CS 433 Automated Reasoning 2024

Lecture 19: Difference and Octagonal logic

Instructor: Ashutosh Gupta

IITB India
Compile date: 2024-03-27

Topic 19.1

Difference logic

Logic vs. theory

- theory $=$ FOL + axioms
- logic $=$ theory + syntactic restrictions

Example 19.1
LRA is a theory
$Q F_{-} L R A$ is a logic that has only quantifier free $L R A$ formulas

Difference Logic

Difference Logic over reals(QF_RDL): Boolean combinations of atoms of the form $x-y \leq b$, where x and y are real variables and b is a real constant.

Difference Logic over integers(QF_IDL): Boolean combinations of atoms of the form $x-y \leq b$, where x and y are integer variables and b is an integer constant.

Widely used in analysis of timed systems for comparing clocks.

Difference Graph

We may view $x-y \leq b$ as a weighted directed edge between nodes x and y with weight b in a directed graph, which is called difference graph.

Theorem 19.1
A conjunction of difference inequalities is unsatisfiable iff the corresponding difference graph has negative cycles.

Example 19.2

$$
x-y \leq 1 \wedge y-z \leq 3 \wedge z-x \leq-7
$$

Difference bound matrix

Another view of difference graph.
Definition 19.1
Let F be conjunction of difference inequalities over rational variables $\left\{x_{1}, \ldots, x_{n}\right\}$. The difference bound matrix(DBM) A is defined as follows.

$$
A_{i j}= \begin{cases}0 & i=j \\ b & x_{i}-x_{j} \leq b \in F \\ \infty & \text { otherwise }\end{cases}
$$

Let $F[A] \triangleq \bigwedge_{i, j \in 1 . . n} x_{i}-x_{j} \leq A_{i j}$
Let $A_{i_{0} \ldots i_{m}} \triangleq \sum_{k=1}^{m} A_{i_{k-1} i_{k}}$.

Example: DBM

Example 19.3

Consider: $x_{2}-x_{1} \leq 4 \wedge x_{1}-x_{2} \leq-1 \wedge x_{3}-x_{1} \leq 3 \wedge x_{1}-x_{3} \leq-1 \wedge x_{2}-x_{3} \leq 1$
Constraints has three variables x_{1}, x_{2}, and x_{3}.
The corresponding DBM is

$$
\left[\begin{array}{rrr}
0 & -1 & -1 \\
4 & 0 & -- \\
3 & --- & 0
\end{array}\right]
$$

Exercise 19.1
Fill the blanks

Shortest path closure and satisfiability

Definition 19.2

The shortest path closure A^{\bullet} of A is defined as follows.

$$
\left(A^{\bullet}\right)_{i j}=\min _{i=i_{0}, i_{1}, \ldots, i_{m}=j \text { and } m \leq n} A_{i_{0} \ldots, i_{m}}
$$

Theorem 19.2
F is unsatisfiable iff $\exists i \in 1$..n. $A_{i j}^{*}<0$
Proof.
(\Leftrightarrow) If RHS holds, trivially unsat.(Why?)
(\Rightarrow) if LHS holds,
due to Farkas lemma, $0 \leq-k$ is a positive integral linear combination of difference inequalities for some $k>0$.

Shortest path closure: there is a negative loop

Proof(contd.)

Claim: there is $A_{i_{0}, \ldots ., i_{m}}<0$ and $i_{0}=i_{m}$.
Let $G=\left(\left\{x_{1}, \ldots, x_{n}\right\}, E\right)$ be a weighted directed graph such that

- $E=\{\underbrace{\left(x_{i}, b, x_{j}\right), \ldots,\left(x_{i}, b, x_{j}\right)}_{\lambda \text { times }} \mid x_{i}-x_{j} \leq b$ has λ coefficient in the proof $\}$

Since each x_{i} cancels out in the proof, x_{i} has equal in and out degree in G.
Therefore, each SCC of G has a Eulerian cycle (full traversal without repeating an edge). (Why?)

The sum along the cycle must be negative.(Why?)

Exercise 19.2

Prove that if a directed graph is a strongly connected component(scc), and each node has equal in and out degree, there is a Eulerian cycle in the graph.

Shortest path closure(contd.)

Proof.

