CS 433 Automated Reasoning 2024

Lecture 15: Linear rational arithmetic (basics)

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-03-15

Reasoning over linear arithmetic

Nonnegative linear combination of inequalities derives new inequalities.

Example 15.1

Consider the following proof step

$$
\frac{2 x-y \leq 1 \quad 4 y-2 x \leq 6}{x+y \leq 5}
$$

Is the above proof step complete?

Basic concepts

One needs to know the following

- Linearly independent
- Rank of a set of vectors
- Vector vs. Row vector
- Hyperplane
- Affine hull

Cone

Definition 15.1

A set C of vectors is a cone if $x, y \in C$ then $\lambda_{1} x+\lambda_{2} y \in C$ for each $\lambda_{1}, \lambda_{2} \geq 0$.

Definition 15.2

A cone C is finitely generated by vectors x_{1}, \ldots, x_{m} is the set

$$
\operatorname{cone}\left\{x_{1}, \ldots, x_{m}\right\}:=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m} \mid \lambda_{1}, \ldots, \lambda_{m} \geq 0\right\}
$$

Example 15.2

$C=\left\{x \left\lvert\,\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right] \times \leq 0\right.\right\}=\left\{\lambda_{1} x_{1}+\lambda_{2} x_{2} \mid \lambda_{1}, \lambda_{2} \geq 0\right\}$

Exercise 15.1

Give an example of cone that is not finitely generated.

Topic 15.1

Fundamental theorem of linear inequality

Fundamental theorem of linear inequality

Theorem 15.1

Let a_{1}, \ldots, a_{m} and b be n-dimensional vectors. Then, one of the following is true.

1. $b:=\lambda_{1} a_{i_{1}}+\cdots+\lambda_{k} a_{i_{k}}$ for $\lambda_{j} \geq 0$ and $a_{i_{1}}, \ldots, a_{i_{k}}$ are linearly independent.
2. There is a hyperplane $\{x \mid c x=0\}$ containing $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m} such that

$$
c a_{1} \geq 0, \ldots, c a_{m} \geq 0 \text { and } c b<0
$$

where $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$.

Observation:

- c is a row vector
- Wlog, we assume $t=n$.(Why?)
- Both possibilities cannot be true at the same time.(Why?)
- We are left to prove that both possibilities cannot be false at the same time.

Geometrically, theorem case 1

In the first case, b is in the cone of a_{1}, \ldots, a_{m}.

Geometrically theorem case 2

In the second case, b is outside of the cone of a_{1}, \ldots, a_{m}.
Furthermore, a_{1}, \ldots, a_{m} are in one side of $\{x \mid c x=0\}$ and b is on the other.

Exercise 15.2

Give a c?

Proof: fundamental theorem of linear inequality

Proof.

Consider the following iterative algorithm to decide case 1 or 2 .
Initially choose n independent vectors $D:=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ from a_{1}, \ldots, a_{m}.

1. Let $b=\lambda_{i_{1}} a_{i_{1}}+\cdots+\lambda_{i_{n}} a_{i_{n}}$.
2. If $\lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \geq 0$, case 1 and exit.
3. Otherwise, choose smallest i_{h} such that $\lambda_{i_{h}}<0$. Clearly, $c b<0$.(Why?)
4. Choose c such that $c a=0$ for each $a \in D \backslash\left\{a_{i_{h}}\right\}$ and $c a_{i_{h}}=1$.
5. If $c a_{1}, \ldots, c a_{m} \geq 0$, case 2 and exit. (Why?)
6. Otherwise, choose smallest s such that $c a_{s}<0$.
7. $D:=D \backslash\left\{a_{i_{h}}\right\} \cup\left\{a_{s}\right\}$. goto 1 .

Exercise 15.3

a. Why does λ s exist in step 1? b. Why does c exist in step 4 ?
c. Why does D remain linearly independent over time?

Example: iterations for D

Example 15.3

Let us have a set of vectors $\left\{a_{1}, a_{2}, a_{3}\right\}$ in 2-dimensional vector space and also vector b. We are looking for a subset D that contains b in its cone.

