CS 433 Automated Reasoning 2024

Lecture 4: First-order logic

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-01-17

Topic 4.1

First-order logic (FOL) syntax

First-order logic(FOL)

First-order logic(FOL)

$$
=
$$

propositional logic + quantifiers over individuals + functions/predicates
"First" comes from this property

Example 4.1

Consider argument: Humans are mortal. Socrates is a human. Therefore, Socrates is mortal.
In symbolic form,
$\forall x .(H(x) \Rightarrow M(x)) \wedge H(s) \Rightarrow M(s)$

- $H(x)=x$ is a human
- $M(x)=x$ is mortal
- $s=$ Socrates

A note on FOL syntax

The FOL syntax may appear non-intuitive and cumbersome.
FOL requires getting used to it like many other concepts such as complex numbers.

Connectives and variables

An FOL consists of three disjoint kinds of symbols

- variables
- logical connectives
- non-logical symbols : function and predicate symbols

Variables

We assume that there is a set Vars of variables, which is countably infinite in size.

- Since Vars is countable, we assume that variables are indexed.

$$
\text { Vars }=\left\{x_{1}, x_{2}, \ldots,\right\}
$$

- The variables are just names/symbols without any inherent meaning
- We may also sometimes use x, y, z to denote the variables

Now forget all the definitions of the propositional logic. We will redefine everything and the new definitions will subsume the PL definitions.

Logical connectives

The following are a finite set of symbols that are called logical connectives.

formal name	symbol	read as	
true	T	top	
false	\perp	bot	\} 0-ary
negation	\neg	not	\} unary
conjunction	\wedge	and	
disjunction	\checkmark	or	
implication	\Rightarrow	implies	\} binary
exclusive or	\oplus	xor	
equivalence	\Leftrightarrow	iff	
equality	$=$	equals	\} binary predicate
existential quantifier	\exists	there is	\} quantifiers
universal quantifier		for each	quantifiers
open parenthesis	(
close parenthesis)		\}punctuation
comma	,		

Non-logical symbols

FOL is a parameterized logic
The parameter is a signature $\mathbf{S}=(\mathbf{F}, \mathbf{R})$, where

- \mathbf{F} is a set of function symbols and
- \mathbf{R} is a set of predicate symbols (aka relational symbols).

Each symbol is associated with an arity ≥ 0.
We write $f / n \in \mathbf{F}$ and $P / k \in \mathbf{R}$ to explicitly state the arity
Example 4.2
We may have $\mathbf{F}=\{c / 0, f / 1, g / 2\}$ and $\mathbf{R}=\{P / 0, H / 2, M / 1\}$.
Example 4.3
We may have $\mathbf{F}=\{+/ 2,-/ 2\}$ and $\mathbf{R}=\{</ 2\}$.

Non-logical symbols (contd.)

\mathbf{F} and \mathbf{R} may either be finite or infinite.
Each \mathbf{S} defines an FOL. We say, consider an FOL with signature $\mathbf{S}=(\mathbf{F}, \mathbf{R}) \ldots$
We may not mention \mathbf{S} if from the context the signature is clear.

Example 4.4

In the propositional logic, $\mathbf{F}=\emptyset$ and

$$
\mathbf{R}=\left\{p_{1} / 0, p_{2} / 0, \ldots . .\right\}
$$

Commentary: The core definition of First Order Logic (FOL) does not include "propositional variables". Nevertheless, if we desire to define propositional logic using FOL, we can use an embedding. The above embedding transforms 0 -ary predicates into propositional variables in propositional logic. However, one drawback of this embedding is that it does not allow for quantification over boolean variables, while it is possible to envision quantifying over boolean variables.A different embedding can be utilized by using axioms, which will be addressed in a future topic. The embedding can force variables of FOL to take only two possible values.

Constants and Propositional variable

There are special cases when the arity is zero.
$f / 0 \in \mathbf{F}$ is called a constant.
$P / 0 \in \mathbf{R}$ is called a propositional variable.

Building FOL formulas

Let us use the ingredients to build the FOL formulas.

It will take a few steps to get there.