Claim: Shortest loop with negative sum has no repeated node
For $0<p<q<m$, lets suppose $i_{0}=i_{m}$ and $i_{p}=i_{q}$ in $A_{i_{0}, \ldots \ldots, i_{m}}$.

$$
x_{i_{0}} \xlongequal[K]{A_{i_{0} . . i_{p}}} x_{i_{p} . . i_{m}} \longmapsto A_{i_{p}, \ldots, i_{q}}
$$

Since $A_{i_{0} . . i_{m}}=\underbrace{A_{i_{p} . . i_{q}}}_{\text {loop }}+\underbrace{\left(A_{i_{q} . . i_{m}}+A_{\left.i_{m} . . i_{p}\right)}\right.}_{\text {loop }}$, one of the two sub-loops is negative.
Therefore, shorter loops exist with negative sum. Therefore, there is a negative simple loop.

Exercise 19.3

If F is sat, $A_{i j}^{\bullet} \leq A_{i k j}^{\bullet}$.

Floyd-Warshall Algorithm for shortest closure

We can compute A^{\bullet} using the following iterations generating A^{0}, \ldots, A^{n}.

$$
\begin{aligned}
& A^{0}=A \\
& A_{i j}^{k}=\min \left(A_{i j}^{k-1}, A_{i k j}^{k-1}\right)
\end{aligned}
$$

Theorem 19.3
$A^{\bullet}=A^{n}$

Exercise 19.4

a. Prove Theorem 19.3. Hint: Inductively show each loop-free path is considered
b. Extend the above algorithm to support strict inequalities
c. Does the above algorithm also work for \mathbb{Z} ?

Example: DBM

Example 19.4

Consider DBM:

$$
A^{0}=\left[\begin{array}{ccc}
0 & -1 & -1 \\
4 & 0 & 1 \\
3 & \infty & 0
\end{array}\right]
$$

First iteration: $\quad A^{1}=\min \left(A^{0},\left[\begin{array}{lll}A_{111}^{0} & A_{112}^{0} & A_{113}^{0} \\ A_{211}^{0} & A_{212}^{0} & A_{213}^{0} \\ A_{311}^{0} & A_{312}^{0} & A_{313}^{0}\end{array}\right]\right)=\min \left(A^{0},\left[\begin{array}{ccc}0 & -1 & -1 \\ 4 & 3 & 3 \\ 3 & 2 & 2\end{array}\right]\right)=\left[\begin{array}{ccc}0 & -1 & -1 \\ 4 & 0 & 1 \\ 3 & 2 & 0\end{array}\right]$
Second iteration: $A^{2}=\min \left(A^{1},\left[\begin{array}{lll}A_{121}^{1} & A_{122}^{1} & A_{123}^{1} \\ A_{221}^{1} & A_{222}^{1} & A_{223}^{1} \\ A_{321}^{1} & A_{322}^{1} & A_{323}^{1}\end{array}\right]\right)=\min \left(A^{1},\left[\begin{array}{ccc}3 & -1 & 0 \\ 4 & 0 & 1 \\ 6 & 2 & 2\end{array}\right]\right)=\left[\begin{array}{ccc}0 & -1 & -1 \\ 4 & 0 & 1 \\ 3 & 2 & 0\end{array}\right]$
Third iteration: $\quad A^{3}=\min \left(A^{2},\left[\begin{array}{lll}A_{131}^{1} & A_{132}^{1} & A_{133}^{1} \\ A_{231}^{1} & A_{232}^{1} & A_{233}^{1} \\ A_{331}^{1} & A_{332}^{1} & A_{333}^{1}\end{array}\right]\right)=\min \left(A^{2},\left[\begin{array}{ccc}2 & 1 & -1 \\ 4 & 3 & 1 \\ 3 & 2 & 0\end{array}\right]\right)=\left[\begin{array}{ccc}0 & -1 & -1 \\ 4 & 0 & 1 \\ 3 & 2 & 0\end{array}\right]$

Incremental difference logic for SMT solvers

DBMs are not good for SMT solvers, where we need pop and unsat core.
SMT solvers implements difference logic constraints using difference graph.
Maintains a current assignment.
$-\operatorname{push}\left(x_{1}-x_{2} \leq b\right)$:

1. Adds corresponding edge from the graph
2. If current assignment is feasible with new atom, exit
3. If not, adjust assignments until it saturates $\mathbf{z 3}$:sr//smt/diff_logic.h:make_feasible

- $\operatorname{Pop}\left(x_{1}-x_{2} \leq b\right)$:
- Remove the corresponding edge without worry
- Unsat core
- If assignment fails to adjust, we can find the set of edges that required the adjustment
- the edges form negative cycle are reported as unsat core

Topic 19.2

Difference logic : canonical representation

Canonical representation

Sometimes a class for formulas have canonical representation.