1. Initial guess, $D=\left\{a_{1}, a_{2}\right\}$.
2. If we write $b=\lambda_{1} a_{1}+\lambda_{2} a_{2}$, then $\lambda_{1}<0$.
3. Clearly b is not in the cone of D.
4. We get c such that $c a_{2}=0$ and $c a_{1}>0$.
5. Since $c b=c\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)=\lambda_{1} c a_{1}, c b<0$.
6. We find a_{3} such that $c a_{3}<0$ (Intuition: a_{3} is likely to be closer to b)
7. Now $D:=D \backslash\left\{a_{1}\right\} \cup\left\{a_{3}\right\}=\left\{a_{2}, a_{3}\right\}$
8. b is in the cone of D. Terminate.

Proof: fundamental theorem of linear inequality II

Proof.

We are yet to prove termination of the algorithm. Let D^{k} be the set D at iteration k.
Claim: D^{k} will not repeat in any future iterations. (Therefore, termination.) Contrapositive: For some $\ell>k, D^{\ell}=D^{k}$.

Let r be the highest index such that a_{r} left D at p th iteration and came back at q th iteration for $k \leq p<q \leq \ell$.

Therefore, $D^{p} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}=D^{q} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}$

Blue dots are indexes for D^{p}. Red dots are indexes for D^{q}.

Proof: fundamental theorem of linear inequality III

Proof.

$D^{p}:=\left\{a_{i}^{p}, \ldots, a_{i_{n}^{p}}\right\}$
Let $b=\lambda_{i_{1}^{p}}^{1} a_{i}^{p}+\cdots+\lambda_{i_{n}^{p}} a_{i_{n}^{p}}$.
Since r left D^{p},

$$
\text { if } i_{j}^{p}<r, \lambda_{i j}^{p} \geq 0 \text { and }
$$

$$
\text { if } i_{j}^{p}=r, \lambda_{r}<0
$$

At q th iteration, we have $c^{q} b<0$.

Since r entered in D^{q}, for each $j<r, c^{q} a_{j} \geq 0$, for $j=r, c^{q} a_{r}<0$, and for each $i_{j}^{q}>r, c^{q} a_{i j}^{q}=0$.

Proof: fundamental theorem of linear inequality IV

Proof.

Consider

$$
0>c^{q} b=c^{q}\left(\lambda_{i_{1}^{p}} a_{i 1}^{p}+\cdots+\lambda_{i_{n}^{p}} a_{i_{n}^{p}}\right)
$$

Let us show for each $j, \lambda_{i_{j}^{p}}\left(c^{q} a_{i j}^{p}\right)$ is nonnegative.
Three cases

- $i_{j}^{p}<r: \lambda_{i_{j}^{p}} \geq 0$ and $c^{q} a_{i_{j}} \geq 0$
- $i_{j}^{p}=r: \lambda_{r}<0$ and $c^{q} a_{r}<0$
- $i_{j}^{p}>r: c^{q} a_{i j}^{p}=0($ why? $)$

Therefore, $c^{q} b \geq 0$. Contradiction.

Topic 15.2

Satisfiability conditions

Satisfiability check

Using the previous theorem, we will prove two theorems for the conditions of satisfiability.

The theorem allows us to produce certificate of unsatisfiability.

Nonnegative satisfiability check for equalities

Theorem 15.2

Let A be a matrix and b be a vector. Then, there is a vector $x \geq 0$ such that $A x=b$ iff

$$
\text { for all } y, \quad y A \geq 0 \Rightarrow y b \geq 0 \text {. }
$$

Proof.
(\Rightarrow)
Let $x_{0} \geq 0$ be such that $A x_{0}=b$. Therefore, for all row vector $y, y A x_{0}=y b$.
Since $x_{0} \geq 0$, if $y A \geq 0$ then $y b \geq 0$.
(\Leftarrow)
Let us suppose there is no such x.
Let a_{1}, \ldots, a_{n} be columns of A. Therefore, $b \notin \operatorname{cone}\left\{a_{1}, \ldots, a_{n}\right\}$.(Why?)
Due to Theorem 15.1, there is a y such that $y A \geq 0$ and $y b<0$.

