left(\left(p_{1} \Leftrightarrow q_{1}\right) \wedge\left(p_{2} \Leftrightarrow q_{2}\right)\right)\right|_{p_{1} \mapsto 0, p_{2} \mapsto 0}$

Decision branch

Due to the theorem in exercise 9.1, the following tree may be viewed as representing F.

Dashed arrows represent 0 decisions and solid arrows represent 1 decisions.

Example 9.2

Consider $(p \vee q) \wedge r$

Decision tree

We may further expand $\left.F\right|_{\neg p}$ and $\left.F\right|_{p}$ until we are left with \top and \perp at the leaves. The obtained tree is called the decision tree for F.

Example 9.3

Consider $(p \vee q) \wedge r$

Binary decision diagram(BDD)

If two nodes represent same formula, we may rewire the incoming edges to only one of the nodes.

Definition 9.2

$A B D D$ is a finite $D A G$ such that

- each internal node is labeled with a propositional variable
- each internal node has a low (dashed) and a high child (solid)
- there are exactly two leaves one is labelled with \top and the other with \perp

Example 9.4

Topic 9.2

Reduced ordered binary decision diagram (ROBDD)

Optimize BDD representation

- BDD may appear an inefficient representation of formulas.
- However, we can optimize BDDs and obtain canonical representation of formulas.

Ordered BDD (OBDD)

Definition 9.3

A BDD is ordered if there is an order <over variables including \top and \perp such that for each node $v, v<\operatorname{low}(v)$ and $v<\operatorname{high}(v)$.

Example 9.5

The following $B D D$ is not an ordered $B D D$

Exercise 9.3

a. Convert the above BDD into a formula
b. Give an ordered $B D D$ of the formula

Reduced OBDD (ROBDD)

Definition 9.4

A $O B D D$ is reduced if

- for any nodes u and v, if $\operatorname{var}(u)=\operatorname{var}(v)$, low $(u)=\operatorname{low}(v), \operatorname{high}(u)=\operatorname{high}(v)$ then $u=v$
- for each node u, $\operatorname{low}(u) \neq \operatorname{high}(u)$

Example 9.6

Converting to ROBDD

Any OBDD can be converted into ROBDD by iteratively applying the following transformations.

1. If there are nodes u and v such that $\operatorname{var}(u)=\operatorname{var}(v), \operatorname{low}(u)=\operatorname{low}(v), \operatorname{high}(u)=\operatorname{high}(v)$ then remove u and connect all the parents of u to v.
2. If there is a node u such that $\operatorname{low}(u)=\operatorname{high}(u)$ then remove u and connect all the parents of u to $\operatorname{low}(u)$.

Exercise 9.4

Prove that the above iterations terminate.

Canonical ROBDD

Theorem 9.1

For a function $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$ there is unique $R O B D D u$ with ordering $p_{1}<\cdots<p_{n}$ such that u represents $f\left(p_{1}, \ldots, p_{n}\right)$.

Proof.

We use the induction over the number of parameters.

Commentary: All instance of $f()=0$ and $f()=1$ will use the same node \perp and T respectively. We add nodes in the pool of nodes inductively.
base ($\mathrm{n}=0$): There are only two functions $f()=0$ and $f()=1$, which are represented by nodes \perp and T respectively.
step: We assume, there are unique ROBDDs for functions with less than equal to n parameters. Consider a function $f: \mathcal{B}^{n+1} \rightarrow \mathcal{B}$.

Let $f_{0}\left(p_{2}, \ldots, p_{n+1}\right) \triangleq f\left(0, p_{2}, \ldots, p_{n+1}\right)$, which is represented by ROBDD u_{0}. Let $f_{1}\left(p_{2}, \ldots, p_{n+1}\right) \triangleq f\left(1, p_{2}, \ldots, p_{n+1}\right)$, which is represented by ROBDD u_{1}.

Canonical ROBDD (cond.) II

Proof(contd.)

case $u_{0}=u_{1}$:
Therefore, $f=f_{0}=f_{1}$. Therefore, u_{0} represents f.
Assume there is $u^{\prime} \neq u_{0}$ that represents f.
Therefore, $\operatorname{var}\left(u^{\prime}\right)=p_{1}(\operatorname{Whyy}), \operatorname{low}\left(u^{\prime}\right)=\operatorname{high}\left(u^{\prime}\right)=u_{0}$.
Therefore, u^{\prime} is not a ROBDD.

