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Ordered dictionary

Recall: There are two kinds of dictionaries.

▶ Dictionaries with unordered keys
▶ We use hash tables to store dictionaries for unordered keys.

▶ Dictionaries with ordered keys
▶ Let us discuss the efficient implementations for them.
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Recall: Dictionaries via ordered keys on arrays

▶ Searching is O(log n)
▶ Insertion and deletion is O(n)

▶ Need to shift elements before insertion/after deletion

Can we do better?
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Topic 6.1

Binary search trees
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Binary search trees (BST)

Definition 6.1
A binary search tree is a binary tree T such that for each n ∈ T

▶ n is labeled with a key-value pair of some dictionary,
▶ (if label(n) = (k , v), we write key(n) = k)

▶ for each n′ ∈ descendants( left(n) ), key(n′) ≤ key(n), and

▶ for each n′ ∈ descendants( right(n) ), key(n′) ≥ key(n).

Note that we allow two entries to have the same keys. The same key can be in either of the
subtrees.

Commentary: We assume descendants(Null) = ∅.
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Example: BST

Example 6.1

In the following BST, we show only keys stored at the node.

8

5

7

17

11 21

≤ 8 ≥ 8
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Example: many BSTs for the same data

Example 6.2

The same set of keys may result in different BSTs.

8

5

7

17

11 21

11

5

7

8

21

17
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Exercise: Identify BST

Exercise 6.1
Which of the following are BSTs?

17

5 21

11

17

5

11

21

17

5

21 11

17

5

5 11

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 9

Topic 6.2

Algorithms for BST
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Algorithms for BST

We need the following methods on BSTs

▶ search

▶ insert

▶ minimum/maximum

▶ successor/predecessor: Find the successor/predecessor key stored in the dictionary

▶ delete

Exercise 6.2
Give minimum and successor algorithms for sorted array-based implementation of a dictionary.

Commentary: We did not discuss algorithms for minimum and successor in our earlier discussion of unordered dictionaries. However, we need them for other operations on
BST.
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Searching in BST

Example 6.3

Searching 11 in the following BST.

▶ We start at the root, which is node 8

▶ At node 8, go to the right child because 11 > 8.

▶ At node 17, go to the left child because 11 < 17.

▶ We find 11 at the node.

8

5

7

17

11 21

Commentary: By the definition of BST, we are guar-
anteed that 11 will not occur in the left subtree of 8.
This is the same reasoning as the binary search that
we discussed earlier.
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Unsuccessful search in BST

Example 6.4

Searching 6 in the following BST.

▶ We start at the root, which is node 8

▶ At node 8, go to the left child because 6 < 8.

▶ At node 5, go to the right child because 6 > 5.

▶ At node 7, go to the left child because 6 < 7.

▶ Since node 7 has no left child the search fails.

8

5

7

17

11 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 13

Algorithm: Search in BST
Algorithm 6.1: search(BST T, int k)

1 n := root(T );
2 while n ̸= Null do
3 if key(n) = k then
4 break

5 if key(n) > k then
6 n := left(n)
7 else
8 n := right(n)

9 return n

▶ Running time is O(h), where h is height
of BST.

▶ If there are n keys in the BST, the worst
case running time is O(n).

Exercise 6.3
a. Modify the above algorithm to find all occurrences of key k .
b. Give an input of search that exhibits worst-case running time.

Commentary: Answer:
a. We search in the BST. If the key is found on a node,
then we start two(Why?) searches in both the subtrees
of the found node. We recursively start the searches.

b. Find N in the following BST

1

2

..

N
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Topic 6.3

Insert in BST
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Example: Insert in BST

Example 6.5

Where do we insert 10?

8

5

2 7

6

17

11

10

21
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Algorithm: Insert in BST
Algorithm 6.2: insert(BST T, Node n)

1 x := root(T );y := Null ;
2 while x ̸= Null do
3 y := x ;
4 if key(x) > key(n) then
5 x := left(x)
6 else
7 x := right(x)

8 if y = Null then
9 root(T ) = n;

10 if key(y) > key(n) then
11 left(y) := n
12 else
13 right(y) := n

14 parent(n) = y

Exercise 6.4
a. What is the running time of the algorithm?
b. Give an order of insertion for the maximum tree height.
c. Give an order of insertion for the minimum tree height.
d. What happens if key(n) already exists?