- terms
- atoms
- formulas

Syntax : terms

Definition 4.1

For signature $\mathbf{S}=(\mathbf{F}, \mathbf{R})$, \mathbf{S}-terms $T_{\mathbf{S}}$ are given by the following grammar:

$$
t::=x \mid f(\underbrace{t, \ldots, t}_{n}),
$$

where $x \in$ Vars and $f / n \in \mathbf{F}$.

Example 4.5

Consider $\mathbf{F}=\{c / 0, f / 1, g / 2\}$. Let $x_{i} s$ be variables. The following are terms.
$-f\left(x_{1}\right)$

- $g\left(f(c), g\left(x_{2}, x_{1}\right)\right)$
$-c$
- $x_{1} \int$ You may be noticing some similarities between variables and constants

Infix notation

We may write some functions and predicates in infix notation.

Example 4.6

we may write $+(a, b)$ as $a+b$ and similarly $<(a, b)$ as $a<b$.

Syntax: atoms

Definition 4.2

S-atoms $A_{\mathbf{s}}$ are given by the following grammar:

$$
a::=P(\underbrace{t, \ldots, t}_{n})|t=t| \perp \mid \top,
$$

where $P / n \in \mathbf{R}$.

Exercise 4.1

Consider $\mathbf{F}=\{s / 0\}$ and $\mathbf{R}=\{H / 1, M / 1\}$. Which of the following are atom?

- $H(x)$
- s
- $M(s)$
- $H(M(s))$

Equality within logic vs. equality outside logic

We have an equality $=$ within logic and the other when we use to talk about logic.

Both are distinct objects.

Some notations use same symbols for both and the others do not to avoid confusion.

Whatever is the case, we must be very clear about this.

Syntax: formulas

Definition 4.3
S -formulas \mathbf{P}_{S} are given by the following grammar:

$$
F::=a|\neg F|(F \wedge F)|(F \vee F)|(F \Rightarrow F)|(F \Leftrightarrow F)|(F \oplus F)|\forall x .(F)| \exists x .(F)
$$

where $x \in$ Vars.
Example 4.7
Consider $\mathbf{F}=\{s / 0\}$ and $\mathbf{R}=\{H / 1, M / 1\}$
The following is a (\mathbf{F}, \mathbf{R})-formula:

$$
\forall x .(H(x) \Rightarrow M(x)) \wedge H(s) \Rightarrow M(s)
$$

Unique parsing

For FOL we will ignore the issue of unique parsing, and assume
all the necessary precedence and associativity orders are defined
for ensuring human readability and unique parsing.

Precedence order

We will use the following precedence order in writing the FOL formulas

Example 4.8

The following are the interpretation of the formulas after dropping parenthesis

- $\forall x \cdot H(x) \Rightarrow M(x)=\forall x .(H(x)) \Rightarrow M(x)$
- $\exists z \forall x \cdot \exists y \cdot G(x, y, z)=\exists z \cdot(\forall x \cdot(\exists y \cdot G(x, y, z)))$

Topic 4.2

FOL - semantics

Semantics : models

Definition 4.4

For signature $\mathbf{S}=(\mathbf{F}, \mathbf{R})$, a \mathbf{S}-model m is a

$$
\left(D_{m} ;\left\{f_{m}: D_{m}^{n} \rightarrow D_{m} \mid f / n \in \mathbf{F}\right\},\left\{P_{m} \subseteq D_{m}^{n} \mid P / n \in \mathbf{R}\right\}\right)
$$

where D_{m} is a nonempty set. Let S-Mods denotes the set of all S-models.

Some terminology

- D_{m} is called domain of m.
- f_{m} assigns meaning to f under model m.
- Similarly, P_{m} assigns meaning to P under model m.

Example: model

Example 4.9

Consider $\mathbf{S}=(\{c / 0, f / 1, g / 2\},\{H / 1, M / 2\})$.
Let us suppose our model m has domain $D_{m}=\{\bullet, \bullet, \bullet\}$.
We need to assign value to each function.

