
cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2024

Lecture 3: Stack and queue

Instructor: Ashutosh Gupta

IITB India

Compile date: 2024-08-10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 2

Topic 3.1

Stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 3

Stack

Definition 3.1
Stack is a container where elements are added and deleted according to the last-in-first-out (LIFO)
order.

▶ Addition is called pushing

▶ Deleting is called popping

Example 3.1

▶ Stack of papers in a copier

▶ Undo-redo features in editors

▶ Back button on Browser

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 4

Interface of stack Reference: https://en.cppreference.com/w/cpp/container/stack

Stack supports four interface methods

▶ stack<T> s : allocates new stack s

▶ s.push(e) : Pushes the given element e to the top of the stack.

▶ s.pop() : Removes the top element from the stack.

▶ s.top() : accesses the top element of the stack.

Some support functions

▶ s.empty() : checks whether the stack is empty

▶ s.size() : returns the number of elements

Exercise 3.1
Why define stack when we can use vector for the same effect?
Commentary: Answer: vector in C++ promises to provide efficient random access but stack does not make such a promise. Therefore, the implementations of stack may
make implementation choices that may result in inefficient random access.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/stack

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 5

Axioms of stack

Let s1 and s be stacks.

▶ Assume(s1 == s); s.push(e); s.pop();Assert(s1==s);

▶ s.push(e); Assert(s.top()==e) ;

Assume(s1 == s) means that we assume that the content of s1 and s are the same.
Assert(s1 == s) means that we check that the content of s1 and s are the same.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 6

Exercise: action on the empty stack

Exercise 3.2

Let s be an empty stack in C++.

▶ What happens when we run s.top()?

▶ What happens when we run s.pop()?

Ask ChatGPT.

Commentary: Answer: s.top() will cause a segmentation fault. s.pop() will not cause any error and exit without any effect.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 7

Topic 3.2

Implementing stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 8

Array-based stack

Let us look at a simplified array-based implementation of an array of integers.

The stack consists of three variables.

▶ N specifies the currently available space in the stack

▶ S is the integer array of size N

▶ h is the position of the head of the stack

S 5 6 8 0 0 0

h

N

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 9

Implementing stack

class arrayStack {

int N = 2; // Capacity

int* S = NULL; // pointer to array

int h = -1; // Current head of the stack

public:

arrayStack () { S = (int*) malloc(sizeof(int)*N); }

int size() { return h+1; }

bool empty() { return h<0; }

int top() { return S[h]; } // On empty stack what happens?

void push(int e) {

if(size() == N) expand (); // Expand capacity of the stack

S[++h] = e;

}

void pop() { if(!empty()) h--; }

Commentary: The behavior of the above implementation may not match the behavior of the C++ stack library. To ensure segmentation fault in top() when the stack is
empty one may use the following code. if(empty()) return *(int*)0; else return S[t];

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 10

Implementing stack (expanding when full)

private:

void expand () {

int new_size = N*2; // We observed the growth in our lab!!

int* tmp = (int*) malloc(sizeof(int)* new_size);//New array

for(unsigned i =0; i < N; i++) {// copy from the old array

tmp[i] = S[i];

}

free(S); // Release old memory

S = tmp; // Update local fields

N = new_size; //

}

};

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 11

Efficiency

All operations are performed in O(1) if there is no expansion to stack capacity.

What is the cost of expansion?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 12

Topic 3.3

Why exponential growth strategy?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 13

Growth strategy

Let us consider two possible choices for growth.

▶ Constant growth: new_size = N + c (for some fixed constant c)

▶ Exponential growth: new_size = 2*N

Which of the above two is better?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 14

Analysis of constant growth

Let us suppose initially N = 0 and there are n consecutive pushes.

After every cth push, there will be an expansion operation.

Therefore, the expansion operation at (ci + 1)th push will

▶ allocate memory of size c(i + 1)

▶ copy ci integers

S 5 6 7 8 9

ci

0 0 0

h

c

Cost of ith expansion: c(2i + 1).
Commentary: We are assuming that allocating memory of size k costs k time, which may be more efficient in practice. Bulk memory copy can also be sped up by vector
instructions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 15

Analysis of constant growth(2)

For n pushes, there will be n/c expansions.