Unsatisfiability certificate

If we find y such that $y A \geq 0 \wedge y b<0$, then $x \geq 0 \wedge A x=b$ is unsatisfiable.
We may use y as certificate of unsatisfiability.

Example : satisfiability condition and unsatisfiability certificate

Example 15.4

Consider $x_{1}+x_{2}=3$.
Therefore, $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=[3]$
Let us apply theorem 15.2, we obtain

$$
y\left[\begin{array}{ll}
1 & 1
\end{array}\right] \geq 0 \Rightarrow y[3] \geq 0
$$

After simplification, $y \geq 0 \Rightarrow 3 y \geq 0$.

Example 15.5

Consider $x_{1}+x_{2}=-3$.
Therefore, $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=[-3]$
Let us apply theorem 15.2, we obtain

$$
y\left[\begin{array}{ll}
1 & 1
\end{array}\right] \geq 0 \Rightarrow y[-3] \geq 0
$$

After simplification, $y \geq 0 \Rightarrow-3 y \geq 0$.
Since the above implication is valid, the equality Since the above implication does not hold for is satisfiable by some $x_{1}, x_{2} \geq 0$.

$$
x_{1}, x_{2} \geq 0
$$

Exercise 15.4

Show if a_{1} and a_{2} are non-zero and of opposite sign, then $a_{1} x_{1}+a_{2} x_{2}=b$ have nonnegative solution for any b.

Satisfiability check for inequalities

Theorem 15.3

Let A be a matrix and b be a vector. Then, there is a vector x such that $A x \leq b$ iff

$$
\text { for all } y, \quad y \geq 0 \wedge y A=0 \Rightarrow y b \geq 0 .
$$

Proof.

Consider matrix $A^{\prime}=\left[\begin{array}{lll}I & A & -A\end{array}\right] . A^{\prime} x^{\prime}=b$ with $x^{\prime} \geq 0$ has a solution iff $A x \leq b$ has.(Why?) Due to theorem 15.2 , the left hand side is equivalent to

$$
\text { for all } y, \quad y[\mathrm{I} A-A] \geq 0 \Rightarrow y b \geq 0 \text {. }
$$

Therefore, for all $y, \quad y \geq 0 \wedge y A \geq 0 \wedge-y A \geq 0 \Rightarrow y b \geq 0$.
Therefore, for all $y, \quad y \geq 0 \wedge y A=0 \Rightarrow y b \geq 0$.

Exercise 15.5

Give the rolation hotumpn enlutinne of $\Lambda^{\prime} x^{\prime} \equiv h \wedge x^{\prime}>\cap$ and $\Delta x<h$

Example: unsatisfiability certificate

Example 15.6

Consider unsatisfiable constraints $x_{1} \leq 0 \wedge x_{2} \leq 0 \wedge x_{1}+x_{2} \geq 3$
In the matrix form

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right] \quad b=\left[\begin{array}{r}
0 \\
0 \\
-3
\end{array}\right]
$$

For $y=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \geq 0$, we have $y A=0$ and $y b=-3<0$.
y is the certificate of unsatisfiability.

Farkas lemma (affine version)

Wrong proof

Theorem 15.4
Let the system $A x \leq b$ is nonempty and let c be a row vector and δ be a number. Let us suppose for each x

$$
A x \leq b \Rightarrow c x \leq \delta
$$

Then there is $\delta^{\prime} \leq \delta$ such that $c x \leq \delta^{\prime}$ is a nonnegative linear combination of the inequalities in $A x \leq b$.

Proof.
$A x \leq b \Rightarrow c x \leq \delta$ iff $A x \leq b \wedge-c x<-\delta$ is unsatisfiable.