- $c_{m}=\bullet$
- $f_{m}=\{\bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet\}$
- $g_{m}=\{(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet$, $(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet$, $(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet,(\bullet, \bullet) \mapsto \bullet\}$
We also need to assign values to each predicate.
- $H_{m}=\{\bullet \bullet \bullet\} \quad M_{m}=\{(\bullet, \bullet),(\bullet, \bullet)\}$

Exercise 4.2

a. How many models are there for the signature with the above domain?
b. Suppose $P / 0 \in \mathbf{R}$, give a value to P_{m}.

Semantics: assignments

Recall, We also have variables. Who will assign to the variables?

Definition 4.5

An assignment is a map $\nu:$ Vars $\rightarrow D_{m}$

Example 4.10

In our running example the domain is \mathbb{N}. We may have the following assignment.

$$
\nu=\{x \mapsto 2, y \mapsto 3, \ldots .\}
$$

Semantics: term value

Definition 4.6

For a model m and assignment ν, we define $m^{\nu}: T_{\mathbf{S}} \rightarrow D_{m}$ as follows.

$$
\begin{array}{cc}
m^{\nu}(x) \triangleq \nu(x) & x \in \text { Vars } \\
m^{\nu}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \triangleq f_{m}\left(m^{\nu}\left(t_{1}\right), \ldots, m^{\nu}\left(t_{n}\right)\right) &
\end{array}
$$

Example 4.11

Consider $\mathbf{S}=(\{s / 1,+/ 2\},\{ \})$ and term $s(x)+y$
Consider model $m=\left(\mathbb{N} ;\right.$ succ,$\left.+^{\mathbb{N}}\right)$ and assignment $\nu=\{x \mapsto 3, y \mapsto 2\}$

$$
m^{\nu}(s(x)+y)=m^{\nu}(s(x))+{ }^{\mathbb{N}} m^{\nu}(y)=\operatorname{succ}\left(m^{\nu}(x)\right)+{ }^{\mathbb{N}} 2=\operatorname{succ}(3)+{ }^{\mathbb{N}} 2=6
$$

Semantics: satisfaction relation

Definition 4.7

We define the satisfaction relation \models among models, assignments, and formulas as follows

- $m, \nu \models T$
- $m, \nu \models P\left(t_{1}, \ldots, t_{n}\right) \quad$ if $\quad\left(m^{\nu}\left(t_{1}\right), \ldots, m^{\nu}\left(t_{n}\right)\right) \in P_{m}$
- $m, \nu \models t_{1}=t_{2} \quad$ if $\quad m^{\nu}\left(t_{1}\right)=m^{\nu}\left(t_{2}\right)$
- $m, \nu \models \neg F \quad$ if $m, \nu \not \models F$
- $m, \nu \models F_{1} \vee F_{2}$
if $m, \nu \models F_{1}$ or $m, \nu \models F_{2}$
skipping other propositional connectives
- $m, \nu \vDash \exists x .(F)$
- $m, \nu \models \forall x$. (F)
if there is $u \in D_{m}: m, \nu[x \mapsto u] \models F$
if for each $u \in D_{m}: m, \nu[x \mapsto u] \models F$

Example: satisfiability

Example 4.12

Consider $\mathbf{S}=(\{s / 1,+/ 2\},\{ \})$ and formula $\exists z . s(x)+y=s(z)$
Consider model $m=\left(\mathbb{N} ;\right.$ succ,$\left.+^{\mathbb{N}}\right)$ and assignment $\nu=\{x \mapsto 3, y \mapsto 2\}$
We have seen $m^{\nu}(s(x)+y)=6$.

$$
\begin{aligned}
& m^{\nu[z \mapsto 5]}(s(x)+y)=m^{\nu}(s(x)+y)=6 \\
& m^{\nu[z \mapsto 5]}(s(z))=6
\end{aligned}
$$

Therefore, $\quad m, \nu[z \mapsto 5] \vDash s(x)+y=s(z)$.
$m, \nu \vDash \exists z . s(x)+y=s(z)$

Satisfiable, true, valid, and unsatisfiable

We say

- F is satisfiable if there are m and ν such that $m, \nu \models F$
- Otherwise, F is called unsatisfiable (written $\not \vDash F$)
- F is true in $m(m \| F)$ if for all ν we have $m, \nu \models F$
- F is valid $(\models F)$ if for all ν and m we have $m, \nu \models F$