Definition 19.3
A set of objects R canonically represents a class of formulas Σ if for each $F, F^{\prime} \in \Sigma$ if $F \equiv F^{\prime}$ and $o \in R$ represents F then o represents F^{\prime}.

Tightness

Definition 19.4

A is tight if for all i and j

- if $A_{i j}<\infty, \exists v \models F[A] . v_{i}-v_{j}=A_{i j}$
- if $A_{i j}=\infty, \forall m<\infty . \exists v \models F[A] . v_{i}-v_{j}>m$

Theorem 19.4
If F is sat, A^{\bullet} is tight.
Proof.
Suppose there is a better bound $b<A_{i j}^{\bullet}$ exists such that $F\left[A^{\bullet}\right] \Rightarrow x_{i}-x_{j} \leq b$.
Like the last proof, there is a path $i_{0} . . i_{m}$ such that $A_{i_{0} . . i_{m}} \leq b, i_{0}=i$ and $i_{m}=j$.(Why?)
If $i_{0} . . i_{m}$ has a loop then the sum along the loop must be positive.
Therefore, there must be a shorter path from i to j with smaller sum.(Why?)
Therefore, a loopfree path from i to j exists with sum less than b. Therefore, A^{\bullet} is tight

Implication checking and canonical form

Theorem 19.5

The set of shortest path closed DBMs canonically represents difference logic formulas.

Exercise 19.5

Give an efficient method of checking equisatisfiablity and implication using DBMs.

Topic 19.3

Octagonal constraints

Octagonal constraints

Definition 19.5

Octagonal constraints are boolean combinations of inequalities of the form $\pm x \pm y \leq b$ or $\pm x \leq b$ where x and y are \mathbb{Z} / \mathbb{Q} variables and b is an \mathbb{Z} / \mathbb{Q} constant.

We can always translate octagonal constraints into equisatisfiable difference constraints.

Octagon to difference logic encoding (contd.)

Consider conjunction of octagonal atoms F over variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$.
We construct a difference logic formula F^{\prime} over variables $V^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{2 n}^{\prime}\right\}$.
In the encoding, $x_{2 i-1}^{\prime}$ represents x_{i} and $x_{2 i}^{\prime}$ represents $-x_{i}$.

Octagon to difference logic encoding

F^{\prime} is constructed as follows

$$
\begin{array}{rrlll}
F \ni & x_{i} \leq b & \rightsquigarrow & x_{2 i-1}^{\prime}-x_{2 i}^{\prime} \leq 2 b & \in F^{\prime} \\
F \ni & -x_{i} \leq b & \rightsquigarrow & x_{2 i}^{\prime}-x_{2 i-1}^{\prime} \leq 2 b & \in F^{\prime} \\
F \ni & x_{i}-x_{j} \leq b & \rightsquigarrow & x_{2 i-1}^{\prime}-x_{2 j-1}^{\prime} \leq b, x_{2 j}^{\prime}-x_{2 i}^{\prime} \leq b & \in F^{\prime} \\
F \ni & x_{i}+x_{j} \leq b & \rightsquigarrow & x_{2 i-1}^{\prime}-x_{2 j}^{\prime} \leq b, \quad x_{2 j-1}^{\prime}-x_{2 i}^{\prime} \leq b & \in F^{\prime} \\
F \ni & -x_{i}-x_{j} \leq b & \rightsquigarrow & x_{2 i}^{\prime}-x_{2 j-1}^{\prime} \leq b, \quad x_{2 j}^{\prime}-x_{2 i-1}^{\prime} \leq b & \in F^{\prime}
\end{array}
$$

Theorem 19.6
If F is over \mathbb{Q} then

- If $\left(v_{1}, \ldots, v_{n}\right) \models F$ then $\left(v_{1},-v_{1}, \ldots, v_{n},-v_{n}\right) \models F^{\prime}$
- If $\left(v_{1}, v_{2}, \ldots, v_{2 n-1}, v_{2 n}\right) \models F^{\prime}$ then $\left(\frac{\left(v_{1}-v_{2}\right)}{2}, \ldots, \frac{\left(v_{2 n-1}-v_{2 n}\right)}{2}\right) \models F$

Exercise 19.6

Example: octagonal DBM

Definition 19.6
The DBM corresponding to F^{\prime} are called octagonal DBMs(ODBMs).

