CS 433 Automated Reasoning 2024

Lecture 10: Encoding into SAT problem

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-02-08

Topic 10.1

Understanding encoding in SAT

SAT encoding

Since SAT is a NP-complete problem, therefore any NP-complete problem can be encoded into SAT in polynomial size.

Therefore, we can solve hard problems using SAT solvers.
We will look into a few interesting examples.
Objective of an encoding.

- Compact encoding (linear if possible)
- Redundant clauses may help the solver
- Encoding should be "compatible" with CDCL

Encoding into CNF

CNF is the form of choice

- Most problems specify collection of restrictions on solutions
- Each restriction is usually of the form

$$
\text { if-this } \Rightarrow \text { then-this }
$$

The above constraints are naturally in CNF.
"Even if the system has hundreds and thousands of formulas, it can be put into CNF piece by piece without any multiplying out"

- Martin Davis and Hilary Putnam

Exercise 10.1

Which of the following two encodings of ite (p, q, r) is/are in CNF?

1. $(p \wedge q) \vee(\neg p \wedge r)$
2. $(p \Rightarrow q) \wedge(\neg p \Rightarrow r)$

Graph Coloring

Problem:

color a graph $\left(\left\{v_{1}, \ldots, v_{n}\right\}, E\right)$ with at most d colors such that if $\left(v_{i}, v_{j}\right) \in E$ then the colors of v_{i} and v_{j} are different.

SAT encoding

Variables: $p_{i j}$ for $i \in 1 . . n$ and $j \in 1 . . d$. $p_{i j}$ is true iff v_{i} is assigned j th color. Clauses:

- Each vertex has at least one color

$$
\text { for each } i \in 1 . . n \quad\left(p_{i 1} \vee \cdots \vee p_{i d}\right)
$$

- if $\left(v_{i}, v_{j}\right) \in E$ then color of v_{i} is different from v_{j}.

$$
\left(\neg p_{i k} \vee \neg p_{j k}\right) \quad \text { for each } k \in 1 . . d, \quad\left(v_{i}, v_{j}\right) \in E
$$

Exercise 10.2

a. Encode: "every vertex has at most one color."
b. Do we need this constraint to solve the problem?

Pigeon hole principle

Prove:

if we place $n+1$ pigeons in n holes then there is a hole with at least 2 pigeons
The theorem holds true for any n, but we can prove it for a fixed n.

SAT encoding

Variables: $p_{i j}$ for $i \in 0 . . n$ and $j \in 1 . . n$. $p_{i j}$ is true iff pigeon i sits in hole j. Clauses:

- Each pigeon sits in at least one hole

$$
\text { for each } i \in 0 . . n \quad\left(p_{i 1} \vee \cdots \vee p_{i n}\right)
$$

- There is at most one pigeon in each hole.

$$
\left(\neg p_{i k} \vee \neg p_{j k}\right) \quad \text { for each } k \in 1 . . n, \quad i<j \in 0 . . n
$$

Topic 10.2

Cardinality constraints

Cardinality constraints

$p_{1}+\ldots .+p_{n} \bowtie k$

where $\bowtie \in\{<,>, \leq, \geq,=, \neq\}$
Cardinality constraints occur in various contexts. For example, graph coloring.
Let us study efficient encodings for them.

Encoding $p_{1}+\ldots .+p_{n}=1$

- At least one of $p_{i} s$ are true

$$
\left(p_{1} \vee \ldots \vee p_{n}\right)
$$

- Not more than one $p_{i} \mathrm{~s}$ are true

$$
\left(\neg p_{i} \vee \neg p_{j}\right) \quad i, j \in\{1, . ., n\}
$$

Exercise 10.3

a. What is the complexity of at least one constraints?
b. What is the complexity of at most one constraints?

Sequential encoding of $p_{1}+. .+p_{n} \leq 1$

The earlier encoding of at most one is quadratic. We can do better by introducing fresh variables.