Exercise: model

Consider $\mathbf{S}=(\{c / 0, f / 1\},\{H / 1, M / 2\})$. Let us suppose model m has $D_{m}=\{\bullet, \bullet, \bullet\}$ and the values of the symbols in m are

- $c_{m}=\bullet$
- $f_{m}=\{\bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet\}$
- $H_{m}=\{\bullet, \bullet\}$
- $M_{m}=\{(\bullet, \bullet),(\bullet, \bullet)\}$

Exercise 4.3

Which of the following hold?

- $m,\{x \mapsto \bullet\} \vDash M(f(x), x)$
- $m,\{x \mapsto \bullet\} \models H(x)$
- $m,\{ \} \models \exists x . H(x)$
- $m,\{ \} \vDash \forall x . H(x)$
- $m,\{ \} \models \exists x . H(f(x))$
- $m,\{ \} \models H(c)$

Extended satisfiability (repeat from propositional logic)

We extend the usage of \models. Let Σ be a (possibly infinite) set of formulas.
Definition 4.8
$m, \nu \models \Sigma$ if $m, \nu \models F$ for each $F \in \Sigma$.
Definition 4.9
$\Sigma \models F$ if for each model m and assignment ν if $m, \nu \models \Sigma$ then $m, \nu \models F$.
$\Sigma \models F$ is read Σ implies F. If $\{G\} \models F$ then we may write $G \models F$.
Definition 4.10
Let $F \equiv G$ if $G \models F$ and $F \models G$.
Definition 4.11

Commentary: These definitions are identical to the
propositional case.

Formulas F and G are equisatisfiable if

$$
F \text { is sat iff } G \text { is sat. }
$$

Topic 4.3

Problems

FOL to PL

Exercise 4.4

Give the restrictions on FOL such that it becomes the propositional logic. Give an example of FOL model of a non-trivial propositional formula.

Valid formulas

Exercise 4.5

Prove/Disprove the following formulas are valid.

- $\forall x \cdot P(x) \Rightarrow P(c)$
- $\forall x \cdot(P(x) \Rightarrow P(c))$
- $\exists x .(P(x) \Rightarrow \forall x \cdot P(x))$
- $\exists y \forall x \cdot R(x, y) \Rightarrow \forall x \exists y \cdot R(x, y)$
- $\forall x \exists y \cdot R(x, y) \Rightarrow \exists y \forall x \cdot R(x, y)$

Properties of FOL

Exercise 4.6

Show the validity of the following formulas.

$$
\begin{aligned}
& \text { 1. } \neg \forall x . P(x) \Leftrightarrow \exists x . \neg P(x) \\
& \text { 2. } \neg \exists x . P(x) \Leftrightarrow \forall x . \neg P(x) \\
& \text { 3. }(\forall x .(P(x) \wedge Q(x))) \Leftrightarrow \forall x . P(x) \wedge \forall x . Q(x) \\
& \text { 4. }(\exists x .(P(x) \vee Q(x))) \Leftrightarrow \exists x . P(x) \vee \exists x . Q(x)
\end{aligned}
$$

Exercise 4.7

Show \forall does not distribute over \vee.
Show \exists does not distribute over \wedge.

Example: non-standard models

Consider $\mathbf{S}=(\{\mathbf{0} / 0, s / 1,+/ 2\},\{ \})$ and formula $\exists z . s(x)+y=s(z)$
Unexpected model: Let $m=\left(\{a, b\}^{*} ; \epsilon\right.$, append_a, concat $)$.

- The domain of m is the set of all strings over alphabet $\{a, b\}$.
- append_a: appends a in the input and
- concat: joins two strings.

Let $\nu=\{x \mapsto a b, y \mapsto b a\}$.
Since $m, \nu[z \mapsto a b a b] \models s(x)+y=s(z)$, we have $m, \nu \models \exists z . s(x)+y=s(z)$.
Exercise 4.8

- Show $m, \nu[y \mapsto b b] \not \vDash \exists z . s(x)+y=s(z)$
- Give an assignment ν s.t. $m, \nu \models x \neq 0 \Rightarrow \exists y . x=s(y)$. Show $m \not \vDash \forall x .(x \neq 0 \Rightarrow \exists y . x=s(y))$.

