CS 433 Automated Reasoning 2025

Lecture 12: Satisfiability modulo theory (SMT) solvers

Instructor: Ashutosh Gupta

IITB India

Compile date: 2025-03-05

$\mathsf{CDCL}(\mathcal{T})$

CDCL solves(i.e. checks satisfiability) quantifier-free propositional formulas

 $\mathsf{CDCL}(\mathcal{T})$ solves quantifier-free formulas in theory \mathcal{T} ,

- separates the boolean and theory reasoning,
- proceeds like CDCL, and
- lacktriangle needs support of a \mathcal{T} -solver $\mathit{DP}_{\mathcal{T}}$, i.e., a decision procedure for conjunction of literals of \mathcal{T}

The tools that are build using CDCL(T) are called satisfiablity modulo theory solvers (SMT solvers)

$CDCL(\mathcal{T})$ - some notation

Let ${\mathcal T}$ be a first-order-logic theory with signature ${\bf S}$.

We assume input formulas are from \mathcal{T} , quantifier-free, and in CNF.

Definition 12.1

For a quantifier-free $\mathcal T$ formula F, let atoms(F) denote the set of atoms appearing in F.

Example 12.1

- ▶ f(x) = g(h(x, y)) is a formula in QF_EUF.
- \triangleright $x > 0 \lor y + x = 3.5z$ is a formula in QF_LRA.

Boolean encoder

For a formula F, let boolean encoder e be a partial map from atoms(F) to fresh boolean variables.

Definition 12.2

For a formula F, let e(F) denote the term obtained by replacing each atom a by e(a) if e(a) is defined.

Example 12.2

Let $F = x < 2 \lor (v > 0 \lor x > 2)$ and $e = \{x < 2 \mapsto x_1, v > 0 \mapsto x_2\}$. $e(F) = x_1 \lor (x_2 \lor \neg x_1)$

Exercise 12.1

Consider boolean encoder $e = \{x < 2 \mapsto x_1, y > 0 \mapsto x_2\}$. Encode the following.

$$ightharpoonup e(x < 2 \Rightarrow y < 0) =
ightharpoonup e(\top) =$$

Partial model

Definition 12.3

For a boolean encoder e, a partial model m is an ordered partial map from range(e) to \mathcal{B} .

Example 12.3

partial models $\{x \mapsto 0, y \mapsto 1\}$ and $\{y \mapsto 1, x \mapsto 0\}$ are not same.

CDCL(T) will proceed by constructing partial models like CDCL.

Reverse encoder

Definition 12.4

For a partial model m of e, let $e^{-1}(m) \triangleq \{e^{-1}(x)|x \mapsto 1 \in m\} \cup \{\neg e^{-1}(x)|x \mapsto 0 \in m\}$

Example 12.4

Let
$$e = \{x < 2 \mapsto x_1, y > 0 \mapsto x_2\}$$
 and $m = \{x_1 \mapsto 0, x_2 \mapsto 1\}$.
 $e^{-1} = \{x_1 \mapsto x < 2, x_2 \mapsto y > 0\}$
 $e^{-1}(m) = \{\neg(x < 2), y > 0\}$

Exercise 12.2

Consider boolean encoder $e = \{x < 2 \mapsto x_1, y > 0 \mapsto x_2\}$. Encode the following.

$$e^{-1}(\{x_1 \mapsto 0\}) = e^{-1}(\{x_3 \mapsto 0\}) =$$

•
$$e^{-1}(\{x_1 \mapsto 0, x_2 \mapsto 0\}) =$$
 • $e^{-1}(\emptyset) =$

Theory propagation

If we have partial assignment m, then we need to check if the theory accepts the assignment.

In other words, we need to know if $\bigwedge e^{-1}(m)$ is sat.

Example 12.5

In last example, we had $e^{-1}(m) = {\neg(x < 2), y > 0}.$

We ask if $\bigwedge e^{-1}(m) = \neg(x < 2) \land y > 0$ is sat. If no, we need to backtrack the assignments.

We assume that function THEORYDEDUCTION can check satisfiability of $\bigwedge e^{-1}(m)$.

