
cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2024

Lecture 8: Heap

Instructor: Ashutosh Gupta

IITB India

Compile date: 2024-09-22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 2

Topic 8.1

Priority queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 3

Scheduling problem

On a computational server, users are submitting jobs to run on a single CPU.

▶ A user also declares the expected run time of the job.

▶ Jobs can be preempted.

Policy: shortest remaining processing time, which allows interruption of a job if a new job with a
smaller run time is submitted.

The policy minimizes average waiting time.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 4

Scheduling problem operations

We need the following operations in the scheduling problem.

▶ Update the remaining time in every tick

▶ Delete a job when the remaining time is zero

▶ Find the next job to run

▶ Insert a job when it arrives

Definition 8.1
In a priority queue, we dequeue the highest priority element from the enqueue elements with
priorities.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 5

Interface of priority queue https://en.cppreference.com/w/cpp/container/priority_queue

▶ priority_queue<T,Container,Compare> q : allocates new queue q

▶ q.push(e) : adds the given element e to the queue.

▶ q.pop() : removes the highest priority element from the queue.

▶ q.top() : access the highest priority element.

▶ Container class defines the physical data structure where the queue will be stored. The
default value is Vector .

▶ Compare class defines the method of comparing priorities of two elements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/priority_queue

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 6

Topic 8.2

Implementations of priority queue

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 7

Implementation using unsorted linked list/array

In case we use a linked list,

▶ We implement q.push by inserting the element at the front of the linked list, which is O(1)
operation.

▶ We need to scan the entire list to find the maximum for implementing q.pop and q.top

Exercise 8.1
How will we implement a priority queue over unsorted arrays?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 8

Implementation using sorted linked list/array

In case we use a linked list,

▶ The maximum will be at the end of the list. We can implement q.pop and q.top in O(1).

▶ However, q.push(e) needs to scan the entire list to find the right place to insert e, which is
O(n) operation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 9

Priority queue

The priority queue is one of the fundamental containers.

Many other algorithms assume access to efficient priority queues.

We will define a data structure heap that provides an efficient implementation for the priority
queue.

Commentary: The heap is like the red-black tree, which provides an efficient implementation for ordered maps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 10

Topic 8.3

Heap - partial sorting!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 11

Heap

Definition 8.2
A heap T is a binary tree such that the following holds.

▶ (structural property) All levels are full except the last
one and the last level is left filled.

▶ (heap property) for each non-root node n,
key(n) ≤ key(parent(n)).

Example 8.1

21

20

16 13

19

17

Exercise 8.2
a. Show that nodes on a path from the root to a leaf have keys in non-increasing order.
b. The above definition is called maxheap. Can we symmetrically define minheap?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 12

Exercise: identify heap

Exercise 8.3
Which of the following are Heaps?

17

5 11

6

26

22

18 17

21

75

21

17 5

21

17

17

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 13

Algorithm: maximum

Algorithm 8.1: Maximum(Heap T)

1 return T [0]

▶ Correctness
▶ Let us suppose the maximum is not at the root.
▶ There is a node n that has maximum key but parent(n) has a smaller key, which violates heap

condition.
▶ Contradiction.

▶ Running time is O(1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 14

Height of heap

Let us suppose a heap has n nodes and height h.

The number of nodes in a complete binary tree of height h is 2h − 1.

Therefore,
2h−1 − 1 < n ≤ 2h − 1.

Therefore h = ⌊log2 n⌋

Exercise 8.4
Give an example of a heap that touches the lower bound.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 15

Storing heap
Let us number the nodes of a heap in the order of level.

20

17

8

1 6

11

10 0

19

14

5 9

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

parent(i) = (i − 1)/2, left(i) = 2i + 1, and right(i) = 2i + 2.
We place the nodes on an array and traverse the heap using the above equations.

20 17 19 8 11 14 4 1 6 10 0 5 9 3 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Since the last level is left filled, we are guaranteed the nodes are contiguously placed.
Instead of writing key(i) for node i in heap T , we will write T [i] to indicate the key.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 16

Topic 8.4

Insert in heap – jostling to front

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 17

Example: insert in heap

Example 8.2

Where do we insert 15?

21

13

10

5 8

7

6 15

17

11 2

0

1 2

3 4 5 6

7 8 9 10

Insert at end

Repair heap

21

15

10

5 8

13

6 7

17

11 2

0

1 2

3 4 5 6

7 8 9 10

▶ Insert at the first available place, which is easy to spot. (Why?)

▶ Move up the new key if the heap property is violated.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 18

Algorithm: Insert

Algorithm 8.2: Insert(Heap T, key k)

1 i := T .size;
2 T [i] := k ;
3 while i > 0 and T [parent(i)] < T [i] do
4 Swap(T, parent(i), i);
5 i := parent(i)

6 T .size := T .size + 1;

▶ Correctness
▶ Structural property holds due to the

insertion position.
▶ Due to the heap property of input T , the

path to i (not including i) the nodes must
be in non-increasing order.