Find models

Exercise 4.9

For each of the following formula give a model that satisfies the formula. If there is no model that satisfies a formula, then report that the formula is unsatisfiable.

1. $\forall x \cdot \exists y R(x, y) \wedge \neg \exists x . \forall y R(x, y)$
2. $\neg \forall x . \exists y R(x, y) \wedge \exists x . \forall y R(x, y)$
3. $\neg \forall x \cdot \exists y R(x, y) \wedge \neg \exists x \cdot \forall y R(x, y)$
4. $\forall x \cdot \exists y R(x, y) \wedge \exists x \cdot \forall y R(x, y)$

Similar quantifiers

Exercise 4.10

Show using FOL fol semantics.

- $\exists x . \exists x . F \equiv \exists x . F$
- $\exists x . \exists y . F \equiv \exists y . \exists x . F$
- $\forall x . \forall x . F \equiv \forall x . F$
- $\forall x . \forall y . F \equiv \forall y . \forall x . F$

Exercise : compact notation for terms

Since we know arity of each symbol, we need not write "," "(", and ")" to write a term unambiguously.

Example 4.13

$f(g(a, b), h(x), c)$ can be written as fgabhxc.

Exercise 4.11

Consider $\mathbf{F}=\{f / 3, g / 2, h / 1, c / 0\}$ and $x, y \in$ Vars.
Insert parentheses at appropriate places in the following if they are valid term.

- $h c=$
- $g \times c=$
- $f h x h y h c=$
- $f_{x}=$

Exercise 4.12

Give an algorithm to insert the parentheses

Exercise: DeBruijn index of quantified variables

DeBruijn index is a method for representing formulas without naming the quantified variables.

Definition 4.12

Each DeBruijn index is a natural number that represents an occurrence of a variable in a formula, and denotes the number of quantifiers that are in scope between that occurrence and its corresponding quantifier.

Example 4.14

We can write $\forall x . H(x)$ as $\forall \cdot H(1) .1$ is indicating the occurrence of a quantified variable that is bounded by the closest quantifier. More examples.

- $\exists y \forall x \cdot M(x, y)=\exists \forall \cdot M(1,2)$
- $\exists y \forall x \cdot M(y, x)=\exists \forall \cdot M(2,1)$
- $\forall x \cdot(H(x) \Rightarrow \exists y \cdot M(x, y))=\forall \cdot(H(1) \Rightarrow \exists \cdot M(2,1))$

Exercise 4.13

Give an algorithm that translates FOL formulas into DeBurjin indexed formulas.

Drinker paradox

Exercise 4.14

Prove
There is someone x such that if x drinks, then everyone drinks.
Let $D(x) \triangleq x$ drinks. Formally

$$
\exists x .(D(x) \Rightarrow \forall x . D(x))
$$

Exercise: satisfaction relation

Exercise 4.15

Consider $\mathbf{S}=(\{\cup / 2\},\{\in / 2\})$ and formula $F=\exists x . \forall y . \neg y \in x$ (what doesi itsy to oull)
Consider \mathbf{S}-model $m=\left(\mathbb{N} ; \cup_{m}=\max , \in_{m}=\{(i, j) \mid i<j\}\right)$ and $\nu=\{x \mapsto 2, y \mapsto 3\}$.

$$
m, \nu \models F ?
$$

Exercise: implication

Exercise 4.16

Let us suppose the following formula is valid and Σ does not refer to c.

$$
\Sigma \Rightarrow H(f(c)) \wedge \neg H(f(a))
$$

Prove that Σ is unsatisfiable.

Topic 4.4

Extra slides: some properties of models

Homomorphisms of models

Definition 4.13

Consider $\mathbf{S}=(\mathbf{F}, \mathbf{R})$. Let m and m^{\prime} be S-models.
A function $h: D_{m} \rightarrow D_{m^{\prime}}$ is a homomorphism of m into m^{\prime} if the following holds.