Commentary: Answer:
a. the same as search,
b. 1,2,3,4,5,...,n
c. n/2,n/4,3n/4,n/8,3n/8,5n/8,7n/8,..
d. This algorithm always goes right. It is correct but
may not be a good idea. It should randomly choose
left or right.
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Topic 6.4

Minimum in BST
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Example: minimum in BST

Example 6.6

What is the minimum of the following BSTs?

8

5

2 7

17

11 21

8

5

7

17

11 21

Commentary: Always go left to find a smaller node.
As soon as we do not have a left child, we have found
the minimum node.
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Algorithm: Minimum in BST

The following algorithm computes the minimum in the subtree rooted at node n.

Algorithm 6.3: minimum(Node n)

1 while n ̸= Null and left(n) ̸= Null do
2 n := left(n)

3 return n

▶ Runtime analysis is the same as
search.

Exercise 6.5
Modify the above algorithm to compute the maximum
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Correctness of minimum

Theorem 6.1
If n ̸= Null , the returned node by minimum(n) has the minimum key in the subtree rooted at n.

Proof.
If left(n) = Null , key(n) is the minimum key.

Otherwise, we go to n′ = left(n). Any node not in
descendants(n′) must have a larger key than key(n′).(Why?)

So the minimum of descendants(n′) is the overall mini-
mum.

This argument continues to hold for any number of itera-
tions of the loop. (induction)

Therefore, our algorithm will compute the minimum.

n

n’

.. ..

.. ..

..

..

≥ key(n′)

Commentary: Note that key(n′) ≤ key(n) ≤
key(n′′) where n′′ ∈ descendants(right(n))
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Topic 6.5

Successor in BST
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Example: successor in BST
We now consider the problem of finding the node that has the successor key of a given node.

Example 6.7

Where is the successor of 8?

8

5

2 7

6

17

11 21

Observation: Minimum of right subtree.
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Example: successor in BST(2)

Example 6.8

Where is the successor of 7?

8

5

2 7

6

17

11 21

Exercise 6.6
a. When do we not have the successor in the right subtree?
b. If the successor is not in the right subtree, where else can it be?
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Successor locations
Finding a successor to n

Case 1: If there is a right subtree:

n

...

..

successor

Null

Case 2: If there is no right subtree:

successor

...

..

n

Null

Go right and
follow left

Follow parent
until turn right
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Successor in BST

Algorithm 6.4: successor(BST T, node n)

1 if right(n) ̸= Null then
2 return minimum(right(n))

3 while parent(n) ̸= Null and right(parent(n)) = n do
4 n := parent(n);

5 return parent(n)

Exercise 6.7
a. Modify the above algorithm to compute predecessor
b. What is the running time complexity of successor?
c. What happens when we do not have any successor?
d. What is returned if multiple keys have the same value?
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Topic 6.6

Deletion
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Example: deleting a leaf

Example 6.9

We delete leaf 11 by simply removing the node.

8

5

2 7

6

17

11 21
✗
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Example: deleting a node with a single child

Example 6.10

We delete node 7 by making 6 child of 5 and removing the node.

8

5

2 7

6

17

11 21
✗
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Example: deleting a node with both children

Example 6.11

We delete node 8 by removing 11, which is the successor of 8, and then storing the data of 11 on 8.

8

5

2 7

6

17

11

14

2111
✗

⇝

11

5

2 7

6

17

14 21
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Algorithm: delete in BST

Algorithm 6.5: delete(BST T, Node n)

1 y := (left(n) = Null ∨ right(n) = Null) ? n : Successor(T , n); // y will be deleted
2 if y ̸= n then
3 key(n) := key(y) // copy all data on y

4 x := (left(y) = Null) ? right(y) : left(y); //x is the child of y or x is Null
5 if x ̸= Null then
6 parent(x) = parent(y) //y is not a leaf, update the parent of x

7 if parent(y) = Null then
8 root(T ) = x // y was the root, therefore x is root now
9 else
10 if left(parent(y)) = y then
11 left(parent(y)) := x //Remove y from the tree
12 else
13 right(parent(y)) := x //Remove y from the tree
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Topic 6.7

Average BST depth
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Average cost of n-inserts

Let us consider a random permutation of 1, .., n.

We insert the numbers in the order.

The total cost of insertions will be the sum of the levels of nodes in the resulting BST.

Definition 6.2
Let T (n) denote the average time taken over n! permutations to insert n keys.

Exercise 6.8
What are the best and worst insertion times?
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Example: Computing T (n)

Example 6.12

Let us compute the average cost of inserting three elements.