Exercise 19.7

Consider: $x_{1}+x_{2} \leq 4 \wedge x_{2}-x_{1} \leq 5 \wedge x_{1}-x_{2} \leq 3 \wedge-x_{1}-x_{2} \leq 1 \wedge x_{2} \leq 2 \wedge-x_{2} \leq 7$ Corresponding ODBM
$\left[\begin{array}{cccc}0 & \infty & 3 & 4 \\ \infty & 0 & 1 & 5 \\ 5 & 4 & 0 & 4 \\ 1 & 3 & 14 & 0\end{array}\right]$
$x_{1}+x_{2} \leq 4 \rightsquigarrow x_{1}-x_{4} \leq 4, x_{3}-x_{2} \leq 4$
$x_{2}-x_{1} \leq 5 \rightsquigarrow x_{3}-x_{1} \leq 5, x_{2}-x_{4} \leq 5$
$x_{1}-x_{2} \leq 3 \leadsto x_{1}-x_{3} \leq 3, x_{4}-x_{2} \leq 3$
$-x_{1}-x_{2} \leq 1 \rightsquigarrow x_{1}-x_{4} \leq 1, x_{3}-x_{2} \leq 1$
$x_{2} \leq 2 \rightsquigarrow x_{3}-x_{4} \leq 4$
$-x_{2} \leq 7 \rightsquigarrow x_{3}-x_{4} \leq 14$

Relating indices and coherence

$$
\text { Let } \overline{2 k} \triangleq 2 k-1 \text { and } \overline{2 k-1} \triangleq 2 k
$$

Example 19.5

$$
\overline{1} \overline{1}=22 \quad \overline{2} \overline{1}=12 \quad \overline{2} \overline{2}=11
$$

Exercise 19.8

- $\overline{3} \overline{1}=$
- $\overline{3} \overline{2}=$
- $\overline{4} \overline{2}=$
- $\overline{1} \overline{1}=$

Relating indices and coherence II

Consider the following DBM due to 2 variable octagonal constraints.
$\left[\begin{array}{cccc}0 & \infty & 3 & 4 \\ \infty & 0 & 1 & 5 \\ 5 & 4 & 0 & 4 \\ 1 & 3 & 14 & 0\end{array}\right]$

Cells with matching colors are pairs $(i j, \overline{j i})$.

Definition 19.7
A DBM A is coherent if $\forall i, j . A_{i j}=A_{\overline{j i}}$.

Unsatisfiability

For \mathbb{Q}, any method of checking unsat of difference constraints will work on ODBMs.

Let A be ODBM of $F A^{\bullet}$ will let us know in $2 n$ steps if F is sat.
For \mathbb{Z}, we may need to interpret ODBMs differently.
We will cover this shortly.

Topic 19.4

Octagonal constraints : canonical form

Implication checking and canonical form

Floyd-Warshall Algorithm does not obtain canonical form for ODBMs.
$x_{k}^{\prime}=-x_{k}^{\prime}$ is not needed for satisfiablity check. Consequently, A^{\bullet} is not canonical over \mathbb{Q}.
We need to tighten the bounds that may be proven due to the above equalities.

Exercise 19.9

Give an example such that A^{\bullet} is not tight for octagonal constraints.

Canonical closure for octagonal constraints

Let us define closure property for ODBMs.
Definition 19.8
For a ODBM A, let $F[A]$ define the corresponding formula over original variables.
Definition 19.9
For both \mathbb{Z} and \mathbb{Q}, an ODBM A is tight if for all i and j

- if $A_{i j}<\infty$ then $\exists v \models F[A] . v_{i}^{\prime}-v_{j}^{\prime}=A_{i j}$ and
- if $A_{i j}=\infty$ then $\forall m<\infty . \exists v \models F[A] . v_{i}^{\prime}-v_{j}^{\prime}>m$,
where $v_{2 k-1}^{\prime} \triangleq v_{k}$ and $v_{2 k}^{\prime} \triangleq-v_{k}$
Theorem 19.7
If A is tight then A is a canonical representation of $F[A]$