- for each $f / n \in \mathbf{F}$, for each $\left(d_{1}, . ., d_{n}\right) \in D_{m}^{n}$

$$
h\left(f_{m}\left(d_{1}, . ., d_{n}\right)\right)=f_{m^{\prime}}\left(h\left(d_{1}\right), . ., h\left(d_{n}\right)\right)
$$

- for each $P / n \in \mathbf{R}$, for each $\left(d_{1}, . ., d_{n}\right) \in D_{m}^{n}$

$$
\left(d_{1}, . ., d_{n}\right) \in P_{m} \quad \text { iff } \quad\left(h\left(d_{1}\right), . ., h\left(d_{n}\right)\right) \in P_{m^{\prime}}
$$

Definition 4.14

A homomorphism h of m into m^{\prime} is called isomorphism if h is one-to-one. m and m^{\prime} are called isomorphic if an h exists that is also onto.

Example : homomorphism

Example 4.15
Consider $\mathbf{S}=(\{+/ 2\},\{ \})$.
Consider $m=\left(\mathbb{N},+{ }^{\mathbb{N}}\right)$ and $m=\left(\mathcal{B}, \oplus^{\mathcal{B}}\right)$,
$h(n)=n \bmod 2$ is a homomorphism of m into m^{\prime}.

Homomorphism theorem for terms and quantifier-free formulas without $=$

Theorem 4.1
Let h be a homomorphism of m into m^{\prime}. Let ν be an assignment.

1. For each term $t, h\left(m^{\nu}(t)\right)=m^{(\nu o h)}(t)$
2. If formula F is quantifier-free and has no symbol "="

$$
m^{\nu} \models F \quad \text { iff } \quad m^{\prime(\nu \circ h)} \models F
$$

Proof.
Simple structural induction.

Exercise 4.17

For a quantifier-free formula F that may have symbol " $=$ ", show

$$
\text { if } \quad m^{\nu} \models F \quad \text { then } \quad m^{\prime(\nu \circ h)} \models F
$$

Homomorphism theorem with $=$

Theorem 4.2

Let h be a homomorphism of m into m^{\prime}. Let ν be an assignment. If h is isomorphism then the reverse implication also holds for formulas with " $=$ ".

Proof.
Let us suppose $m^{\prime(\nu \circ h)} \models s=t$.
Therefore, $m^{\prime(\nu \circ h)}(s)=m^{\prime(\nu \circ h)}(t)$.
Therefore, $h\left(m^{\nu}(s)\right)=h\left(m^{\nu}(t)\right)$.
Due to the one-to-one condition of $h, m^{\nu}(s)=m^{\nu}(t)$.
Therefore, $m^{\nu} \models s=t$.

Exercise 4.18

For a formula F (with quantifiers) without symbol " $=$ ", show

$$
\text { if } \quad m^{(\nu \circ h)} \models F \quad \text { then } \quad m^{\nu} \models F \text {. }
$$

Homomorphism theorem with quantifiers

Theorem 4.3

Let h be a isomorphism of m into m^{\prime} and ν be an assignment.
If h is also onto, the reverse direction also holds for the quantified formulas.
Proof.
Let us assume, $m^{\nu} \models \forall x . F$.
Choose $d^{\prime} \in D_{m^{\prime}}$.
Since h is onto, there is a d such that $d=h\left(d^{\prime}\right)$.
Therefore, $m^{\nu[x \mapsto d]} \models F$.
Therefore, $m^{\prime \nu\left[x \mapsto d^{\prime}\right]} \models F$.
Therefore, $m^{\prime(\nu \circ h)} \vDash \forall x$. F.
Theorem 4.4
If m and m^{\prime} are isomorphic then for all sentences $F, m \models F \quad$ iff $\quad m^{\prime} \models F$.

Expressive/distinguishing power of FOL

If two models are isomorphic, then no two formulas can separate them.

This is not a limitation of FOL.

It is not the case that if we add more features in the logic, we can distinguish the models.

Therefore, one may view isomorphic models as same models.

End of Lecture 4

