
cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 1

CS 433 Automated Reasoning 2024

Lecture 24: Interactive theorem proving

Instructor: Ashutosh Gupta

IITB India

Compile date: 2024-04-17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 2

Limits of Automated solvers

There are several issues with SAT/SMT solvers.

▶ Not all logical questions can be automated.

▶ How can we trust SAT/SMT solvers, which are ensembles of optimizations? We need
something more principled.

An answer to the above problems is interactive theorem proving.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 3

Interactive theorem prover

▶ A software that helps you in proving theorems
▶ Designed with solid mathematical foundation.

▶ It can automatically do a few simple operations

▶ For the rest user has to hint the actions.

Please install coqide in your laptop.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 4

Tactics

▶ Tactics are intuitive hints that suggest actions to the prover.

▶ The sequences of tactics are called proof scripts.

Tactics are the “instruction set” for writing proof scripts.

Content borrowed from tutorial: https://coq.inria.fr/tutorial-nahas

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://coq.inria.fr/tutorial-nahas

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 5

Topic 24.1

Coq basics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 6

Introducing Coq proof script

Section Minimal_Logic.

Variables a b c : Prop. (* declare proposition *)

Theorem trivial: a −> a. (* simple theorem *)

Proof. (* start of proof *)

intro proof_of_a. (* introduces leading construct *)

exact proof_of_a.
Qed.

This is not a proof!
This is a proof script.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 7

Repeated intro and reuse results

Theorem reuse: b −> a −> a. (* slightly complex theorem *)

Proof.
intro proof_of_b.
exact trivial.

Qed.

Theorem no_reuse: b −> a −> a. (* using intros *)

Proof.
intros.
exact H.

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 8

Introducing forall

(* forall and implications are treated in a similar way!! *)

Theorem demoAll: (forall x: Prop, x −> b −> x).
Proof.
intros y. (* first introduce quantified variable *)

intros some_name pb.
exact some_name.

Qed.

Commentary: Declaring variables outside of the theorem and declaring forall seems to have same effect. Only difference is the scope.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 9

Proof state

1 subgoal

a, b, c, y : Prop

some_name : y
______________________________________(1/1)
b −> y

Things to be proven
Count of things to be proven

Context

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 10

Forward proving

(* learning pose *)

Theorem non_trivial: a −> (a−>b) −> b.
Proof.
intros pa pab.
pose (pb := pab pa). (* pose applies known facts! *)

exact pb.
Qed.

Exercise 24.1
Prove the following theorem.

Theorem ex_1 : (forall A B C : Prop, A −> (A−>B) −> (A−>B−>C) −> C).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 11

We can see the proof in progress!!

Theorem non_trivial: a −> (a−>b) −> b.
Proof.
Show Proof.
intros pa pab.
Show Proof. (* shows the current proof term *)

pose (pb := pab pa).
Show Proof.
exact pb.

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 12

Proof state and proof term (contd.)

In the previous example, the following is the proof state at the second Show Proof.

1 subgoal

a, b, c : Prop

pa : a

pab : a −> b

______________________________________(1/1)
b

Proof term at the same time.

(fun (pa : a) (pab : a −> b) => ?Goal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 13

Proof state and proof term
Thereafter, the following is the proof state after applying pose (pb := pab pa) .

1 subgoal

a, b, c : Prop

pa : a

pab : a −> b

pb := pab pa : b
______________________________________(1/1)
b

Proof term at the same time.

(fun (pa : a) (pab : a −> b) =>
let p_b := pab pa : b in

?Goal
)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 14

Reverse proving

(* learning refine *)

Theorem non_trivial: a −> (a−>b) −> b.
Proof.
intros pa pab.
refine (pab _). (* what do we need to prove the goal? *)

exact pa.
Qed.

Exercise 24.2
Prove the following theorem using refine.