$\mathsf{CDCL}(\mathcal{T})$

Algorithm 12.1: CDCL(\mathcal{T})(formula G)

```
e := \text{CreateEncoder}(G); F := e(G); m := \text{UnitPropagation}(m, F); dl := 0; dstack := \lambda x.0;
do
                          F is Boolean encoding of input G
       backtracking
    while m \not\models F do
        if dl = 0 then return unsat:
        (C, dl) := ANALYZECONFLICT(m);
        m.resize(dstack(dl)); F := F \cup \{C\}; m := UnitPropagation(m, F);
                                                                                    Same as SAT
       Boolean decision
                                                                                    solver CDCL
    if F is unassigned under m then
        dstack(dl) := m.size(); dl := dl + 1; m := Decide(m, F); m := UnitPropagation(m, F);
       Theory propagation
    if F is unassigned or sat under m then
        (Cs, dl') := \text{TheoryDeduction}(\mathcal{T})(\bigwedge e^{-1}(m), m, dstack, dl);
                                                                                         // Theory solving
        if dl' < dl then \{dl = dl'; m.resize(dstack(dl)); \};
        F := F \cup e(Cs); m := UNITPROPAGATION(m, F);
                                                                  returns a clause set
                                                                  and a decision level
while F is unassigned under m or m \not\models F or e^{-1}(m) is unsat:
return sat
```

Topic 12.1

THEORYDEDUCTION

Theory propagation

THEORYDEDUCTION looks at the atoms assigned so far and checks

- ▶ if they are mutually unsatisfiable
- \triangleright if not, are there other literals from G that are implied by the current assignment

Any implementation must comply with the following goals

- ► Correctness: boolean model is consistent with T
- ▶ Termination: unsat partial models are never repeated

THEORY DEDUCTION

 ${\rm THEORYDEDUCTION} \ \ \text{solves} \ \ \text{conjunction} \ \ \text{of literals and returns a set of clauses and a decision level}.$

$$(Cs, dl') := \text{TheoryDeduction}(\mathcal{T})(\bigwedge e^{-1}(m), m, dstack, dl)$$

Cs may contain the clauses of the form

$$(\bigwedge L) \Rightarrow \ell$$

where $\ell \in lits(F') \cup \{\bot\}$ and $L \subseteq e^{-1}(m)$.

Example: THEORY DEDUCTION

Example 12.6

If TheoryDeduction(QF_LRA)($x>1 \land x<0,...$) is called, the returned clauses will be

$$Cs := \{(x > 1 \land x < 0 \Rightarrow \bot)\}.$$

If THEORYDEDUCTION(QF_LRA)($x > 1 \land y > 0,...$) is called, the returned clauses may be

$$Cs := \{(x > 1 \land y > 0 \Rightarrow x + y > 0), ...\}.$$

Assuming x + y > 0 occurs in input

Specification of THEORYDEDUCTION

The output of TheoryDeduction must satisfy the following conditions

- ▶ If $\bigwedge e^{-1}(m)$ is unsat in \mathcal{T} then Cs must contain a clause with $\ell = \bot$. dl' is the decision level immediately after which the unsatisfiablity occurred (clearly stated shortly).
- ▶ if $\bigwedge e^{-1}(m)$ is sat then dl' = dl.

Example : CDCL(QF_EUF)

Example 12.7

Consider
$$F' = (x = y \lor y = z) \land (y \neq z \lor z = u) \land (z = x)$$

 $e(F') = (x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land x_4$

After
$$F := e(F')$$
; $m := \text{UNITPROPAGATION}(m, F)$
 $m = \{x_A \mapsto 1\}$

After
$$m := DECIDE(m, F);$$

 $m = \{x_4 \mapsto 1, x_2 \mapsto 0\}$

After
$$m := \text{UNITPROPAGATION}(m, F)$$

 $m = \{x_4 \mapsto 1, x_2 \mapsto 0, x_1 \mapsto 1\}$

Example: CDCL(QF_EUF) II

Since
$$m = \{x_4 \mapsto 1, x_2 \mapsto 0, x_1 \mapsto 1\}, e^{-1}(m) = \{x = y, y \neq z, z = x\}$$

After
$$(Cs, dl')$$
 := TheoryDeduction(QF_EUF)($x = y \land y \neq z \land z = x, ...$)
 $Cs = \{x \neq y \lor y = z \lor z \neq x\}, dl' = 0, e(Cs) = \{\neg x_1 \lor x_2 \lor \neg x_4\}$

After
$$F := F \cup e(Cs)$$
; $m := \text{UNITPROPAGATION}()$
 $m = \{x_4 \mapsto 1, x_2 \mapsto 0, x_1 \mapsto 1\} \leftarrow \text{conflict with learned clause}$

Exercise 12.3

Complete the run

Theory propagation implementation - incremental solver

Theory propagation is implemented using incremental theory solvers.