The unsatisfiability certificate of above: there is $y, \lambda \geq 0$ such that $y A-\lambda c=0$ and $y b-\lambda \delta<0$.

After simplification,

Exercise 15.6

Why the above proof does not work?
$\underbrace{(y / \lambda)} A=c$
nonnegative linear combination

Longer route

Since we have strict inequality in our proof. We do not have a valid argument.
We need to go via a longer route that bypasses appearance of strict inequality.

Topic 15.3

Linear programming and duality

Linear programming problem

Definition 15.3

Linear programming (LP) is the problem of maximizing or minimizing linear functions over a polyhedron. For example,

$$
\max \{c x \mid A x \leq b\}
$$

Duality condition

Definition 15.4

The following is called LP-duality condition

> We will prove the following always holds.

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\} .
$$

Example 15.7

Consider the green polyhedron with a corner.
max achieves the optima at the corner, if c is in the blue cone.(Why?)
c is nonnegative combination of rows of A, i.e., y.

Duality theorem

Theorem 15.5

Let A be a matrix, and let b and c be vectors. Then,

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

provided both sets are nonempty.
Proof.
Claim: max will be less than or equal to \min
Let us suppose $A x \leq b, y \geq 0$, and $y A=c$.
After multiply x in $y A=c$, we obtain $y A x=c x$.
Since $y \geq 0$ and $A x \leq b, y b \geq c x$.
We need to show that the following is nonempty.

$$
A x \leq b \wedge y \geq 0 \wedge y A=c \wedge \underbrace{c x \geq y b}_{\text {makes min and max equal }}
$$

Duality theorem (contd.)

Proof(contd.) Writing $A x \leq b \wedge y \geq 0 \wedge y A=c \wedge c x \geq y b$ as follows.

$$
\left[\begin{array}{rr}
A & 0 \\
0 & -\mathrm{I} \\
0 & A^{T} \\
0 & -A^{T} \\
-c & b^{T}
\end{array}\right]\left[\begin{array}{r}
x \\
y^{T}
\end{array}\right] \leq\left[\begin{array}{r}
b \\
0 \\
c^{T} \\
-c^{T} \\
0
\end{array}\right]
$$

To show the above is nonempty, we apply theorem 15.3 and show that for each $u, t, v, w, \lambda \geq 0$

$$
\left[\begin{array}{lllll}
u & t & v & w & \lambda
\end{array}\right]\left[\begin{array}{rr}
A & 0 \\
0 & -\mathrm{I} \\
0 & A^{T} \\
0 & -A^{T} \\
-c & b^{T}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{lllll}
u & t & v & w & \lambda
\end{array}\right]\left[\begin{array}{r}
b \\
0 \\
c^{T} \\
-c^{T} \\
0
\end{array}\right] \geq 0
$$

Duality theorem(contd.)

Proof(contd.)

After multiplying matrices, we obtain the following implication

$$
u A-\lambda c=0 \wedge \lambda b^{T}+(v-w) A^{T}-t=0 \Rightarrow u b+(v-w) c^{T} \geq 0 .
$$

for each $u, t, v, w, \lambda \geq 0$.
After simplifications, we need to show that for each $u, \lambda \geq 0$ and v^{\prime}

$$
u A=\lambda c \wedge \lambda b^{T}+v^{\prime} A^{T} \geq 0 \Rightarrow u b+v^{\prime} c^{T} \geq 0
$$

where $v^{\prime}=v-w$.

$$
\begin{aligned}
& \text { Reduced the number of variables and } \\
& \text { constraints to analyze }
\end{aligned}
$$

Exercise 15.7

a. Why are there no non-negativity constraints on v^{\prime} ?
b. How is t removed?

Duality theorem (contd.)

Proof(contd.)