Theorem ex_1 : (forall A B C : Prop, A −> (A−>B) −> (A−>B−>C) −> C).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 15

Reverse proving using apply

(* learning apply *)

Theorem non_trivial: a −> (a−>b) −> b.
Proof.
intros pa pab.
apply pab. (* same as refine without explicit patterns *)

exact pa.
Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 16

Coq basics

▶ Proofs are functional programs
▶ Curry-Howard isomorphism

▶ Universal quantifiers and implications are base connectives
▶ Almost everything can be written using them except “negation”

▶ Let us see what we need to add to encode negation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 17

Topic 24.2

Negation and False

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 18

Negation is defined using “False”

▶ We can define ¬A as A ⇒ False

▶ We need to define False and also True

▶ They are defined using the following constructs:

Inductive False : Prop := .

Inductive True : Prop :=
| I : True.

False has no way of proving.

True can be proven using I , which can be always proven.

Inductive is used to define
instances of types.

Commentary: Inductive is yet another fundamental idea in Coq. Now take it as presented. Let us be more familiar with the system before having clearer understanding.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 19

Negation is defined using “False” II

▶ Negation is defined as follows

Definition not (A:Prop) := A −> False. (* macro that defines not *)

Notation "∼ x" := (not x) : type_scope. (* syntactic sugar for not *)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 20

Understanding “False” and “True”

In Coq, they actually mean unprovable and provable.

Theorem True_can_always_be_proven : True.
Proof.
exact I. (* True can be matched with I, which is always there*)

Qed.

Theorem False_can_never_be_proven : ∼ False.
Proof.
unfold not. (* unfold expands predefined macros *)

intros pf.
exact pf.

Qed.

Our usual Boolean will
be defined later.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 21

Let us prove a few facts about True and False
We have setup a world of True and False. Do they match our intuition?

Theorem thm_T_imp_T : True −> True.
Proof.
intros proof_of_True.
exact I.

Qed.

Theorem thm_F_imp_F : False −> False.
Proof.
intros pf.
case pf. (* "exact pf." works, but is not recommended. *)

Qed.

Exercise 24.3
Prove the following theorems.

Theorem thm_F_imp_T : False −> True.
Theorem thm_T_imp_F : ∼ (True −> False).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 22

Reducto ad absurdium

If you can derive contradiction, you can derive anything.

Theorem absurd : forall A C : Prop, A −> ∼ A −> C.
Proof.
intros A C.
intros pa p_nota.
unfold not in p_nota.
pose (pf := p_nota pa).
case pf.

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 23

Topic 24.3

Defining Or/And over Prop

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 24

or/and are defined as follows

Back to propositions....

or can be constructed in two ways

Inductive or (A B : Prop) : Prop :=
| or_introl : A −> A \/ B

| or_intror : B −> A \/ B

where "A \/ B" := (or A B) : type_scope.

and has only one construction

Inductive and (A B : Prop) : Prop :=
conj : A −> B −> A /\ B

where "A /\ B" := (and A B) : type_scope.

/\ and \/ are shorthands.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 25

A few theorems on or

Theorem left_or : (forall A B : Prop, A −> A \/ B).
Proof.
intros A B.
intros pa.
pose (pab := or_introl pa : A \/ B).
exact pab.
Qed.

Exercise 24.4
Prove the following theorems using refine or apply.

Theorem right_or : (forall A B : Prop, B −> A \/ B).
Theorem both_and : (forall A B : Prop, A −> B −> A /\ B).

pose needs type declaration because or_introl

does not have full type information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 26

Or/And commutes

Theorem or_commutes : (forall A B, A \/ B −> B \/ A).
Proof.
intros A B.
intros A_or_B.
case A_or_B. (* creates two subgoals for each constructor of \/ *)

intros pa. (*suppose A_or_B is (or_introl proof_of_A) *)

refine (or_intror _).
exact pa.

intros pb. (*suppose A_or_B is (or_intror proof_of_B) *)

refine (or_introl _).
exact pb.

Qed.

Exercise 24.5
Prove the following theorem.

Theorem and_commutes : (forall A B, A /\ B −> B /\ A).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 27

destruct tactic

Theorem and_commutes__again : (forall A B, A /\ B −> B /\ A).
Proof.
intros A B.
intros A_and_B.
destruct A_and_B as [pa pb].
refine (conj _ _).
exact pa.

exact pb.
Qed.

destruct combines the work of
case and subsequent intros.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 28

Topic 24.4

Booleans

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 29

The Booleans we know!

Boolean is already defined as follows.