\mathbb{Q} tightness condition

Theorem 19.8

Let us suppose $F[A]$ is sat.
If $\forall i, j, k, A_{i j} \leq A_{i k j}$ and $A_{i j} \leq\left(A_{i \bar{i}}+A_{j \bar{j}}\right) / 2$ then A is tight
Proof.
Consider cell $i j$ in A s.t. $i \neq j$.(otherwise trivial)
Suppose $A_{i j}$ is finite.
Let $A^{\prime}=A\left[j i \mapsto-A_{i j}, \overline{i j} \mapsto-A_{i j}\right]$

Claim: $v \vDash F[A]$ and $v_{i}^{\prime}-v_{j}^{\prime}=A_{i j}$ iff $v \models F\left[A^{\prime}\right]$
Forward direction easily holds.(Why?)
Since A has no negative cycles, $A_{i j}+A_{j i} \geq 0$. So, $A_{j i} \geq-A_{i j}$. So, $A_{j i} \geq A_{j i}^{\prime}$. Therefore, A is pointwise greater than A^{\prime}. Therefore, $F\left[A^{\prime}\right] \Rightarrow F[A]$.
Since $A_{i j}^{\prime}=-A_{j i}^{\prime}$, if $v \vDash F\left[A^{\prime}\right]$ then $v_{i}^{\prime}-v_{j}^{\prime}=A_{i j}$. Backward direction holds.

\mathbb{Q} tightness condition(contd.)

Proof(contd.)

Now we are only left to show the following.
Claim: $F\left[A^{\prime}\right]$ is sat, which is there are no negative cycles in A^{\prime}
A^{\prime} can have negative cycles only if $j i$ or $\overline{i j}$ occur in the cycle.(Why?)

Wlog, we assume only $j i$ occurs in a negative cycle $i=i_{0} . . i_{m}=j$
Therefore, $A_{j i}^{\prime}+\sum_{l \in 1 . . m} A_{i_{(l-1)} i_{l}}^{\prime}<0$. Therefore, $-A_{i j}+\sum_{l \in 1 . . m} A_{i_{(I-1)} i_{l}}<0$.
Therefore, $\sum_{l \in 1 . . m} A_{i_{(I-1)} i^{i}}<A_{i j}$. Contradiction.
Assume both $j i$ and $\overline{i j}$ occur in a negative cycle $i=i_{0} . . i_{m} i_{0}^{\prime} . . i_{m^{\prime}}=j$, where $i_{m}=\bar{i}$ and $\bar{j}=i_{0}^{\prime}$. Therefore, $A_{j i}^{\prime}+A_{i j}^{\prime}+\sum_{l \in 1 . . m} A_{i_{l-1} i_{l}}^{\prime}+\sum_{l \in 1 . . m^{\prime}} A_{i_{I-1}^{\prime} i_{l}^{\prime}}^{\prime}<0$.
Therefore, $-2 A_{i j}+\sum_{l \in 1 . . m} A_{i_{-1} i_{l}}^{\prime}+\sum_{l \in 1 . . m^{\prime}} A_{i_{l-1}^{\prime} i_{l}^{\prime}}^{\prime}<0$.
Therefore, $-2 A_{i j}+A_{i \bar{i}}+A_{j \bar{j}}<0$. Contradiction.

Exercise 19.10

a. Prove the $A_{i j}=\infty$ case. b. Does converse of the theorem hold?

Computing canonical closure for octagonal constraints

Due to the previous theorem and desire of efficient computation, let us redefine A^{\bullet} for ODBMs. Definition 19.10
We compute A^{\bullet} using the following iterations generating $A^{0}, \ldots, A^{2 n}=A^{\bullet}$. Let $o=2 k-1$ for some $k \in 1$..n.

$$
\begin{array}{rlr}
A^{0} & =A \\
\left(A^{o+1}\right)_{i j} & =\min \left(A_{i j}^{o}, \frac{A_{i \bar{i}}^{o}+A_{j \bar{j}}^{o}}{2}\right) \\
\left(A^{o}\right)_{i j} & =\min \left(A_{i j}^{o-1}, A_{i o j}^{o-1}, A_{i \overline{o j}}^{o-1}, A_{i o \bar{j} j}^{o-1}, A_{i \bar{o} o j}^{o-1}\right) \quad \text { (even rule) }
\end{array}
$$

In the even rule, three new paths are considered to exploit the structure of ODBMs.