Canonical ROBDD (cond.) III

Proof(contd.)

case $u_{0} \neq u_{1}$:
Let u be such that $\operatorname{var}(u)=p_{1}, \operatorname{low}(u)=u_{0}$, and $\operatorname{high}(u)=u_{1}$.
Clearly, u is a ROBDD.

Commentary: Due to the induction hypothesis, u_{0} and u_{1} are maximally sharing nodes, i.e., if two nodes in u_{0} and u_{1} represent the same function, then they must be the same. There is no further need of merger of nodes, when constructing u.

Assume there is $u^{\prime} \neq u$ that represents f. Therefore, $\operatorname{var}\left(u^{\prime}\right)=p_{1 \text { (why?). }}$.
Due to induction hypothesis, $\operatorname{low}\left(u^{\prime}\right)=u_{0}$, and $\operatorname{high}\left(u^{\prime}\right)=u_{1}$.
Due to the reduced property, $u=u^{\prime}$.

Exercise

Exercise 9.5

a. How many nodes are there in a ROBDD of an unsatisfiable formula?
a. How many nodes are there in a ROBDD of a valid formula?

Satisfiablility via BDD

Build a ROBDD that represents F.

- An unsat formula have only one node \perp.

Benefits of ROBDD

- If intermediate ROBDDs are small then the satisfiability check will be efficient.
- Cost of computing ROBDDs vs sizes of BDDs
- Due to the canonicity property, ROBDD is used as a formula store
- Various operations on the ROBDDs are conducive to implementation

Issues with ROBDD

- BDDs are very sensitive to the variable ordering. There are formulas that have exponential size ROBDDs for some orderings
- There is no efficient way to detect good variable orderings

Exercise 9.6

Draw the ROBDD for

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)
$$

with the following ordering on variables $x_{1}<x_{3}<x_{2}<x_{4}$.

Topic 9.3

Algorithms for BDDs

Algorithms for BDDs

Next we will present algorithms for BDDs to illustrate the convenience of the data structure.

Global data structures

The algorithms maintain the following two global data structures.

```
store }=(\mathrm{ Nodes,low, high, var }):=({\perp,\top},\lambdax.null, \lambdax.null, \lambdax.null )
reverseMap : (Vars }\times\mathrm{ Nodes }\times\mathrm{ Nodes) }->\mathrm{ Nodes := \x.null
```


Constructing a BDD node

```
Algorithm 9.1: \(\operatorname{MaKENODE}\left(p, u_{0}, u_{1}\right)\)
Input: \(p \in\) Vars, \(u_{0}, u_{1} \in\) Nodes
if \(u_{0}=u_{1}\) then
return \(u_{0}\)
if reverseMap.exists \(\left(p, u_{0}, u_{1}\right)\) then
        return reverseMap.lookup \(\left(p, u_{0}, u_{1}\right)\)
\(u:=\operatorname{store} . a d d\left(p, u_{0}, u_{1}\right) ; / /\) allocates a new node
reverseMap.add \(\left(\left(p, u_{0}, u_{1}\right), u\right)\);
return u
```


Constructing BDDs from a formula

```
Algorithm 9.2: BuildROBDD \(\left(F, p_{1}<\cdots<p_{n}\right)\)
Input: \(F\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{P}, p_{1}<\cdots<p_{n}\) : an ordering over variables of \(F\)
if \(n=0\) then
    if \(F \equiv \perp\) then return \(\perp\); else return \(T\);
\(u_{0}:=\operatorname{BuILDROBDD}\left(\left.F\right|_{\neg p_{1}}, p_{2}<\cdots<p_{n}\right)\);
\(u_{1}:=\operatorname{BuILDROBDD}\left(\left.F\right|_{p_{1}}, p_{2}<\cdots<p_{n}\right)\);
return \(\operatorname{MakENode}\left(p_{1}, u_{0}, u_{1}\right)\)
```