Inductive bool : Set :=
| true : bool
| false : bool.

To import the above definitions and many more, we need to add.

Require Import Bool.

Commentary: Set is yet another fundamental concept in the Coq system.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 30

The Booleans we know!(II)
The import loads the following two import functions

(* Defines equality over Booleans *)

Definition eqb (b1 b2:bool) : bool :=
match b1, b2 with

| true, true => true

| true, false => false

| false, true => false

| false, false => true

end.

(* maps Booleans to provability *)

Definition Is_true (b:bool) :=
match b with

| true => True

| false => False

end.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 31

Let us prove some theorems on Booleans

Theorem true_is_True: Is_true true.
Proof.
simpl. (* executes the head function at the goal *)

exact I.
Qed.

Theorem not_eqb_true_false: ∼ (Is_true (eqb true false)).
Proof.
simpl.
exact False_cannot_be_proven.

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 32

Another simple theorem on Booleans

Theorem eqb_a_a : (forall a : bool, Is_true (eqb a a)).
Proof.
intros a.
case a. (* creates two subgoals for each value of bool *)

simpl.
exact I.

simpl.
exact I.

Qed.

Exercise 24.6
Prove the following theorem.

Theorem ex_4: (forall a:bool, (Is_true (eqb a true)) −> (Is_true a)).

case only works if a is not referred
anywhere else in the context.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 33

Topic 24.5

Exists

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 34

Existence

Inductive ex (A:Type) (P:A −> Prop) : Prop :=
ex_intro : forall x:A, P x −> ex (A:=A) P.

Notation "’exists’ x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..))
(at level 200, x binder, right associativity,
format "’[’ ’exists’ ’/ ’ x .. y , ’/ ’ p ’]’")
: type_scope.

▶ For any x:A if we can show P x, then we have ex P

▶ ex constructor is ex intro

▶ exists is shorthanded notation for ex

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 35

A proof for existence!

Theorem thm_forall_exists : (forall b, (exists a, Is_true(eqb a b))).
Proof.
intros b.
case b.

(* b is true *)

pose (witness := true).
refine (ex_intro _ witness _).
simpl.
exact I.

(* b is false *)

pose (witness := false).
refine (ex_intro _ witness _).
simpl.
exact I.

Qed.

How coq knows
types of a and b?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 36

An important property of exists

Theorem fe: (forall P : Set−>Prop,(forall x, ∼ (P x)) −> ∼ (exists x, P x)).
Proof.
intros P.
intros forall_x_not_Px.
unfold not.
intros exists_x_Px.
destruct exists_x_Px as [witness proof_of_Pwitness].
pose (not_Pwitness := forall_x_not_Px witness).
unfold not in not_Pwitness.
pose (proof_of_False := not_Pwitness proof_of_Pwitness).
case proof_of_False.

Qed.

Exercise 24.7
Prove the following theorem.

Theorem ef: (forall P : Set−>Prop,∼ (exists x, P x) −> (forall x, ∼ (P x))).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 37

Topic 24.6

Equality

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 38

Equality and inequality

▶ Equality is also defined object.

Inductive eq (A:Type) (x:A) : A −> Prop :=
eq_refl : x = x :>A

where "x = y :> A" := (@eq A x y) : type_scope.

Notation "x = y" := (x = y :>_) : type_scope.

▶ Once two things become equal they are same constants.

▶ Inequality is defined as follows.

Notation "x <> y :> T" := (∼ x = y :>T) : type_scope.
Notation "x <> y" := (x <> y :>_) : type_scope.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 39

Proving with equality

Theorem thm_eq_sym : (forall x y : Set, x = y −> y = x).
Proof.
intros x y x_y.
destruct x_y as [].
exact (eq_refl x).

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 40

Topic 24.7

Induction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 41

Defining natural numbers

Let us see our first true inductive definition that defines natural numbers.

Inductive nat : Set :=
| O : nat

| S : nat −> nat.

▶ O is zero and S is successor function.

▶ Natural numbers as terms over the symbols, e.g., 3 is S(S(S(O))) .

▶ Addition is defined as following function.