Incremental solver $DP_{\mathcal{T}}$ for theory \mathcal{T}

- ▶ takes input constraints as a sequence of literals,
- ▶ has a data structure that defines the solver state and satisfiability of constraints seen so far.

Theory solver $DP_{\mathcal{T}}$ interface

A theory solver must provide the following interface.

- ▶ push(ℓ) adds literal ℓ in "constraint store"
- pop() removes last pushed literal from the store
- checkSat() checks satisfiability of current store
- unsatCore() returns the set of literals that caused unsatisfiablity

Definition 12.5

An unsat core of Σ is a subset (preferably minimal) of Σ that is unsat.

Theory propagation implementation

Algorithm 12.2: Theory Deduction

```
Input: Set of literals Ls
Read only input: m partial model, dstack decision depths, dl current decision level, input formula G
```

But, inefficient.

foreach $\ell \in Is$ do

 $DP_{\mathcal{T}}.push(\ell)$

if DP_T .checkSat() == unsat then

// theory conflict $Ls' := DP_{\mathcal{T}}.unsatCore(); dl' := \max\{dl'' | \exists \ell \in Ls', i. m[i] = e(\ell) \land dstack(dl'') < i\};$

return $(\{\neg \land Ls'\}, dl')$

Ls' = Ls will also be correct. else

//implied clauses

return (Cs,dl)

 $Cs := \emptyset$:

foreach $\ell \in Lits(G)$ do $DP_{\mathcal{T}}.push(\neg \ell)$;

if DP_T .checkSat() == unsat then $Ls' := DP_{\mathcal{T}}.unsatCore(); Cs := Cs \cup \{\neg \land Ls'\};$

 ℓ is called implied

literal and $\neg \ell \in Ls'$

dl' is the latest decision after which all literals in Ls' became true.

Example: Theory deduction unsat example

Example 12.8

Consider
$$Ls = \{x = z, x = y, f(x) \neq f(y)\}$$

First we will push all the literals to the theory solver.

$$\textit{DP}_{\mathcal{T}}.\textit{push}(x=z); \textit{DP}_{\mathcal{T}}.\textit{push}(x=y); \textit{DP}_{\mathcal{T}}.\textit{push}(f(x) \neq f(y)).$$

We will call DP_T .checkSat(), which will return unsat.

We will call DP_T .unsatCore(), which will return $\{x = y, f(x) \neq f(y)\}$.

The returned clause will be $x \neq y \lor f(x) = f(y)$.

Theory deduction will also return an appropriate decision level.

Example: Theory deduction sat example

Example 12.9

Consider $x = y \in Ls$ and assume $f(x) = f(y) \in Lits(G)$.

After pushing Ls, let us assume DP_T .checkSat() returns sat.

We search for implied clauses.

Since
$$f(x) = f(y) \in Lits(G)$$
, we will eventually call DP_T .push $(f(x) \neq f(y))$.

We get unsatisfiablity and unsat core, $\{x = y, f(x) \neq f(y)\}.$

We return $x \neq y \lor f(x) = f(y)$ among the implied clauses.

Topic 12.2

Example theory propagation implementation

Let us study implementation of DP_{EUF}

 $\mathit{DP}_{\mathit{EUF}}$ decides conjunction of literals in the theory of EUF with interface push, pop, checkSat, and unsatCore.

push, checkSat, and pop

 \triangleright DP_{EUF} .push

Algorithm 12.3: $DP_{EUF}.push(t_1 \bowtie t_2)$

- 1 IncrEUF($t_1 \bowtie t_2$);
- DP_{EUF}.checkSat() { return conflictFound; }
- ▶ DP_{EUF}.pop() is implemented by recording the time stamp of pushes and undoing all the mergers happened after the last push.