The total cost of expansions:

c(1 + 3 + ...+ (2
n

c
+ 1)) = c(n/c)2 ∈ O(n2)

Non-linear cost!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 16

Analysis of exponential growth

Let us suppose initially N = 1 and there are n = 2r consecutive pushes.

The expansion operations will only occur at 2i + 1th push, where i ∈ [0, r − 1].

The expansion operation at 2i + 1th push will

▶ allocate memory of size 2i+1

▶ copy 2i integers

S 5 6 7 8 9

2i

0 0 0 0 0

h

2i

Cost of the expansion: 3 ∗ 2i .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 17

Analysis of exponential growth(2)

For 2r pushes, the last expansion would be at 2r−1 + 1.

The total cost of expansions:

3(20 ++ 2r−1) = 3 ∗ (2r − 1) = 3 ∗ (n − 1)

Linear cost! The average cost of push remains O(1).

Exercise 3.3
Why double? Why not triple? Why not 1.5 times? Is there a trade-off?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 18

Topic 3.4

Applications of stack

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 19

Stacks are everywhere

Stack is a foundational data structure.

It shows up in a vast range of algorithms.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 20

Example: matching parentheses

Problem:
Given an input text check if it
has matching parentheses.

Examples:

▶ ”{a[sic]tik}”✓

▶ ”{a[sic}tik}”✗

bool parenMatch(string text) {

std::stack <char > s;

for(char c : text) {

if(c == ’{’ or c == ’[’) s.push(c);

if(c == ’}’ or c == ’]’) {

if(s.empty()) return false;

if(c-s.top() != 2) return false;

s.pop();

}

}

if(s.empty()) return true;

return false;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 21

Topic 3.5

Queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 22

Queue

Definition 3.2
Queue is a container where elements are added and deleted according to the first-in-first-out
(FIFO) order.

▶ Addition is called enqueue

▶ Deleting is called dequeue

Queue

Enqueue() Dequeue()

Example 3.2

▶ Entry into an airport

▶ Calling lift in a building (priority queue)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 23

Interface of queue Reference: https://en.cppreference.com/w/cpp/container/queue

Queue supports four main interface methods

▶ queue<T> q : allocates new queue q

▶ q.enqueue(e) : Adds the given element e to the end of the queue. (push)

▶ q.dequeue() : Removes the first element from the queue. (pop)

▶ q.front() : access the first element .

Some support functions

▶ q.empty() : checks whether the queue is empty

▶ q.size() : returns the number of elements

Commentary: All literature uses the terms enqueue and dequeue, but unfortunately C++ library uses push for enqueue and pop uses for dequeue. Other languages such as
Java uses the terms enqueue and dequeue.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/queue

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 24

Axioms of queue

1. queue<T> q; Assert(q.empty() == true);

2. q.enqueue(e); Assert(q.empty() == false);

3. Assume(q.empty() == true);

q.enqueue(e); Assert(q.front() == e);

4. Assume(q.empty() == false && old_q == q);

q.enqueue(e); Assert(old_q.front() == q.front());

5. Assume(q.empty() == true && old_q == q);

q.enqueue(e); q.dequeue(); Assert(old_q == q);

6. Assume(q.empty() == false && q == q1);

q.enqueue(e);q.dequeue(); q1.dequeue();q1.enqueue(e); Assert(q == q1);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 25

Topic 3.6

Array implementation of queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 26

Array-based implementation

▶ Queue is stored in an array items in a circular fashion

▶ Three integers record the state of the queue

1. N indicates the available capacity (N-1) of the queue
2. head indicates the position of the front of the queue
3. tail indicates position one after the rear of the queue

items

N = 10

head tail

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 27

Enqueue operation on array

Consider the state of the queue

head tail

After the enqueue(e) operation:

e

head tail

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 28

Dequeue operation on array
Consider the state of the queue

head tail

After dequeue() operation:

head tail

Exercise 3.4

1. Where will front() read from?

2. What is the size of the queue?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 29

Wrap around to utilize most of the array
Consider the state of the queue

head tail

After enqueue(e) operation, we move the tail to 0.

