
cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2024

Lecture 9: Pattern matching

Instructor: Ashutosh Gupta

IITB India

Compile date: 2024-09-13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 2

Topic 9.1

Pattern matching problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 3

Pattern matching

Definition 9.1
In a pattern-matching problem, we need to find the position of all occurrences of a pattern string
P in a string T .

Usage:

▶ Text editor

▶ DNA sequencing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 4

Example : Näive approach for pattern matching

Example 9.1

Consider the following text T and pattern P. We try to match the pattern in every position.

x y z x y x x y x y p xT

x y x yP x y x yx y x yx y x y

x y x y

x y x y

x y x yx y x yx y x yx y x yx y x y

x y x y

x y x y

x y x y
Running time complexity is O(|T ||P|).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 5

Wasteful attempts of matching.

x y z x y x x y x y p xT

i

x y x yP x y x y

x y x y

x y x y

Should we have tried to match the pattern at the second and third positions?

No.

Let us suppose we failed to match at position i of T and position 2 of P.

▶ We know that T [i − 1] = y . Therefore, there is no matching starting at i − 1. (Why?)

▶ We know that T [i] ̸= x . Therefore, there is no matching starting at i . (Why?)

Commentary: In the drawing i is 2. However, we have
named the position i to illustrate the argument using
symbolic expressions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 6

Shifting the pattern

Let us suppose at position i of T and j of P the matching fails.

.T

i

P

j

Let us suppose we want to resume the search by only updating j .

If we assign j some value k , we are shifting the pattern forward by j − k .

Exercise 9.1
What is the meaning of k = j − 1, k = 0, or k = −1?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 7

Side note: out-of-bounds access of P

If k takes value −1 or |P|, P[k] is accessing the array out of bounds.

For consistency of the definitions, we will say P[−1] = P[|P|] = Null .

However, the algorithms will be carefully written and there will be no out-of-bound access in them.

Definition 9.2
Let P[i : j] indicates the array containing elements P[i],P[j].

Commentary: In a formal definition, we may overlook or simplify some implementation issues. This allows us to write clean mathematical definitions. However, the
implementations need to be careful about the issues.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 8

What is a good value of k?
We know T [i − j : i − 1] = P[0 : j − 1] and T [i] ̸= P[j].

.T

i

P

jP[j − k : j − 1]

k
P[0 : k − 1]

We must have P[0 : k − 1] = P[j − k : j − 1] and P[j] ̸= P[k](Why?).

Exercise 9.2
Should we choose the largest k or smallest k?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 9

The largest k implies the minimum shift
We choose the largest k such that

P[0 : k − 1] = P[j − k : j − 1] and P[j] ̸= P[k].

k only depends on P and j . Since P is typically small, we pre-compute array h such that h[j] = k .

Example 9.2

x y x yP

h −1 0 −1 0 2

x y x zP

h −1 0 −1 1 0

We can compute h in O(|P|) time. We will discuss this later.

Exercise 9.3
a. Show that j > h(j) ≥ −1 for each j ∈ [0..|P|)
b. Show that |P| > h(|P|) ≥ 0 if |P| > 0. Is it true if |P| = 0?
c. If we drop condition P[j] ̸= P[k], what may go wrong?

Commentary: Answer of b: Since P[|P|] = null , we
are guaranteed that P[|P|] ̸= P[0]. Since we have
P[0 : −1] = P[j : j − 1]. k = 0 will satisfy the
condition for P[|P|]. Since we are looking the largest
k, P[|P|] ≥ 0.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 10

Knuth–Morris–Pratt algorithm
Algorithm 9.1: KMP(string T,string P)

1 assume(|P| > 0);
2 i := 0; j := 0; found := ∅;
3 h := KMPTable(P);
4 while i < |T | do
5 if P[j] = T [i] then
6 i := i + 1; j := j + 1;
7 if j = |P| then
8 found.insert(i − j);
9 j := h[j];

10 else
11 j := h[j];
12 if j < 0 then
13 i := i + 1; j := j + 1;

14 return found

Running time complexity:

▶ Since no. of increments of i ≤ |T |, the line 6
and 13 will execute ≤ |T | times in total.

▶ How do we bound the number of iterations when
the else branch does not increment i?

1. The else branch reduces j because h[j] < j .
2. Since every time at the loop head j ≥ 0 (Why?),

no. of reductions of j ≤ no. of increments of j .
3. Since i and j are always incremented together,

no. of reductions of j ≤ no. of increments of i .
4. no. of reductions of j ≤ |T |.

▶ O(|T |) algorithm Commentary: The step two is bounding the number of
reductions over all iterations of the loop (needs some
thinking). It is called amortized complexity. Note that
the argument does not guarantee a constant bound
over the number of consecutive reduction steps.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 11

Example : KMP execution

Example 9.3

Consider the following text T and pattern P. Let us suppose, we have h.

x y x yP

h −1 0 −1 0 2

x y z x y x x y x y p xT

x y x yP x y x yx y x yx y x y

Shifting at j = 2 and i = 2. Since h[2] = −1, the
pattern is shifted to 3, j = 0 and i = 3.

x y x yx y x yx y x yx y x yx y x y

x y x y

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 12

Topic 9.2

How to compute array h?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 13

Recall: the definition of h

For a pattern P, h[i] is the largest k such that

P[0 : k − 1] = P[i − k : i − 1] and P[i] ̸= P[k].