Let s_{i} be a fresh variable to indicate that $p_{1}+\ldots+p_{i}$ has reached 1 .
The following constraints encode $p_{1}+. .+p_{n} \leq 1$.

$$
\begin{array}{rll}
\left(p_{1} \Rightarrow s_{1}\right) & \wedge & \\
\left.\left.s_{i-1}\right) \Rightarrow s_{i}\right) & \wedge\left(s_{i-1} \Rightarrow \neg p_{i}\right) \\
& \wedge\left(s_{n-1} \Rightarrow \neg p_{n}\right)
\end{array}
$$

Exercise 10.4

a. Give a satisfying assignment when $p_{3}=1$ and all other $p_{i} s$ are 0 .
b. Give a satisfying assignment of $s_{i} s$ when all $p_{i} s$ are 0 .
c. Why use strict upper bound $(<n)$ in the iterative conjunction? What if we use non-strict?
d. Convert the constraints into CNF.

Encoding $p_{1}+\ldots .+p_{n} \leq k$

There are several encodings

- Generalized pairwise
- Sequential counter
- Operational encoding
- Sorting networks
- Cardinality networks

Exercise 10.5

Given the above encodings, how to encode $p_{1}+\ldots .+p_{n} \geq k$?

Generalized pairwise encoding for $p_{1}+\ldots .+p_{n} \leq k$

No $k+1$ variables must be true at the same time.
For each $i_{1}, \ldots ., i_{k+1} \in 1 . . n$, we add the following clause

$$
\left(\neg p_{i_{1}} \vee \cdots \vee \neg p_{i_{k+1}}\right)
$$

Exercise 10.6

How many clauses are added for the encoding?

Sequential counter encoding for $p_{1}+\ldots .+p_{n} \leq k$
Let variable $s_{i j}$ indicate that the sum upto p_{i} has reached to j or not.

- Constraints for first variable p_{1}

$$
\left(p_{1} \Rightarrow s_{11}\right) \wedge \bigwedge_{j \in[2, k]} \neg s_{1 j}
$$

- Constraints for p_{i}, where $i>1$

$$
\begin{aligned}
\left(\left(p_{i} \vee s_{(i-1) 1}\right) \Rightarrow s_{i 1}\right) \wedge & \bigwedge_{j \in[2, k]}((\underbrace{p_{i} \wedge s_{(i-1)(j-1)}}_{\text {add }+1}) \vee s_{(i-1) j}) \Rightarrow s_{i j}) \\
s_{(i-1)(j-1)} & -s_{i}(i-1) j
\end{aligned}
$$

Sequential counter encoding for $p_{1}+\ldots .+p_{n} \leq k$ (II)

- More constraints for p_{i}, if the sum has reached to k at $i-1$, no more ones

$$
\left(s_{(i-1) k} \Rightarrow \neg p_{i}\right)
$$

Exercise 10.7

a. What is the variable/clause complexity?
b. What if we drop constraints $\bigwedge_{j \in[2, k]} \neg s_{1 j}$?

Topic 10.3

More problems

Solving Sudoku using SAT solvers

Example 10.1

- Value in each cell is valid:

$$
\sum_{k=1}^{9} v_{i, j, k}=1 \quad i, j \in\{1, . ., 9\}
$$

- Each value used exactly once in each row:

$$
\sum_{i=1}^{9} v_{i, j, k}=1 \quad j, k \in\{1, . ., 9\}
$$

- Each value used exactly once in each column:

$$
\sum_{j=1}^{9} v_{i, j, k}=1 \quad i, k \in\{1, . ., 9\}
$$

- Each value used exactly once in each 3×3 grid

$$
\sum_{s=1}^{3} \sum_{r=1}^{3} v_{3 i+r, 3 j+s, k}=1 \quad i, j \in\{0,1,2\}, k \in\{1, . ., 9\}
$$

Bounded model checking

Consider a Mealy machine

- I is a vector of variables representing input
- O is a vector of variables representing output
- X is a vector of variables representing current state
- X^{\prime} is a vector of variables representing next state

Prove: After n steps, the machines always produces output O that satisfies some formula $F(O)$.

Bounded model checking encoding

SAT encoding:

Variables:

- I_{0}, \ldots, I_{n-1} representing input at every step
- O_{1}, \ldots, O_{n} representing output at every step
- X_{0}, \ldots, X_{n} representing internal state at every step

Clauses:

- Encoding system runs:

$$
T\left(I_{0}, X_{0}, X_{1}, O_{1}\right) \wedge \cdots \wedge T\left(I_{n-1}, X_{n-1}, X_{n}, O_{n}\right)
$$

- Encoding property: $\quad \neg F\left(O_{1}, \ldots, O_{n}\right)$

If the encoding is unsat the property holds.