Conjunction of BDDs

Algorithm 9.3: ConJBDDs(u, v)
Input: ROBDDs u and v with same variable ordering
if $u=\perp$ or $v=\top$ then return u;
if $u=\top$ or $v=\perp$ then return v;
$u_{0}:=\operatorname{low}(u) ; u_{1}:=\operatorname{high}(u) ; p_{u}:=\operatorname{var}(u) ;$
$v_{0}:=\operatorname{low}(v) ; v_{1}:=\operatorname{high}(v) ; p_{v}:=\operatorname{var}(v) ;$
if $p_{u}=p_{v}$ then
return $\operatorname{MakeNode}\left(p_{u}, \operatorname{ConjBDDs}\left(u_{0}, v_{0}\right), \operatorname{ConjBDDs}\left(u_{1}, v_{1}\right)\right)$
if $p_{u}<p_{v}$ then
return $\operatorname{MakeNode}\left(p_{u}, \operatorname{ConjBDDs}\left(u_{0}, v\right), \operatorname{ConjBDDs}\left(u_{1}, v\right)\right)$
if $p_{u}>p_{v}$ then
return $\operatorname{MakeNode}\left(p_{u}, \operatorname{ConjBDDs}\left(u, v_{0}\right), \operatorname{ConjBDDs}\left(u, v_{1}\right)\right)$

Exercise 9.7

Give an algorithm for computing disjunction of $B D D s /$ not of a $B D D$.

Exercise: run ConsBDDs

Exercise 9.8

Consider order of variables $p_{1}<p_{2}$. a. Draw $R O B D D$ for $p_{1} \wedge p_{2}$. Let us call the $B D D u$. b. Draw ROBDD for $\neg p_{1}$. Let us call the $B D D v$.
c. Run ConjBDDs(u,v)

Restriction on a value

```
Algorithm 9.4: Restrict \((u, p, b)\)
Input: ROBDD \(u\) with same variable ordering, variable \(p, b \in \mathcal{B}\)
\(u_{0}:=\operatorname{low}(u) ; u_{1}:=\operatorname{high}(u) ; p_{u}:=\operatorname{var}(u)\);
if \(p_{u}=p\) and \(b=0\) then
    return Restrict \(\left(u_{0}, p, b\right)\)
if \(p_{u}=p\) and \(b=1\) then
    return Restrict \(\left(u_{1}, p, b\right)\)
if \(p_{u}<p\) then
    return \(\operatorname{MakeNode}\left(p_{u}, \operatorname{Restrict}\left(u_{0}, p, b\right), \operatorname{Restrict}\left(u_{1}, p, b\right)\right)\)
if \(p_{u}>p\) then
    return \(u\)
```


Impact of BDDs

- In 90s, BDDs revolutionized hardware verification
- Later other methods were found that are much faster and the fall of BDD was marked by the following paper,

> A. Biere,A. Cimatti,E. Clarke,Y. Zhu, Symbolic Model Checking without BDDs, TACAS 1999

- However, BDDs are still the heart of various software packages

Problems with BDDs

- Doing more than finding a satisfiable solution
- Variable ordering is rigid

Topic 9.4

Problems

ROBDDs

Exercise 9.9

Construct ROBDD of the following formula for the order $p<q<r<s$.

$$
F=(p \vee(q \oplus r) \vee(p \vee s))
$$

Let u be the ROBDD node that represents F. Give the output of $\operatorname{RESTRICT}\left(u_{F}, p, b\right)$

Variable reordering

Exercise 9.10

Let u be an $R O B D D$ with variable ordering $p_{1}<\ldots<p_{n}$. Give an algorithm for transforming u into a ROBDD with ordering $p_{1}<. .<p_{i-1}<p_{i+1}<p_{i}<p_{i+2}<. .<p_{n}$.

BDD-XOR

Exercise 9.11
 Write an algorithm for computing xor of $B D D$ s

BDD encoding

Exercise 9.12

Consider a and b be 2 bit wide bit-vectors. Write $B D D$ of each of three output bits in bit-vector addition $a+b$.

BDD model counting

Exercise 9.13

a. Give an algorithm for counting models for a given ROBDD.
b. Does this algorithm work for any $B D D$?

End of Lecture 9