e

headtail

After another enqueue(e1) operation:

ee1

headtail

Wrap-around allows us
to use the array repeat-
edly.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 30

Full and empty queue

Full queue:

headtail

Empty queue:

headtail

Exercise 3.5
Can we use all N cells for storing elements?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 31

Array implementation

int head = 0, tail=0, N = INITIAL_CAPCITY;

Object items[N]; //Some initial size

bool empty () { return (head == tail); }

bool size() { return (N+tail -head)%N; }

Object front() { return items[head]; }

The code is not written in C++; We will slowly move
towards pseudo code to avoid clutter on slides.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 32

Array implementation

void dequeue () {

if(empty()) throw Empty; // Queue is empty

free(items[head]); items[head] = NULL; // Clear memory

head = (head +1)%N; // Remove an element

}

void enqueue(Object x) {

if (size() == N-1) expand (); // Queue is full;expand

items[tail] = x;

tail = (tail +1)%N; // insert element

}

Exercise 3.6
In our stack implementation, we did not invoke free in pop, but we invoke free in dequeue. Why?
Commentary: In the stack implementation, we were only handling stack of int. Here, we are handling stack of arbitrary objects. If the object has dynamic size then it
cannot live on the stack itself. We will store a reference to the object on stack and the object will be allocated somewhere else. Therefore. the objects must be freed on
dequeue (the above syntax of free is not in C++; It will only work when items[head] is a reference). However, there is no need to free an int because it has fixed size and it
was stored on the array of the stack itself.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 33

Topic 3.7

Queue via linked list

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 34

Linked lists

Definition 3.3
A linked list consists of nodes with two fields data and next pointer. The nodes form a chain via
the next pointer. The data pointers point to the objects that are stored on the linked list.

NULL

10 99 12

head tail

Exercise 3.7
If we use a linked list for implementing a queue, which side should be the front of the queue?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 35

Dequeue in linked lists

NULL

10 99 12 19

head tail

Exercise 3.8
What happens to the object containing 10?

Commentary: Answer: There are several choices. The object is deallocated, the reference to the object is returned to the caller, or the copy of the the object is returned to
the caller. Different implementations may do it differently. This behavior is not part of the specification of queue.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 36

Enqueue(e) in linked lists

NULL

99 12 19 e

head tail

Exercise 3.9
a. Which one is better: array or linked list?
b. Do we need the tail pointer?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 37

Topic 3.8

Circular linked list

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 38

Circular linked lists

Definition 3.4
In a circular linked list, the nodes form a circular chain via the next pointer.

10 99 12 19

head

A head pointer points at some node of the circular list. A single pointer can do the job of the head
and tail.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 39

Dequeue in circular linked lists

10 99 12 19

head

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 40

enqueue(e) in circular linked lists

10 e 12 19

headhead head

Exercise 3.10
a. Which element should be returned by front()?
b. Give pseudo code of the implementation of queue using circular linked list. (Midsem 2023)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 41

Topic 3.9

Deque via a doubly linked list

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 42

Doubly linked lists

Definition 3.5
A doubly linked list consists of nodes with three fields prev, data, and next pointer. The nodes
form a bidirectional chain via the prev and next pointer. The data pointers point to the objects
that are stored on the linked list.

10 99 12

At both ends, two dummy or sentinel nodes do not store any data and are used to store the start
and end points of the list.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 43

Deleting a node in a doubly linked list

10 99 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 44

Deque (Double-ended queue)

Definition 3.6
Deque is a container where elements are added and deleted according to both last-in-first-out
(LIFO) and first-in-first-out (FIFO) order.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 45

Interface of Deque Reference: https://en.cppreference.com/w/cpp/container/deque

Queue supports four main interface methods

▶ deque<T> q : allocates new queue q

▶ q.push_back(e) : Adds the given element e to the back.