Example: bounded model checking

Example 10.2

Consider the following 2-Bit counter with two bits p and q.

$$
\begin{aligned}
p^{\prime} & :=\neg p \\
q^{\prime} & :=p \vee \neg q
\end{aligned}
$$

where p^{\prime} and q^{\prime} are the next value for the bits. How many steps the above counter counts?

Let us suppose if we claim that that it is a mod 3 counter (may not be in the order of 00,01,11). We can use a SAT solver to find it out.

We can construct the following constraints to encode a single transition.

$$
T\left(p^{\prime}, q^{\prime}, p, q\right) \triangleq\left(p^{\prime} \Leftrightarrow \neg p\right) \wedge\left(q^{\prime} \Leftrightarrow(p \vee \neg q)\right)
$$

Example: bounded model checking

We encode the three step execution of the counter as follows.

$$
\operatorname{Trs}=T\left(p_{3}, q_{3}, p_{2}, q_{2}\right) \wedge T\left(p_{2}, q_{2}, p_{1}, q_{1}\right) \wedge T\left(p_{1}, q_{1}, p_{0}, q_{0}\right)
$$

$p_{i} \mathrm{~s}$ and $q_{i} \mathrm{~s}$ are fresh names to encode the intermediate states. If we expand T in Trs, we obtain.

$$
\left(p_{3} \Leftrightarrow \neg p_{2}\right) \wedge\left(q_{3} \Leftrightarrow\left(p_{2} \vee \neg q_{2}\right)\right) \wedge\left(p_{2} \Leftrightarrow \neg p_{1}\right) \wedge\left(q_{2} \Leftrightarrow\left(p_{1} \vee \neg q_{1}\right)\right) \wedge\left(p_{1} \Leftrightarrow \neg p_{0}\right) \wedge\left(q_{1} \Leftrightarrow\left(p_{0} \vee \neg q_{0}\right)\right)
$$

Property: distinct values for the intermediate steps and finally repeat the first value.

$$
F=\underbrace{\left(\left(p_{0} \oplus p_{1}\right) \vee\left(q_{0} \oplus q_{1}\right)\right) \wedge\left(\left(p_{0} \oplus p_{2}\right) \vee\left(q_{0} \oplus q_{2}\right)\right) \wedge\left(\left(p_{2} \oplus p_{1}\right) \vee\left(q_{2} \oplus q_{1}\right)\right)}_{\text {distinct intermediate values }} \wedge \underbrace{\left(\left(p_{0} \Leftrightarrow p_{3}\right) \vee\left(q_{0} \Leftrightarrow q_{3}\right)\right)}_{\text {repeat }}
$$

SAT solver can check satisfiability of

$$
\operatorname{Trs} \wedge \neg F
$$

Topic 10.4

Input Format

DIMACS Input format

Example 10.3

Input CNF

Topic 10.5

Pseudo-Boolean constraints

Pseudo-Boolean constraints

Let p_{1}, \ldots, p_{n} be Boolean variables.
The following is a pseudo-Boolean constraint.

$$
c_{1} p_{1}+\ldots+c_{n} p_{n} \leq c
$$

where $c_{1}, . ., c_{n}, c \in \mathbb{Z}$.
How should we solve them?

- Using Boolean reasoning
- Using arithmetic reasoning (Not covered in these slides)

Here we will see the Boolean encoding for the constraints.

Observations on pseudo-Boolean constraints

- Replacing negative coefficients to positive

$$
t-c_{i} p_{i} \leq c \quad \rightsquigarrow \quad t+c_{i}\left(\neg p_{i}\right) \leq c+c_{i}
$$

- Divide the whole constraints by $d:=\operatorname{gcd}\left(c_{1}, \ldots, c_{n}\right)$.

$$
c_{1} p_{1}+\ldots+c_{n} p_{n} \leq c \quad \rightsquigarrow \quad\left(c_{1} / d\right) p_{1}+. .+\left(c_{n} / d\right) p_{n} \leq\lfloor c / d\rfloor
$$

- Trim large coefficients to $c+1$. Let us suppose $c_{i}>c$.