We need to show that for each $u, \lambda \geq 0$ and v^{\prime}

$$
u A=\lambda c \wedge \lambda b^{T}+v^{\prime} A^{T} \geq 0 \Rightarrow u b+v^{\prime} c^{T} \geq 0
$$

We assume left hand side and case split on number λ.

case $\lambda>0$:

Consider $\lambda b^{T}+v^{\prime} A^{T} \geq 0$
$\rightsquigarrow b^{T}+v^{\prime} A^{T} / \lambda \geq 0$
// divided by λ
$\rightsquigarrow b+A v^{\prime T} / \lambda \geq 0$
$\rightsquigarrow u b+u A v^{\prime T} / \lambda \geq 0$ (Why?)
$\rightsquigarrow u b+\lambda c v^{\prime T} / \lambda \geq 0$
$\rightsquigarrow u b+c v^{\prime T} \geq 0$
$\rightsquigarrow u b+v^{\prime} c^{T} \geq 0$ (why?)
// take transpose
// multiply by u $/ /$ use $u A=\lambda c$

Duality theorem (contd.)

Proof(contd.)

case $\lambda=0$:
Left hand side reduces to $u A=0 \wedge v^{\prime} A^{T} \geq 0$.

Claim: $u b \geq 0$
By assumption, $A x \leq b$ is sat. Due to theorem 15.3, $u A=0 \Rightarrow u b \geq 0$.
Claim: $v^{\prime} c^{\top} \geq 0$
By assumption $y \geq 0 \wedge y A=c$ is sat. Therefore, $y^{T} \geq 0 \wedge A^{T} y^{T}=c^{T}$ is sat.
Due to theorem $15.2, v^{\prime} A^{T} \geq 0 \Rightarrow v^{\prime} c^{T} \geq 0$.
Therefore, $u b+v^{\prime} c^{T} \geq 0$.

Emptiness of dual space

Definition 15.5

For an $L P$ problem $\max \{c x \mid A x \leq b\}$, the set $\{y \mid y \geq 0 \wedge y A=c\}$ is called dual space.
Theorem 15.6
If the dual space of $L P$ problem $\max \{c x \mid A x \leq b\}$ is empty. Then, the maximum value is unbounded.

Proof.
Let us suppose the dual space $y \geq 0 \wedge y A=c$ is empty.
Due to theorem 15.2 , there is a z such that

$$
A z \geq 0 \wedge c z<0
$$

We can use $-z$ to arbitrarily increase the value of $c x$. Therefore, the max value is unbounded.

Topic 15.4

Implication completeness

Farkas lemma (Affine version)

Theorem 15.7

Let the system $A x \leq b$ is nonempty and let c be a row vector and δ be a number. Let us suppose for each x

$$
A x \leq b \Rightarrow c x \leq \delta
$$

Then there exists $\delta^{\prime} \leq \delta$ such that $c x \leq \delta^{\prime}$ is a nonnegative linear combination of the inequalities in $A x \leq b$.
Proof.
Since the max is bounded, the dual space is nonempty and let the max be δ^{\prime}.

Since both the spaces are nonempty and due to the duality theorem,

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

Therefore, there exists y_{0}, such that $y_{0} b=\delta^{\prime} \wedge y_{0} \geq 0 \wedge y_{0} A=c$.(Why?)

Therefore, $c x \leq \delta^{\prime}$ is nonnegative linear combination of $A x \leq c$.(Why?)

Topic 15.5

Problems

Replace more vectors in each iteration

Exercise 15.8

We replace one vector at a time in the fundamental theorem of linear inequalities. Can we replace two vectors in some iterations? Give conditions when this is possible.

Exercise: Farkas lemmas variations

Exercise 15.9

Prove that:
Let A be a matrix and b be a vector. Then, there is a vector $x \geq 0$ such that $A x \leq b$ iff

$$
\text { for all } y, \quad y \geq 0 \wedge y A \geq 0 \Rightarrow y b \geq 0
$$

Exercise 15.10

Prove that:
Let A be a matrix and b be a vector. Then, there is a vector x such that $A x=b$ iff

$$
\text { for all } y, \quad y A=0 \Rightarrow y b=0
$$

Strict inequalities

Exercise 15.11

Modify theorems 15.1, 15.2, and 15.3 to support strict inequalities in theorem 15.3.