1

2

3

1 2 3

Insertion cost 3

1

3

2

1 3 2

3

2

1 3

2 1 3

2

2

1 3

2 3 1

2

3

1

2

3 1 2

3

3

2

1

3 2 1

3

T (3) = 16/6
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Recurrence for T (n)

In (n − 1)! permutations, i is the first element.

In the permutations,

▶ i is the root,

▶ keys 1, ..., i − 1 are in the left subtree, and

▶ keys i + 1, ..., n are in the right subtree.
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Recurrence for T (n)(2)

There are (i − 1)! orderings for keys 1, ..., i − 1.

In the (n − 1)! permutations, each ordering of (i − 1)! occurs (n − 1)!/(i − 1)!.

If we only had keys 1, ..., i − 1, the average time is T (i − 1).

The total time to insert in all the orderings is (i − 1)!T (i − 1).
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Recurrence for T (n)(3)
While inserting keys 1, .., i − 1, each key is compared with root i , which is an additional unit cost
per insertion.

Therefore, the total time of insertion of (i − 1)! orderings is

(i − 1)!(T (i − 1) + i − 1).

Since each permutation occurs (n − 1)!/(i − 1)!, total time for insertions in the left subtree is

(n − 1)!(T (i − 1) + i − 1).

Similarly, the total time for insertions in the right subtree is

(n − 1)!(T (n − i) + n − i).
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Recurrence for T (n)(4)

The total time to insert all keys in the permutations where the first key is i is

(n − 1)!(T (i − 1) + T (n − i) + n − 1).

Therefore, the total time of insertions in all permutations

(n − 1)!
n∑

i=1

(T (i − 1) + T (n − i) + n − 1).
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Recurrence for T (n)(5)

Therefore, the average time of insertions in all permutations

T (n) =
(n − 1)!

n!

n∑
i=1

(T (i − 1) + T (n − i) + n − 1).

After simplification,

T (n) =
2

n

n−1∑
i=0

T (i) + n − 1,

where T (0) = 0.
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What is the growth of T (n)?

We need to find an approximate upper bound of T (n).

Let us solve the recurrence relation.
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Simplify the recurrence relation
The relation for n − 1.

T (n − 1) =
2

n − 1

n−2∑
i=0

T (i) + n − 2,

After reordering the terms.

n−2∑
i=0

T (i) =
n − 1

2
(T (n − 1)− n + 2),

After reordering of terms in T (n),

T (n) =
2

n

n−2∑
i=0

T (i) +
2

n
T (n − 1) + n − 1 =

n − 1

n
(T (n − 1)− n + 2) +

2

n
T (n − 1) + n − 1,

T (n) =
n + 1

n
T (n − 1) +

n − 1

n
(−n + 2) + n − 1 =

n + 1

n
T (n − 1) +

2(n − 1)

n
,
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Approximate recurrence relation

From

T (n) =
n + 1

n
T (n − 1) +

2(n − 1)

n
,

we can conclude

T (n) ≤ n + 1

n
T (n − 1) + 2.
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Expanding the approximate recurrence relation

T (n) ≤ n + 1

n
T (n − 1) + 2

≤ n + 1

n
(

n

n − 1
T (n − 2) + 2) + 2

=
n + 1

n − 1
T (n − 2) +

n + 1

n
2 + 2

≤ n + 1

n − 1
(
n − 1

n − 2
T (n − 3) + 2) +

n + 1

n
2 + 2

=
n + 1

n − 2
T (n − 3) +

n + 1

n − 1
2 +

n + 1

n
2 + 2

T (n) ≤ n + 1

n − (n − 1)
T (0) +

n + 1

2
2 + ...+

n + 1

n
2 + 2
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Expanding the approximate recurrence relation

T (n) ≤ 2(n + 1)(
1

2
+ ...+

1

n︸ ︷︷ ︸
≤ln n

) + 2

T (n) ≤ 2(n + 1)(ln n) + 2

Therefore,
T (n) ∈ O(nlog n)

Commentary:
∫ n
1

1

x
dx = ln n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 44

Topic 6.8

Tutorial problems
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Exercise: Sorting via BST

Exercise 6.9
a. Show that in order printing of BST nodes produces a sorted sequence of keys.
b. Give a sorting procedure using BST.
c. Give the complexity of the procedure.
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Exercise: delete all smaller keys