$$
t+c_{i} p_{i} \leq c \quad \rightsquigarrow \quad t+(c+1) p_{i} \leq c
$$

Observations on pseudo-Boolean constraints

- Trivially true are replaced by T. If $c>=c_{1}+\ldots .+c_{n}$

$$
c_{1} p_{1}+\ldots+c_{n} p_{n} \leq c \quad \rightsquigarrow \quad \top
$$

- Trivially false are replace by \perp. If $c<0$

$$
c_{1} p_{1}+\ldots+c_{n} p_{n} \leq c \quad \rightsquigarrow \quad \perp
$$

Translating to decision diagrams

We choose a 0 and 1 for each variable to split cases and simplify.

Example 10.4

Consider $2 p_{1}+3 p_{2}+p_{3} \leq 3$

Example: translating to decision diagrams

We can split node left node $3 p_{2}+p_{3} \leq 3$ further on p_{2}.

Example: decision diagrams to clauses

Exercise 10.8

a. Simplify the clauses
b. Complexity of the translation from pseudo-Boolean constraints?

Exercise: Pseudo-Boolean constraints

Exercise 10.9

Let p_{1}, p_{2}, and p_{3} be Boolean variables. Convert the following pseudo-Boolean inequalities into BDDs while applying simplifications eagerly, and thereafter into equivsatisfiable CNF clauses.

- $2 p_{1}+6 p_{3}+p_{2} \leq 3$
- $2 p_{1}+6 p_{3}+p_{2} \geq 3$
- $2 p_{1}+3 p_{3}+5 p_{2} \leq 6$

Exponential sized BDDs for Pseudo-Boolean constraints

Consider the following pseudo-Boolean constraint

$$
\sum_{i=1}^{2 n} \sum_{j=1}^{2 n}\left(2^{j-1}+2^{2 n+i-1}\right) p_{i j} \leq\left(2^{4 n}-1\right) n
$$

Any BDD representing the above constraints have at least 2^{n} nodes.

API for pseudo-Boolean constraints in Z3

```
from z3 import *
p = Bool("p")
q = Bool("q") # declare a Boolean variable
c1 = PbLe([(p,1),(q,2)], 3) # encodes p+2q=< 3
c2 = PbGe([(p,1),(q,-1)],4) # encodes p-q=>4
s = Solver()
s.add( And (c1, c2) )
s.check()
```


Exercise: equivalent ranges in pseudo-Boolean constraints

Exercise 10.10

Let p_{1}, p_{2}, and p_{3} be Boolean variables. Let us consider pseudo-Boolean constraint $2 p_{1}+3 p_{3}+5 p_{2} \leq K$, for some non-negative integer K. For which of the following ranges of K, the constraint has same set of satisfying models?

- $[0,2]$
- $[3,4]$
- $[7,7]$
- $[10,12]$

Pseudo-Boolean constraints

Exercise 10.11

Let a, b, and n be positive integers such that $\sum_{i=1}^{n} b^{i}<a$. Let $w_{i}=a+b^{i}$ for each $i \in 1$..n. Show that the following pseudo-Boolean constraints are equivalent.

$$
w_{1} p_{1}+\ldots+w_{n} p_{n} \leq(a n / 2)
$$

and

$$
p_{1}+\ldots+p_{n} \leq(n / 2)-1
$$

Topic 10.6

Problems

SAT encoding: n queens

Exercise 10.12

Encode N-queens problem in a SAT problem.
N-queens problem: Place n queens in $n \times n$ chess such that none of the queens threaten each other.

SAT encoding: peaceable queens

Exercise 10.13

Encode the problem of finding the maximal number of placing the same number of white queens and black queens on an n by n chess board so that no queen attacks any queen of the opposite color

SAT encoding: overlapping subsets

Exercise 10.14

For a set of size n, find a maximal collection of k sized subsets such that any pair of the sets have exactly one common element.

SAT encoding: setting a question paper

Exercise 10.15

There is a datbase of questions with the following properties:

- Hardness level $\in\{$ Easy,Medium, Hard $\}$
- Marks $\in \mathbb{N}$
- Topic $\in\left\{T_{1}, \ldots, T_{t}\right\}$
- LastAsked \in Years

Make a question paper with the following properties

- It must contain $x \%$ easy, $y \%$ medium, and $z \%$ difficult marks.
- The total marks of the paper are given.
- The number of problems in the paper are given.
- All topics must be covered.
- No question that was asked in last five years must be asked.