Topic 15.6

Extra slides: Cone, Polyhedra, Polytope, Polyhedron

Polyhedra $==$ finitely generated cone

Definition 15.6

A cone C is a polyhedral if $C=\{x \mid A x \leq 0\}$ for some matrix A.

Theorem 15.8
A convex cone is polyhedral iff it is finitely generated.
Proof.
Intuitively, obvious.
We are skipping the proof here.

Polyhedron, affine half space, polytope

Definition 15.7

A set of vectors P is called polyhedron if

$$
P=\{x \mid A x \leq b\}
$$

for some matrix A and vector b.
Definition 15.8
A set of vectors H is called affine half-space if

$$
H=\{x \mid w x \leq \delta\}
$$

for some nonzero row vector w and number δ.

Polytope

Definition 15.9

A set of vectors Q is called polytope if

$$
Q=\operatorname{hull}\left(\left\{x_{1}, . ., x_{m}\right\}\right)=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m} \mid \lambda_{1}+\cdots+\lambda_{m}=1 \wedge \lambda_{1}, \ldots, \lambda_{m} \geq 0\right\}
$$

for some nonzero vectors x_{1}, \ldots, x_{m}.
Example 15.8
The following is hull $(\{(2,3),(0,0),(3,1)\})$

polyhedron $=$ polytope + polyhedral

Theorem 15.9 (Decomposition theorem)
Let $P=\{x \mid A x \leq b\}$ be a polyhedron iff $P=Q+C$ for some polytope Q and polyhedral C.
Proof.
Let us consider the forward direction.

Let us construct the following cone in one higher dimension.

$$
P^{\prime}=\left\{\left.\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \right\rvert\, A x-\lambda b \leq 0 \wedge \lambda \geq 0\right\}
$$

Clearly, the following holds

$$
x \in P \quad \text { iff } \quad\left[\begin{array}{c}
x \\
1
\end{array}\right] \in P^{\prime}
$$

Exercise 15.12

Prove the reverse direction

polyhedron $=$ polytope + polyhedral (contd.)

Proof(contd.)

Let the following $q+c$ vectors generate P^{\prime}.(Why exists?)

$$
\underbrace{\left[\begin{array}{c}
x_{1} \\
1
\end{array}\right] \cdots\left[\begin{array}{c}
x_{q} \\
1
\end{array}\right]}_{q}, \underbrace{\left[\begin{array}{c}
y_{1} \\
0
\end{array}\right] \cdots\left[\begin{array}{c}
y_{c} \\
0
\end{array}\right]}_{c}
$$

Let $Q=\operatorname{hull}\left(\left\{x_{1}, \ldots x_{q}\right\}\right)$ and $C=\operatorname{cone}\left(\left\{y_{1}, \ldots, y_{c}\right\}\right)$
Claim: $P=Q+C$
Let $x \in P \Leftrightarrow$ By definition of P^{\prime}, for some $\mu_{1}, . . \mu_{q}, \lambda_{1}, \ldots \lambda_{c} \geq 0$ the following holds.

$$
\left[\begin{array}{c}
x \\
1
\end{array}\right]=\mu_{1}\left[\begin{array}{c}
x_{1} \\
1
\end{array}\right]+\cdots+\mu_{q}\left[\begin{array}{c}
x_{q} \\
1
\end{array}\right]+\lambda_{1}\left[\begin{array}{c}
y_{1} \\
0
\end{array}\right]+\cdots+\lambda_{c}\left[\begin{array}{c}
y_{c} \\
0
\end{array}\right] .
$$

Example: $P=Q+C$

Example 15.9

Consider the following polyhedron P.

1. Green + red vectors are generators of P^{\prime}
2. Red vectors have no λ component, they form the cone C
3. Green vectors have $\lambda=1$.
4. Projecting green vectors on x_{1} and x_{2} plane we get purple vectors.
5. Q is the hull of the purple vectors

End of Lecture 15