We will prove that A^{\bullet} is tight in post lecture slides.

Even rule intuition

In octagon formulas, x_{k} may insert itself between $x_{\lceil i / 2\rceil}$ and $x_{\lceil j / 2\rceil}$ in the following four ways.

$$
\begin{aligned}
& \text { 1. } \pm x_{\lceil i / 2\rceil}-x_{k} \leq A_{i o} \text { and } x_{k} \pm x_{\lceil j / 2\rceil} \leq A_{o j} \\
& \text { 2. } \pm x_{\lceil i / 2\rceil}+x_{k} \leq A_{i \bar{o}} \text { and }-x_{k} \pm x_{\lceil j / 2\rceil} \leq A_{\bar{o} j} \\
& \text { 3. } \pm x_{\lceil i / 2\rceil}+x_{k} \leq A_{i \bar{o}}, x_{k} \pm x_{\lceil j / 2\rceil} \leq A_{o j} \text {, and }-x_{k} \leq A_{\bar{o} o} / 2 \\
& \text { 4. } \pm x_{\lceil i / 2\rceil}-x_{k} \leq A_{i o},-x_{k} \pm x_{\lceil j / 2\rceil} \leq A_{\bar{o} j} \text {, and } x_{k} \leq A_{o \bar{o}} / 2
\end{aligned}
$$

Update using $A_{i o}+A_{o j}$
Update using $A_{i \bar{o}}+A_{\bar{o} j}$
Update using $A_{i \bar{o}}+A_{\bar{o} o}+A_{o j}$ Update using $A_{i o}+A_{o \bar{o}}+A_{\bar{o} j}$

The above cases are considered in the four paths in the definition 19.10.

Example: canonical closure of ODBM

Example 19.6

Consider:

$$
\left[\begin{array}{cccc}
0 & \infty & 3 & 4 \\
\infty & 0 & 1 & 5 \\
5 & 4 & 0 & 4 \\
1 & 3 & 14 & 0
\end{array}\right]
$$

First we apply the even rule $0=1$:

$$
\begin{aligned}
& A_{i j}^{1}=A_{j i}^{1}=\min \left(A_{i j}^{0}, A_{i 1 j}^{0}, A_{i 2 j}^{0}, A_{i 12 j}^{0}, A_{i 21 j}^{0}\right) \\
& A_{12}^{1}=A_{21}^{1}=\min \left(A_{12}^{0}, A_{112}^{0}, A_{122}^{0}, A_{1122}^{0}, A_{1212}^{0}\right)=\min (\infty, \infty, \infty, \infty, \infty)=\infty \\
& A_{24}^{1}=A_{13}^{1}=\min \left(A_{24}^{0}, A_{214}^{0}, A_{224}^{0}, A_{2124}^{0}, A_{214}^{0}\right)=\min (5, \infty, 5, \infty, \infty)=5 \\
& A_{34}^{1}=A_{34}^{1}=\min \left(A_{34}^{0}, A_{314}^{0}, A_{324}^{0}, A_{3124}^{0}, A_{3214}^{0}\right)=\min (4,9,9, \infty, \infty)=4 \\
& A_{43}^{1}=A_{43}^{1}=\min \left(A_{43}^{0}, A_{413}^{0}, A_{423}^{0}, A_{4123}^{0}, A_{4213}^{0}\right)=\min (14,4,4, \infty, \infty)=4
\end{aligned}
$$

Exercise 19.11

Find the tight ODBM for the following octagonal constraints:
$2 \leq x+y \leq 7 \wedge x \leq 9 \wedge y-x \leq 1 \wedge-y \leq 1$

Octagonal constraints over \mathbb{Z}

For \mathbb{Z}, we need a stronger property to ensure tightness.
Theorem 19.9
Let A be ODBM interpreted over \mathbb{Z}.
if $\forall i, j, k, A_{i j} \leq A_{i k j}, A_{i j} \leq\left(A_{i \bar{i}}+A_{j \bar{j}}\right) / 2$, and $A_{i \bar{i}}$ is even then A is tight.

Exercise 19.12

Prove the above theorem.