Write an encoding into SAT problem that finds such a solution. Test your encoding on reasonably

SAT encoding: finding a schedule

Exercise 10.16

An institute is offering m courses.

- Each has a number of contact hours $==$ credits

The institute has rooms.

- Each room has a maximum student capacity

The institute has s weekly slots to conduct the courses.

- Each slot has either 1 or 1.5 hour length

There are n students.

- Each student have to take minimum number of credits
- Each student has a set of preferred courses.

Assign each course slots and a room such that all student can take courses from their preferred courses that meet their minimum credit criteria.
Write an encoding into SAT problem that finds such an assignment. Test your encoding on reasonably sized input. Choose a strategy to evaluate your tool and report plots to demonstrate

SAT encoding: synthesis by examples

Exercise 10.17

Consider an unknown function $f: \mathcal{B}^{N} \rightarrow \mathcal{B}$. Let us suppose for inputs $I_{1}, \ldots ., I_{m} \in \mathcal{B}^{N}$, we know the values of $f\left(I_{1}\right), . ., f\left(I_{m}\right)$.
a) Write a SAT encoding of finding a k-sat formula containing ℓ clauses that represents the function.
b) Write a SAT encoding of finding an NNF (negation normal form, i.e., \neg is only allowed on atoms) formula of height k and width ℓ that represents the function.(Let us not count negation in the height.)
c) Write a SAT encoding of finding a binary decision diagram of height k and maximum width ℓ that represents the function.

Test your encoding on reasonably sized input. Choose a strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: Rubik's cube

Exercise 10.18

Write a Rubik's cube solver using a SAT solver

- Input:
- start state,
- final state, and
- number of operations k
- Output:
- sequence of valid operations or
- "impossible to solve within k operations"

Test your encoding on reasonably many inputs. Choose a strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: TickTacToe

Exercise 10.19

Write an encoding for synthesizing always winning strategy for the TickTacToe player 1.

Since it is a game one needs to give a grammar for the Boolean function, from a space of functions.

SAT encoding: square of squares

Exercise 10.20

Squaring the square problem: "Tiling an integral square using only other smaller integral squares such that all tiles have different sizes."

Consider a square of size $n \times n$, find a solution of above problem using a SAT solver using tiles less than k.

Test your encoding on reasonably sized n and k. Choose an strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: Mondrian art

Exercise 10.21

Mondiran art problem: "Divide an integer square into non-congruent rectangles. If all the sides are integers, what is the smallest possible difference in area between the largest and smallest rectangles?"

Consider a square of size $n \times n$, find a Mondrian solution above k using a SAT solver.

Example : make mastermind player

Exercise 10.22

Mastermind is a two player game. There are n colors. Let $k<n$ be a positive number.

1. Player one chooses a hidden sequence of k colors (colors may repeat)
2. The game proceeds iteratively as follows until player two has guessed the sequence correctly.

- Player two makes a guess of sequence of k colors
- Player one gives feedback to player two by giving
- (red response) the number of correct colors in the correct positions, and
- (white response) the number of correct colors in the wrong positions.

Play the game here http: // www. webgamesonline. com/mastermind/
Create player two using a SAT solver that is tolerant to unreliable player one, i.e., sometimes player one gives wrong answer.

Example: make RushHour solver using SAT solvers

Exercise 10.23

The RushHour game consists of a collection of cars of length two, which are set either horizontally or vertically on a $n \times n$. Two cars cannot overlap each other. The grid that has a single exit, which is a node on the grid (usually at one side). Each car can move forward or backward in the direction of the car if another car is not blocking the car. Cars cannot change their orientation. There is one special car, which is positioned in the grid such that it can reach to the exit. The objective of the rush hour game is to find a series of moves such that the special car reaches to the exit point.

Example:

Exercise 10.24

Consider an undirected connected graph $G=(V, E)$ and nodes $s, t \in V$. Give a SAT encoding of removing the minimal set of edges such that s and t are not connected.