We use KMP like algorithm again to compute h.

When we compute h[i], we assume we have computed h[i ′] for each i ′ ∈ [0, i).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 14

Self-matching: use KMP again for computing h

We run two indexes i and j on P such that j < i .

We assume that for each k ∈ (j , i),¬(P[0 : k − 1] = P[i − k : i − 1] ∧ P[i] ̸= P[k]).

We will be computing h[i]. Let j be the current running match,i.e, P[i − j : i − 1] = P[0 : j − 1].

When we consider position i , we have two cases.

1. P[i] ̸= P[j]

2. P[i] = P[j]

In both the cases, we need to update h[i] and may update j .

We ensure that j is largest by updating j conservatively.

Commentary: Due to the assumption, no k larger j is a valid candidate or h[i].

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 15

Case 1: P[i] ̸= P[j]

P

i

P

j

.T

We assign h[i] := j , since j meets the requirements.

We have found the shift position for i .Now, we need to prepare for the next index i + 1.

Now we need to move the pattern forward as little as possible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 16

Case 1 (continued): P[i] ̸= P[j]
After the mismatch, we move the pattern forward as little as possible such that we have a match
at position i and are ready for the next iteration.

P

i

P

j

h[j]

We must have computed h for earlier indexes. We set j := h[j].
We need to keep reducing j until P[j] = P[i] or j ≤ 0.
Exercise 9.4
a. Why the value of h[j] be available?
b. Prove that ∀k ∈ (h[j], j] : ¬(P[0 : k − 1] = P[i − k : i − 1] ∧ P[i] ̸= P[k]). (important point!)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 17

Case 2: P[i] = P[j]

Let us consider the case when matching continues. How should we assign h[i]?

P

i

P

j

.T

We may use h[i] := j , but it does not meet the requirement P[i] ̸= P[j]. (Why?)

Let us jump to h[j], which will meet the requirements. (Why?) We assign h[i] := h[j].

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 18

Computing h array
Algorithm 9.2: KMPTable(string P)

1 i := 1; j := 0; h[0] := − 1;
2 while i < |P| do
3 if P[j] ̸= P[i] then
4 h[i] := j ;
5 while j ≥ 0 and P[j] ̸= P[i] do
6 j := h[j]; // Prepare for the next iteration

7 else
8 h[i] := h[j];

9 i := i + 1; j := j + 1;

10 h[|P|] := j ;
11 return h

Exercise 9.5
Give proof of correctness of the algorithm.

Commentary: Let prop(i, k) =
(P[0 : k − 1] = P[i − k : i − 1] ∧ P[i] ̸= P[k]).
The loop invariant at the head of the outer loop is
P[i − j : i − 1] = P[0 : j − 1],
∀k ∈ (j, i),¬prop(i, k), and
∀l < j prop(h[l], l) ∧ ∀k ∈ (h[l], l),¬prop(l, k).
We prove the correctness by proving the validity of the
loop invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 19

Example: computing h

Example 9.4

Consider the following pattern P and the first iteration of the outer loop, which is case 1.

x y x yP

i = 1

h −1

x y x yP

j = 0

x y x y

0

h[i]:=j

We need to update j := h[j] . Therefore, j = -1 .
Afterwards, we increment both j and i . Therefore, i = 2;j = 0; .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 20

Example: computing h (cotinued) (2)

Let us consider the second and third iteration of the outer loop, which are case 2.

x y x yP

i=2

h −1 0

x y x y

j=0

x y x y

h[i]:=h[j]

−1

i=3

j=1

x y x y

00

After the third iteration, the loop exits since i ≥ |P|.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 21

Example: computing h (cotinued) (3)

After the third iteration, the loop exists and we update h[|P|].

x y x yP

i=3

h −1 0 −1 0

x y x y

j=2

h[|P|]:=j

2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 22

Topic 9.3

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 23

Exercise: compute h

Exercise 9.6
Compute array h for pattern ”babbaabba”.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 24

Exercise: version of KMPtable

Exercise 9.7
Is the following version of KMPtable correct?

Algorithm 9.3: KMPTableV2(string P)

1 i := 1; j := 0; h[0] := − 1;
2 while i < |P| do
3 h[i] := j ;
4 while j ≥ 0 and P[j] ̸= P[i] do
5 j := h[j]; // Moving forward the pattern in minimum steps as in KMP

6 i := i + 1; j := j + 1;

7 h[|P|] := j ;
8 return h

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 25

Exercise: compute h(i)

Exercise 9.8
Suppose that there is a letter z in P of length n such that it occurs in only one place, say k, which
is given in advance. Can we optimize the computation of h?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2024 Instructor: Ashutosh Gupta IITB India 26

End of Lecture 9

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Pattern matching problem
	How to compute array h?
	Tutorial problems