Computing canonical closure for octgonal DBMs over \mathbb{Z}

 In this case, let us present an incremental version of the closure iterations.Lets suppose A is tight and we add another octagonal atom in A that updates $A_{i_{0} j_{0}}$ and $A_{\bar{j}_{0} \bar{i}_{0}}$. (Observe: always updated together)

Let A^{0} be the updated DBM.

$$
\begin{array}{ll}
\left(A^{1}\right)_{i j}=\min \left(A_{i j}^{0}, A_{i i_{0} j_{j}}^{0}, A_{i \bar{j} 0}^{0} \overline{i_{0}}\right) & \text { if } i \neq \bar{j} \\
\left(A^{1}\right)_{i \bar{i}}=\min \left(A_{i \bar{i}}^{0}, A_{i \bar{j} \overline{j_{0}} i_{0} j_{0} \bar{i}}^{0}, A_{i i_{0} j_{0} \bar{j} \overline{\bar{i}_{0} \bar{i}}}^{0}, 2\left\lfloor\frac{A_{i i_{0} j_{0} \bar{i}}^{0}}{2}\right)\right. \\
\left(A^{2}\right)_{i j}=\min \left(A_{i j}^{1}, \frac{A_{i \bar{i}}^{1}+A_{j \bar{j}}^{1}}{2}\right) &
\end{array}
$$

Theorem 19.10

Topic 19.5

Problem

Difference logic for integers

Exercise 19.13

Consider a difference logic formula with integer bounds. Show that it has an integer solution if it has a rational solution.

End of Lecture 19

Topic 19.6

Post lecture proofs

Tightness of A^{\bullet}

Theorem 19.11
A^{\bullet} (defined in 19.10) is tight.
Proof.
For each i, j, and k, we need to show $A_{i j}^{\bullet} \leq\left(A_{i \bar{i}}^{\bullet}+A_{j \bar{j}}^{\bullet}\right) / 2$ and $A_{i j}^{\bullet} \leq A_{i k j}^{\bullet}$.
Claim: For $k>0, A_{i j}^{2 k} \leq\left(A_{i \bar{i}}^{2 k}+A_{j \bar{j}}^{2 k}\right) / 2$
Note $A_{i \bar{i}}^{2 k}=A_{i \bar{i}}^{2 k-1}$.(Why)
By def,

$$
\left(A^{2 k}\right)_{i j} \leq \frac{A_{i \bar{i}}^{2 k-1}+A_{j j}^{2 k-1}}{2} .
$$

Therefore,

$$
\left(A^{2 k}\right)_{i j} \leq \frac{A_{i i}^{2 k}+A_{j j}^{2 k}}{2} .
$$

Tightness of A^{\bullet} (contd.)

Proof(contd.)

We are yet to prove $\forall i, j$. $A_{i j}^{\bullet} \leq A_{i k j}^{\bullet}$.
Let $\operatorname{Fact}(k, o) \triangleq \forall i, j . A_{i j}^{o} \leq A_{i k j}^{o} \wedge A_{i j}^{o} \leq A_{i \bar{k} j}^{o}$
So we need to prove $\forall k \in 1 . . n$. $\operatorname{Fact}(2 k, 2 n)$.
the following three will prove the above by induction:(Why?)

1. In odd rules (o is odd), $\operatorname{Fact}(k, o) \Rightarrow \operatorname{Fact}(k, o+1)$

> (preserve)
2. In even rules (o is even), $\operatorname{Fact}(k, o) \Rightarrow \operatorname{Fact}(k, o+1)$
3. After even rules (o is even), Fact (o, o)

Tightness of A^{\bullet} : odd rules preserve the facts

Proof(contd.)

Claim: odd rule, if $\forall i, j . A_{i j}^{o} \leq A_{i k j}^{o} \wedge A_{i j}^{o} \leq A_{i \bar{k} j}^{o}$ then $\forall i, j . A_{i j}^{o+1} \leq A_{i k j}^{o+1}$.
We have four cases(Why?) and denoted them by pairs.
$(1,1) A_{i k}^{o+1}=A_{i k}^{o}, A_{k j}^{o+1}=A_{k j}^{o}: \underbrace{A_{i j}^{o+1} \leq A_{i j}^{o}}_{\text {odd rule }} \underbrace{\leq A_{i k j}^{o}}_{\text {lhs }} \underbrace{=A_{i k j}^{o+1}}_{\text {case cond }}$
$(2,1) A_{i k}^{o+1}=\left(A_{i \bar{i}}^{o}+A_{k \bar{k}}^{o}\right) / 2, A_{k j}^{o+1}=A_{k j}^{o}:$