▶ Let i0 be the value of i when the loop exits.
▶ Insert replaces the keys of the nodes in

the path from i0 to T .size with the keys of
their parents, which implies the keys do not
decrease at the internal nodes.

▶ Therefore, no introduction of a violation.
▶ Therefore, we will have a heap at the end.

▶ Running time is O(logT .size).

Exercise 8.5
Why do we need the phrase “not including” and “internal” in the above proof?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 19

Topic 8.5

Heapify: fix the almost heaps

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 20

Heapify : a basic operation on a heap

Input to Heapify:

▶ Let i be a node of a binary tree T with the structural property of heap

▶ Let us suppose the binary trees rooted at left(i) and right(i) are valid heaps.

▶ T [i] may be smaller than its children and violates the heap property.

Output of Heapify:
Heapify makes the binary tree rooted at i a heap by pushing down T [i] in the tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 21

Example: Heapify

Example 8.3

The trees rooted at positions 1 and 2 are heaps. We have a violation at position 0. Heapify will fix
the problem by moving the key down.

9

17

10

5 8

7

6

13

11 2

0

1
2

3 4 5 6

7 8 9

Heapify(0)
17

10

9

5 8

7

6

13

11 2

0

1 2

3 4 5 6

7 8 9

▶ Keep moving down to the child which has the maximum key. (Why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 22

Algorithm: Heapify

Algorithm 8.3: Heapify(Heap T, i)

1 c := IndexWithLargestKey(T , i , left(i), right(i)) //assume T [i] = −∞ if i ≥ T .size.
2 if c == i then return;
3 Swap(T , c , i);
4 Heapify(T ,c);

▶ Correctness
▶ Same as insert, but we are pushing down.

▶ Running time is O(logT .size).

Commentary: Assumption T [i] = −∞ if i ≥ T .size is a convenience of notation. We may have a situation, where the T [i] exists and has some key. Without loss of
correctness, we can interpret them as if the key is −∞. We will need this interpretation later for HeapSort.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 23

Topic 8.6

Delete maximum in heap

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 24

Example: DeleteMax

Example 8.4

Let us delete 21 at position 0.

21

17

10

5 8

7

6

13

11 2

0

1
2

3 4 5 6

7 8 9

Swap(T,0,9)

Heapify(0)

17

10

8

5 6

7

13

11 2

0

1 2

3 4 5 6

7 8

▶ Swap with the last position, delete the last position, and run Heapify.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 25

Algorithm: DeleteMax

Algorithm 8.4: DeleteMax(Heap T)

1 Swap(T , 0,T .size − 1);
2 T .size := T .size − 1;
3 Heapify(T , 0);
4 return T [T .size];

▶ Correctness
▶ The maximum element is removed and

heapify returns a heap.

▶ Running time is O(logT .size).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 26

Topic 8.7

Build heap

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 27

Build heap https://en.cppreference.com/w/cpp/algorithm/make_heap

▶ Input: A binary tree T that has the structural property
▶ If the structural property holds, then the T is an array

▶ Output: A heap over elements of T

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/algorithm/make_heap

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 28

Algorithm: BuildHeap

Algorithm 8.5: BuildHeap(Heap T)

1 for i := T .size − 1 down to 0 do
2 Heapify(T , i)

Order of processing in BuildHeap.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 29

Example: BuildHeap

Example 8.5

Consider sequence 1 17 19 20 11 9 4 8 12 10 0 5 14 3 2. Let us fill them in the following tree.

1

17

20

8 6

11

10 0

19

9

5 14

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

BuildHeap traverses the tree bottom up. Heapify calls execute only the following swaps.

▶ Heapify(T,5): Swap(T,5,12)

▶ Heapify(T,1): Swap(T,1,3)

▶ Heapify(T,0): Swap(T,0,1); Swap(T,1,3); Swap(T,3,8);

The other calls to Heapify will not apply any swaps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 30

Correctness of BuildHeap

▶ Correctness by induction
▶ Base case:

If i does not have children, it is already a heap.
▶ Induction step:

We know left(i) > i or right(i) > i .
Due to the induction hypothesis, both the subtrees are heap before processing i .
Therefore, Heapify(T , i) will return a heap rooted at i .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 31

Running time of BuildHeap

Let us suppose T is a complete tree with n nodes.

Recall: Heapify for a node at height h has O(h) swaps.

At height h the number of nodes is ⌈n/2h+1⌉ and the height of T is ⌊log n⌋.

The total running time of BuildHeap is

⌊log n⌋∑
h=0

O(h)⌈n/2h+1⌉ = O(
n

2

⌊log n⌋∑ h

2h
)

Since
∑∞

h=0

h

2h
= 2, the running time is O(n).