Fixpoint plus (n m:nat) : nat :=
match n with

| O => m

| S p => S (p + m)
end

where "n + m" := (plus n m) : nat_scope.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 42

Numbers and terms

Numbers are defined as terms. However, one can write them as usual numbers and they are
interpreted as the terms.

Theorem plus_2_3 : (S (S O)) + (S (S (S O))) = (S (S (S (S (S O))))).
Proof.
simpl.
exact (eq_refl 5).
Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 43

Proving with inductive definitions.

Theorem plus_O_n : (forall n, O + n = n).
Proof.
intros n.
simpl.
exact (eq_refl n).

Qed.

Can we prove the following using the same tactics?

Theorem plus_n_O : (forall n, n + O = n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 44

Induction principle

In Coq induction principle for natural numbers is defined as follows.

nat_ind

: forall P : nat −> Type,
P O −> (forall n : nat, P n −> P (S n)) −> forall n : nat, P n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 45

Applying induction principle
Theorem plus_n_O : (forall n, n + O = n).
Proof.
intros n.
elim n. (* applies induction hypothesis on the nat definition*)

(* first subgoal: base case *)

simpl.
exact (eq_refl O).

(* second subgoal: inductive case *)

intros n’. (* must use fresh name to instantiate *)

intros inductive_hypothesis.
simpl.
rewrite inductive_hypothesis.
exact (eq_refl (S n’)).

Qed.

Exercise 24.8
Prove the following theorem.

Theorem plus_sym: (forall n m, n + m = m + n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 46

Topic 24.8

Datatypes

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 47

Defining datatypes
Like natural numbers, other objects are also defined inductively. For example,

Inductive list (A : Type) : Type :=
| nil : list A

| cons : A −> list A −> list A.

Infix "::" := cons (at level 60, right associativity) : list_scope.

▶ nil is for empty list and cons extends a list.

▶ :: is shorthand for cons .

▶ List length is defined as the following function.

Definition length (A : Type) : list A −> nat :=
fix length l :=
match l with

| nil => O

| _ :: l’ => S (length l’)
end.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 48

Other functions on lists
Definition hd (A : Type) (default : A) (l : list A) :=
match l with

| nil => default

| x :: _ => x

end.

Definition tl (A : Type) (l:list A) :=
match l with

| nil => nil

| a :: m => m

end.

Definition app (A : Type) : list A −> list A −> list A :=
fix app l m :=
match l with

| nil => m

| a :: l1 => a :: app l1 m

end.
Infix "++" := app (right associativity, at level 60) : list_scope.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 49

A simple theorem on lists

Theorem hd_tl :
(forall A:Type,
(forall (default : A) (x : A) (lst : list A),
(hd A default (x::lst)) :: (tl A (x:: lst)) = (x :: lst))).

Proof.
intros A.
intros default x lst.
simpl.
exact (eq_refl (x::lst)).

Qed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 50

Topic 24.9

Problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 51

Propositions

Exercise 24.9
Prove the following theorems.

Theorem p1 : (forall A B : Prop, (A −> B) −> (∼ B −> ∼ A)).

Theorem p2 : (forall A B : Prop, (A \/ B)/\ (C\/D) −> ((A/\C) \/ B \/ D)).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 52

Odd and even

Exercise 24.10
Using Coq formalize definition of odd and even numbers. Subsequently, prove the following
theorems

▶ 5 is an odd number.

▶ No number is both odd and even.

▶ Between every two odd numbers there is at least one even number.

▶ Between every two consecutive even numbers there is exactly one odd number.

▶ There is no largest even number.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 53

Proving arithmetic correct!

Exercise 24.11
Using Coq formalize following definitions

▶ Define natural numbers as list of digits, e.g., zero::nine::one is 190.

▶ Define primary school algorithms for addition, subtraction, and multiplication over the lists.

And prove that the algorithms are correct with respect to the native natural numbers and
arithmetic operations defined in Coq.

For clarifications: please contact the instructor.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS 433 Automated Reasoning 2024 Instructor: Ashutosh Gupta IITB India 54

End of Lecture 24

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Coq basics
	Negation and False
	 Defining Or/And over Prop
	 Booleans
	Exists
	Equality
	Induction
	Datatypes
	Problem