Exercise 12.4

Write pseudo code for DP_{EUF}.pop()

Unsat core

Algorithm 12.4: *DP_{EUF}*.*unsatCore*()

```
assume(conflictFound = 1);
```

Let $(t_1 \neq t_2)$ be the disequality that was violated;

return $\{t_1 \neq t_2\} \cup getReason(t_1, t_2);$

Algorithm 12.5: $getReason(t_1, t_2)$

```
Let (t'_1 = t'_2) be the merge operation that placed t_1 and t_2 in same class; if t'_1 = f(s_1, ..., s_k) = f(u_1, ...u_k) = t'_2 was derived due to congruence then | reason := \bigcup_i getReason(s_i, u_i) else | reason := \{t'_1 = t'_2\}
```

return $getReason(t_1, t_1') \cup reason \cup getReason(t_2', t_2)$

Example: unsat core

Example 12.10

Consider unsatisfiable constraints: $x = z \land y = z \land f(x) \neq f(y)$

There must be *exactly* one disequality involved in the contradiction.

$$f(x) \neq f(y)$$

Therefore, we look for the reason for f(x) = f(y).

Since f(x) and f(y) was made equal due to congruence, we look for reasons for x = y.

Since x and y joined the same class during the processing of input inequality y=z, it is part of the unsat core.

Now we need to find the reason of x = z, which is one of our input.

Topic 12.3

SMT Solvers

Incremantal theory propagation



Theory propagation strategies

- Exhaustive or Eager :
 Cs contains all possible clauses
- Minimal or Lazy :
 Cs only contains the clause that refutes current m
- Somewhat Lazy :
 Cs contains only easy to deduce clauses

Rise of SMT solvers

- ▶ In early 2000s, stable SMT solvers started appearing. e.g., Yiecs
- ► SMT competition(SMT-comp) became a driving force in their ever increasing efficiency
- Formal methods community quickly realized their potential
- ➤ Z3, one of the leading SMT solver, alone has about 3000+ citations (375 per year)(June 2016)

Leading tools

The following are some of the leading SMT solvers

- ► Z3
- ► CVC4
- MathSAT
- ► Boolector

Topic 12.4

Problems

Run SMT solvers

Exercise 12.5

► Find a satisfying assignment of the following formula using SMT solver

$$(x > 0 \lor y < 0) \land (x + y > 0 \lor x - y < 0)$$

Give the model generated by the SMT solver.

Prove the following formula is valid using SMT solver

$$(x > y \land y > z) \Rightarrow x > z$$

Give the proof generated by the SMT solver.

Please do not simply submit the output. Please write the answers in the mathematical notation.

Knapsack problem

Exercise 12.6

Write a program for solving the knapsack problem that requires filling a knapsack with stuff with maximum value. For more information look at the following.

https://en.wikipedia.org/wiki/Knapsack_problem

The output of the program should be the number of solutions that have value more than 95% of the best value.

Download Z3 from the following webpage: https://github.com/Z3Prover/z3

We need a tool to feed random inputs to your tool. Write a tool that generates random instances, similar to what was provided last time.

Topic 12.5

Extra slides : optimizations

Implied literals without implied clauses

Bottleneck: There may be too many implied clauses.

Observation: Very few of the implied clauses are useful, i.e., contribute in early detection of conflict.

Optimization: apply implied literals, without adding implied clauses.

Optimization overhead: If an implied model is used in conflict then recompute the implied clause for the implication graph analysis.

Relevancy

Bottleneck: All the assigned literals are sent to the theory solver.

Observation: However, *CDCL* only needs to send those literals to the solver that make unique clauses satisfiable.

Optimization:

- ► Each clause chooses one literal that makes it sat under current model.
- Those clause that are not sat under current model do nothing.
- ightharpoonup If a literal is not chosen by any clause then it is not passed on to \mathcal{T} -solver.

Patented: US8140459 by Z3 guys(the original idea is more general than stated here)

Optimization overhead: Relevant literal management

Exercise 12.7

Suggest a scheme for relevant literal management.

End of Lecture 12