Commentary: We used identities O(f)g = O(fg) and
O(f) + O(g) = O(f + g).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 32

Calculation to show
∑∞

h=0

h

2h
= 2

We know
∞∑
h=0

xh =
1

1− x

After differentiating over x ,
∞∑
h=0

hxh−1 =
1

(1− x)2

After multiplying with x ,
∞∑
h=0

hxh =
x

(1− x)2

After putting x = 1/2,
∞∑
h=0

h

2h
= 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 33

Topic 8.8

Heapsort

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 34

Heapsort

Algorithm 8.6: HeapSort(Tree T)

1 T .size = |nodes of T|;
2 BuildHeap(T);
3 while T .size > 0 do
4 DeleteMax(T)

▶ Since DeleteMax moves maximum to
T .size − 1 position, the array is sorted in place.

▶ Running time:
▶ BuildHeap is O(n)
▶ DeleteMax(T) is O(log i) at size i .

▶ Total running time: O(n log n).

Exercise 8.6
Both BuildHeap and the above loop have iterative runs of Heapify.
Why are their running time complexities different?

Commentary: Please solve the above exercise to clearly understand the relevant mathematics.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 35

Example: Heapsort
Consider the following Heap obtained after running BuildHeap.

20

17

8

1 6

11

10 0

19

14

5 9

4

3 2

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

After the first DeleteMax,

19

17

8

1 6

11

10 0

14

9

5 2

4

3 20

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 36

Example: Heapsort(2)

After the second DeleteMax,

17

11

8

1 6

10

3 0

14

9

5 2

4

19 20

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

DeleateMax has placed 19 and 20 at their sorted position.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 37

Topic 8.9

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 38

Exercise: implement scheduling problem

Exercise 8.7
Give an implementation for the scheduling problem using Heap.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 39

Exercise: Why heap?

Exercise 8.8
Can a Priority Queue be implemented as a red-black tree? What advantages does a heap
implementation have over a red-black tree implementation?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 40

Exercise: BST and Heap (Midterm 2023)

Exercise 8.9
Give a tree, if exists, that is a binary search tree, is a heap, and has more than two nodes. If such
a tree does not exist, give a reason.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 41

Exercise: 2D-matrix

Exercise 8.10
Suppose we have a 2D array where we maintain the following conditions: for every (i,j), we have
A(i , j) ≤ A(i + 1, j) and A(i , j) ≤ A(i , j + 1). Can this be used to implement a priority queue?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 42

Exercise: kth smallest element

Exercise 8.11
Given an unsorted array find the kth smallest element using a priority queue.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 43

Exercise: Merge heaps (Midterm 2023)

Exercise 8.12
Given two heaps give an efficient algorithm to merge the heaps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 44

Topic 8.10

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 45

Exercise: Leftist heap (midsem 2024)

Algorithm 8.7: merge(LeftistHeap a,LeftistHeap b)

1 if a == Null then return b;
2 if b == Null then return a;
3 if (value(b) < value(a)) then
4 return merge(b, a)

5 right(a) := merge(right(a),b);
6 if npl(left(a)) < npl(right(a)) then
7 SWAP(left(a),right(a))

8 return a

Algorithm 8.8: insert(Node a, LeftistHeap b)

1 left(a)=right(a):= Null; Return merge(a,b)

Algorithm 8.9: deleteMin(LeftistHeap a)

1 if a == Null then return;
2 return merge(left(a),right(b))

Exercise 8.13
A leftist heap is a heap without the structural
property. Instead, it satisfies leftist property
npl(left(n)) ≥ npl(right(n)) for each node n, where

npl(n) =

{
-1 if n is null

min(npl(left(n)), npl(right(n)))+1 otherwise.

In the left, we define operations on the heap .
Prove that insert and deleteMin return leftist and
are O(log m), where m is the size of inputs.

Commentary: Solution: Base case: merge returns inputs. So, the returned object is
a leftist heap. Inductive step: Since merge is a recursive program, we assume that the
recursive call returns a leftist heap and returned heap root is the root of one of the two
inputs. Since the left child of a is never changed, and b and the initial left child of a
are smaller than a, the heap property certainly holds on a at the last return. The leftist
property holds because of the swap.

Merge recursive calls traverse the right paths of input trees. So, the running time depends
on the length of the right paths. We prove if the right path has a length of at least r, the
tree has at least 2r -1 nodes. Base case: r = 1. The tree has at least one node. Inductive
step: The right subtree has a right path of at least r - 1 nodes, so it has at least 2r−1 - 1
nodes. The left subtree must also have a right path of at least r - 1 (otherwise, there is a

null path of r - 3, less than the right subtree). Again, the left has 2r−1 - 1 nodes. Sum
the nodes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 46

End of Lecture 8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Priority queue
	Implementations of priority queue
	Heap - partial sorting!
	Insert in heap – jostling to front
	Heapify: fix the almost heaps
	Delete maximum in heap
	Build heap
	Heapsort
	Tutorial problems
	Problems