$(2,1) A_{i k}^{2 k}=A_{i k}^{\circ}, A_{k j}^{o+1}=\left(A_{k \bar{k}}^{o}+A_{j \bar{j}}^{\circ}\right) / 2$ (Symmetric to the last case)
$(2,2) A_{i k}^{o+1}=\left(A_{i \bar{i}}^{o}+A_{k \bar{k}}^{o}\right) / 2$ and $A_{k j}^{o+1}=\left(A_{k \bar{k}}^{o}+A_{j \bar{j}}^{\circ}\right) / 2:$ (left for exercise)

Exercise 19.14

Prove the last case.

Tightness of A^{\bullet} : even rules preserve the facts

Proof(contd.)

Claim: even rule, if $\forall i, j . A_{i j}^{o-1} \leq A_{i k j}^{o-1} \wedge A_{i j}^{o-1} \leq A_{i \overline{k j}}^{o-1}$ then $\forall i, j . A_{i j}^{o} \leq A_{i k j}^{o}$.
Here, we have 25 cases(Why?) and denoted them by pairs:
$(1,1) A_{i k}^{o}=A_{i k}^{o-1}, A_{k j}^{o}=A_{k j}^{o-1}: \underbrace{A_{i j}^{o} \leq A_{i j}^{o-1}}_{\text {even rule }} \underbrace{\leq A_{i k j}^{o-1}}_{\text {Ihs }}=\underbrace{=A_{i k j}^{o}}_{\text {case cond. }}$
$(2,1) A_{i k}^{o}=A_{i o k}^{o-1}, A_{k j}^{o}=A_{k j}^{o-1}: \underbrace{A_{i j}^{o} \leq A_{i o j}^{o-1}}_{\text {even rule }} \underbrace{\leq A_{i o k j}^{o-1}}_{\text {lhs }} \underbrace{=A_{i k j}^{o}}_{\text {case cond. }}$.
$(4,5) A_{i k}^{o}=A_{i o \bar{o} k}^{o-1}, A_{k j}^{o}=A_{k \bar{o} o j}^{o-1}: \underbrace{A_{i j}^{o} \leq A_{i o j}^{o-1}}_{\text {even rule }} \underbrace{\leq A_{i o j}^{o-1}+A_{o \bar{o} o}^{o-1}+A_{\bar{o} k \bar{o}}^{o-1}}_{\text {no negative loops }} \underbrace{\leq A_{i o \bar{k} k}^{o-1}+A_{k \bar{o} o j}^{o-1}}_{\text {rewrite }}=\underbrace{=A_{i k j}^{o}}_{\text {case cond }}$.

Exercise 19.15

Prove cases $(1,4),(2,3)$ and $(3,3)$.
Hint: key proof technique: introduce cycles, introduce k

Tightness of A^{\bullet} : even rule establishes the fact

Proof(contd.)

Claim: even rule, $\forall i, j . A_{i j}^{o} \leq A_{i o j}^{o} \wedge A_{i j}^{o} \leq A_{i \bar{i} j}^{o}$
We only prove $A_{i j}^{\circ} \leq A_{i o j}^{\circ}$, the other inequality is symmetric.
Again, we have 25 cases.(Why?)
Since there are no negative cycles and $A_{o o}^{o}=0$,
$A_{i o}=A_{i o o} \leq A_{i o \bar{o} o}$ and $i \bar{o} 0 \leq i \bar{o} 00$.
Therefore, only four cases left to consider.(Why?)

$$
(1,1) A_{i o}^{o}=A_{i o}^{o-1}, A_{o j}^{o}=A_{o j}^{o-1}: \underbrace{A_{i j}^{o} \leq A_{i o j}^{o-1}}_{\text {even rule }}=\underbrace{=A_{i o j}^{o}}_{\text {case cond. }}
$$

$(2,2) A_{i o}^{o}=A_{i o o l}^{o-1}, A_{o j}^{o}=A_{o o j}^{o-1}:$

Exercise 19.16

Prove case $(1,2)$