Exercise 6.10
Given a BST T and a key k , the task is to delete all keys b < a from T. Write pseudocode to do
this. How much time does your algorithm take? What is the structure of the tree left behind?
What is its root?
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Exercise: expected height

Exercise 6.11
Let H(n) be the expected height of the tree obtained by inserting a random permutation of [n].
Write the recurrence relation for H(n).
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Exercise: find the leftmost and rightmost

Exercise 6.12
Given a BST tree T and a value v , write a program to locate the leftmost and rightmost
occurrence of the value v .
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Topic 6.9

Problems
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Exercise: post-order search tree

Exercise 6.13
Consider a binary tree with labels such that the postorder traversal of the tree lists the elements in
increasing order. Let us call such a tree a post-order search tree. Give algorithms for search, min,
max, insert, and delete on this tree.
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Exercise: permutations

Exercise 6.14
Let [a(1),...,a(n)] be a random permutation of n. Let p(i) be the probability that a(a(1))=i.
Compute p(i).
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Topic 6.10

Extra slides: proof of correctness of successor

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 53

Parts of BST with respect to a node n

n

Left subtree Right subtree

Path to n

Off-path nodes
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The least common ancestor(LCA) is in the middle

Theorem 6.2
For nodes n1 and n2, let n = LCA(n1, n2). If key(n1) ≤ key(n2), key(n1) ≤ key(n) ≤ key(n2).

Proof.
We have four cases.
case n1 ∈ ancestors(n2): Trivial.(Why?)

case n2 ∈ ancestors(n1): Trivial.

case key(n1) = key(n2):
Since key(n) divided one of the nodes to left and the other to right, key(n) = key(n1).

case key(n1) < key(n2):
n1 and n2 must be in the left and right subtree of n respectively.
Therefore, key(n1) ≤ key(n) ≤ key(n2).
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Larger ancestors keep growing!

Theorem 6.3
If n2 ∈ ancestors(n1), n1 ∈ ancestors(n), and key(n2) > key(n), then key(n2) ≥ key(n1).

Proof.
n must be in the left subtree of n2.

n1 must be in the subtree.(Why?)

Since n1 is in the left subtree of n2, key(n2) ≥ key(n1).
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Correctness of successor

In the following proof, we assume that all nodes have distinct elements.

Theorem 6.4
Let T be a BST, node n ∈ T , and n′ = successor(n).
If n′ ̸= Null , key(n′) > key(n) and for each node n′′ ∈ T − {n, n′}, we have

¬(key(n) < key(n′′) < key(n′)).

Proof.
Claim: A successor of n cannot be an off-path node.
Assume an off-path node n′ is the successor of n.
Therefore, key(n) < key(n′).
Due to theorem 6.2, key(n) ≤ key(LCA(n, n′)) ≤ key(n′).
Therefore, key(LCA(n, n′)) is between the nodes. Contradiction. ...
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Correctness of successor(2)

Proof(Continued).

Claim: Successor of n cannot be in left subtree.
All nodes will have keys that are less than key(n).

Claim: If the right subtree exists, then a successor cannot be on the path to n.

1. Consider n′ ∈ descendants(right(n)).

2. Therefore, key(n′) > key(n).

3. For some n′′ ∈ ancestors(n), let us assume n′′ is successor of n.

4. Therefore, key(n′′) > key(n).

5. Therefore, n ∈ descendants(left(n′′)).

6. Therefore, n′ ∈ descendants(left(n′′)). due to 1 and 5

7. Therefore, key(n′′) > key(n′).

8. Therefore, key(n′′) > key(n′) > key(n).

9. Therefore, key(n′′) is not a successor. Contradiction. ...
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Correctness of successor(2)

Proof(Continued).

Claim: If the right subtree exists, the successor is the minimum of the right subtree.
Since the successor is nowhere else, it must be the minimum.

Claim: If there is no right subtree and there is a node greater than n, the successor is the closest
node on the path to n such that the key of the node is greater than n.
Let n1, n2 ∈ ancestors(n) such that n2 ∈ ancestors(n1), key(n2) > key(n), and key(n1) > key(n).
Due to theorem 6.3, key(n2) > key(n1).
Therefore, n2 cannot be a successor.
Therefore, the closest node to n is the successor.

Exercise 6.15
a. Show that the closest node in the above proof must have n in its right subtree.
b. There is a final case missing in the above proof. What is the case? Prove the case.
b. Modify the above proof to support repeated elements in BST.
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End of Lecture 6
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