Removing edges to be acyclic graph

Exercise 10.25

Give a SAT encoding for removing minimum number of edges in a (un)directed graphs such that the graph becomes acyclic.

Topic 10.7

Extra section : cardinality constraints other encodings

Bitwise encoding of $p_{1}+\ldots+p_{n} \leq 1$

Let $m=\left\lceil\log _{2} n\right\rceil$.

- Consider bits r_{1}, \ldots, r_{m}
- For each $i \in 1 \ldots n$, let b_{1}, \ldots, b_{m} be the binary encoding of $(i-1)$.

We add the following constraints for p_{i} to be 1 .

$$
\left(p_{i} \Rightarrow\left(r_{1}=b_{1} \wedge \ldots \wedge r_{m}=b_{m}\right)\right)
$$

Example 10.5

Consider $p_{1}+p_{2}+p_{3} \leq 1$.
$m=\left\lceil\log _{2} n\right\rceil=2$.

We get the following constraints.

$$
\begin{aligned}
& \left(p_{1} \Rightarrow\left(r_{1}=0 \wedge r_{2}=0\right)\right) \\
& \left(p_{2} \Rightarrow\left(r_{1}=0 \wedge r_{2}=1\right)\right) \\
& \left(p_{3} \Rightarrow\left(r_{1}=1 \wedge r_{2}=0\right)\right)
\end{aligned}
$$

Exercise 10.26

Operational encoding for $p_{1}+\ldots .+p_{n} \leq k$

Sum the bits using full adders. Compare the resulting bits against k.
Produces $O(n)$ encoding, however, the encoding is not considered good for SAT solvers, since it is not arc-consistent.

Topic 10.8

Extra section : cardinality constraints via merge sort

Cardinality constraints via sorted variables $O\left(n \ln ^{2} n\right)$

Let us suppose we have a circuit that produces sorted bits in decreasing order.

$$
\left(\left[y_{1}, . ., y_{n}\right], C s\right):=\operatorname{sort}\left(p_{1}, . . p_{n}\right)
$$

We can encode the cardinality constraints as follows

$$
\begin{array}{cc}
p_{1}+. .+p_{n} \leq k & \left\{\neg y_{k+1}\right\} \cup C s \\
p_{1}+. .+p_{n} \geq k & \left\{y_{k}\right\} \cup C s
\end{array}
$$

Exercise 10.27

a. How to encode $p_{1}+. .+p_{n}<k$
b. How to encode $p_{1}+. .+p_{n}>k$
c. How to encode $p_{1}+. .+p_{n}=k$

For details : look at the extra slides at the end of the lecture.

Sorting networks

The following circuit sorts two bits p_{1} and p_{2}.
$p_{1} \longrightarrow y_{1}=p_{1} \vee p_{2}$
$p_{2} \longrightarrow y_{2}=p_{1} \wedge p_{2}$

We can sort any number of bits by composing the circuit according to a sorting algorithm.
Example 10.6Sorting 6 bits using merge sort.

Formal definition of sorting networks

Base case:

$n=1$

$$
\operatorname{sort}\left(p_{1}, p_{2}\right) \triangleq \operatorname{merge}\left(\left[p_{1}\right],\left[p_{2}\right]\right)
$$

Induction step:

$2 n>2$
Let,

$$
\begin{aligned}
& \begin{array}{l}
\text { sort } / \text { merge returns a vector of } \\
\text { signals and a set of clauses. }
\end{array} \\
\left(\left[p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right], C s_{1}\right): & =\operatorname{sort}\left(p_{1}, . ., p_{n}\right) \\
\left(\left[p_{n+1}^{\prime}, \ldots, p_{2 n}^{\prime}\right], C s_{2}\right): & =\operatorname{sort}\left(p_{n+1}, . ., p_{2 n}\right) \\
\left(\left[y_{1}, \ldots, y_{2 n}\right], C s_{M}\right): & =\operatorname{merge}\left(\left[p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right],\left[p_{n+1}^{\prime}, \ldots, p_{2 n}^{\prime}\right]\right)
\end{aligned}
$$

Then,

$$
\operatorname{sort}\left(p_{1}, . ., p_{2 n}\right) \triangleq\left(\left[y_{1}, . ., y_{2 n}\right], C s_{1} \cup C s_{2} \cup C s_{M}\right)
$$

Formally merge: odd-even merging network

Merge assumes that the input vectors are sorted.