▶ q.push_front(e) : Adds the given element e to the front.

▶ q.pop_front() : Removes the first element from the queue.

▶ q.pop_back() : Removes the last element from the queue.

▶ q.front() : access the first element .

▶ q.back() : access the first element .

Some support functions

▶ q.empty() : checks whether the stack is empty

▶ q.size() : returns the number of elements

We can implement the Deque data structure using the doubly linked lists.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/deque

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 46

Stack and queue via Deque

We can implement both stack and queue using the interface of deque.

Exercise 3.11
▶ Which functions of deque implement stack?

▶ Which functions of deque implement queue?

All modification operations are implemented in O(1).

Exercise 3.12
Can we implement size in O(1) in a doubly linked list?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 47

Topic 3.10

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 48

Use of stack

Exercise 3.13
The span of a stock’s price on ith day is the maximum number of consecutive days (up to ith day)
the price of the stock has been less than or equal to its price on day i .

Example: for the price sequence 2 4 6 3 5 7 of a stack, the span of prices is 1 2 3 1 2 6.

Give a linear-time algorithm that computes si for a given price series.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 49

Flipping Dosa

Exercise 3.14
There is a stack of dosas on a tava, of distinct radii. We want to serve the dosas of increasing
radii. Only two operations are allowed: (i) serve the top dosa, (ii) insert a spatula (flat spoon) in
the middle, say after the first k, hold up this partial stack, flip it upside-down, and put it back.
Design a data structure to represent the tava, input a given tava, and produce an output in sorted
order. What is the time complexity of your algorithm?
This is also related to the train-shunting problem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 50

Exponential growth

Exercise 3.15
a. Analyze the performance of exponential growth if the growth factor is three instead of two.
Does it give us better or worse performance than doubling policy?
b. Can we do a similar analysis for growth factor 1.5?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 51

Problem: reversing a linked list

Exercise 3.16
Give an algorithm to reverse a linked list. You must use only three extra pointers.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 52

Problem: middle element

Exercise 3.17
Give an algorithm to find the middle element of a singly linked list.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 53

Stack and queue (Endsem 2023)

Exercise 3.18
Given two stacks S1 and S2 (working in the LIFO method) as black boxes, with the regular
methods: “Push”, “Pop”, and “isEmpty”, you need to implement a Queue (specifically : Enqueue
and Dequeue working in the FIFO method). Assume there are n Enqueue/ Dequeue operations on
your queue. The time complexity of a single method Enqueue or Dequeue may be linear in n,
however the total time complexity of the n operations should also be Θ(n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 54

Topic 3.11

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 55

Problem: messy queue

Exercise 3.19
The mess table queue problem: There is a common mess for k hostels. Each hostel has some
N1,...,Nk students. These students line up to pick up their trays in the common mess. However,
the queue is implemented as follows: If a student sees a person from his/her hostel, she/he joins
the queue behind this person. This is the ”enqueue” operation. The ”dequeue” operation is as
usual, at the front. Think about how you would implement such a queue. What would be the time
complexity of enqueue and dequeue? Do you think the average waiting time in this queue would be
higher or lower than a normal queue? Would there be any difference in any statistic? If so, what?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 56

Merge sorted queues (Quiz 2023)

Exercise 3.20
Write a time and space efficient algorithm to merge k sorted-linked list in sorted order, each
containing the same no of elements?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 57

Exercise: axioms of queue**

Exercise 3.21
Using axioms of queue show that the assert in the following does not fail.

queue <int > q,q1;

q.enqueue (2);

q.enqueue (0);

q.enqueue (7);

q.dequeue ();

q.dequeue ();

q.enqueue (3);

q1.enqueue (7);

q1.enqueue (3);

Assert(q == q1);

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 58

End of Lecture 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Stack
	Implementing stack
	Why exponential growth strategy?
	Applications of stack
	Queue
	Array implementation of queue
	Queue via linked list
	Circular linked list
	Deque via a doubly linked list
	Tutorial problems
	Problems