Base case:

$$
\operatorname{merge}\left(\left[p_{1}\right],\left[p_{2}\right]\right) \triangleq\left(\left[y_{1}, y_{2}\right],\left\{y_{1} \Leftrightarrow p_{1} \wedge p_{2}, y_{2} \Leftrightarrow p_{1} \vee p_{2}\right\}\right) ;
$$

Induction step:

Let

$$
\begin{aligned}
\left(\left[z_{1}, . ., z_{n}\right], C s_{1}\right) & :=\operatorname{merge}\left(\left[p_{1}, p_{3} \ldots, p_{n-1}\right],\left[y_{1}, y_{3}, \ldots, y_{n-1}\right]\right) \\
\left(\left[z_{1}^{\prime}, . ., z_{n}^{\prime}\right], C s_{2}\right) & :=\operatorname{merge}\left(\left[p_{2}, p_{4} \ldots, p_{n}\right],\left[y_{2}, y_{4}, \ldots, y_{n}\right]\right) \\
\left(\left[c_{2 i}, c_{2 i+1}\right], C S_{M}^{i}\right) & :=\operatorname{merge}\left(\left[z_{i+1}\right],\left[z_{i}^{\prime}\right]\right) \quad \text { for each } i \in[1, n-1]
\end{aligned}
$$

Then,

$$
\operatorname{merge}\left(\left[p_{1}, \ldots, p_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right) \triangleq\left(\left[z_{1}, c_{1}, . ., c_{2 n-1}, z_{n}^{\prime}\right], C s_{1} \cup C s_{2} \cup \bigcup_{i} C S_{M}^{i}\right)
$$

Topic 10.9

Extra section : arc-consistency

Arc-consistency

Let $C(P s)$ be a problem with variables $P s=p_{1}, \ldots, p_{n}$.
Let $E(P s, T s)$ be an encoding of the problem, where variables $T s=t_{1}, \ldots, t_{k}$ are introduced by the encoding.

Definition 10.1

We say $E(P s, T s)$ is arc-consistent if for any partial model m of E

1. If $\left.m\right|_{P_{s}}$ is inconsistent with C, then unit propagation in E causes conflict.
2. If $\left.m\right|_{P s}$ is extendable to m^{\prime} by local reasoning in C, then unit propagation in E obtains $m^{\prime \prime}$ such that $\left.m^{\prime \prime}\right|_{P_{s}}=m^{\prime}$.

Unit propagation $==$ Local reasoning

Commentary: Constraint satisfaction problem (CSP) is a general problem. https://en.wikipedia.org/wiki/Constraint_satisfaction_problem

There you have a formal meaning of local reasoning or local consistency. But, in our context, we have not defined it. The user who is encoding his problem into SAT will choose what (s)he thinks is the local reasoning in his problem.

Example: arc-consistency

Example 10.7

Consider problem $p_{1}+\ldots+p_{n} \leq 1$

An encoding is arc-consistent if

1. If at any time two $p_{i} s$ are made true, unit propagation should trigger unsatisfiability
2. If at any time p_{i} is made true, unit propagation should make all other $p_{j} s$ false

In the problem, the above two points of reasoning are defined to be local reasoning by us.

One may choose some other definition. Often, there is a natural choice.

Example: non arc-consistent encoding

Example 10.8

Consider problem $p_{1}+p_{2}+p_{3} \leq 0$
Let us use full adder encoding

$$
\neg \underbrace{\left(p_{1} \oplus p_{2} \oplus p_{3}\right)}_{\text {sum }} \wedge \neg \underbrace{\left(\left(p_{1} \wedge p_{2}\right) \vee\left(p_{2} \wedge p_{3}\right) \vee\left(p_{1} \wedge p_{3}\right)\right)}_{\text {carry }}
$$

Clearly p_{1}, p_{2}, p_{3} are 0 . But, $\underbrace{\text { the unit propagation without any decisions }}_{\text {Local reasoning }}$ does not give the model.
However, we can encode the problem into an arc-consistent encoding as follows.

$$
\neg p_{1} \wedge \neg p_{2} \wedge \neg p_{3}
$$

End of Lecture 10

