
cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2025

Lecture 4: Dictionary

Instructor: Ashutosh Gupta

IITB India

Compile date: 2025-08-14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 2

Topic 4.1

Problem of dictionary

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 3

Storing maps/dictionary

map
Definition 4.1
A dictionary stores values so that they can be found efficiently using keys.

Example 4.1
A dictionary may contain bank accounts.
▶ The keys are the bank account numbers
▶ The values are the information about the accounts such as amount, name, address, etc
▶ To take any action on an account, one needs the key

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 4

Dictionary (Map) container Reference: https://en.cppreference.com/w/cpp/container/map

In C++ and many languages, dictionaries are called maps.

map supports the following interface.
▶ map<Key,T> m : allocates new map m
▶ m.at(e) : access specified value (throws an exception when value is missing)
▶ m[key] = e : Inserts key-value pair.
▶ m.erase(key) : removes key-value pair.

Some support functions
▶ m.empty() : checks whether the map is empty
▶ m.size() : returns the number of key-value pairs

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/map

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 5

Order over keys

We have two kinds of maps due to two kinds of keys:

▶ Unordered: keys are compared only using equality
▶ For unordered keys, use unordered_map in C++.

Reference: https://en.cppreference.com/w/cpp/container/unordered_map

▶ Example: profile id on social media.

▶ Ordered: keys are compared using less than, greater than, and equality
▶ The default map in C++ assumes keys are ordered.

Reference: https://en.cppreference.com/w/cpp/container/map

▶ Example: process id in an OS

Exercise 4.1
Which data structure are used to store keys in both the maps?

Commentary: Since all data is a bit-vector, C++ can always define order over keys. However, the user should decide if the keys are ordered or unordered. If the keys
have no meaning attached to them, we may keep them unordered (while C++ can always default to an ordered map), for example ”profile id” on social media. If there
is a meaningful order over the keys, we should use ordered maps. For example, we may order process in an OS by their priorities.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/map

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 6

Implementation choices

▶ arrays, linked lists
▶ Hash table (unordered_map in C++) [Covered in this lecture]
▶ Binary trees
▶ Red/black trees (map in C++) [Will be covered in a few lectures!]
▶ AVL trees
▶ B-trees

Commentary: AVL trees and B-Trees are not covered in this version of the course. These are important topics of computer science undergraduate curriculum. Please
study them yourself after finishing this course.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 7

Actions on dictionary

We need to design a dictionary data structure keeping in mind the following three important
actions on dictionaries.
▶ Insertion
▶ Deletion
▶ Search

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 8

Topic 4.2

Design choices for dictionaries

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 9

Cost of searching for keys on arrays

We have seen in lecture 1 the cost of searching for the position of a key.

Ordered keys
▶ Binary search is O(log n)

Unordered keys
▶ Linear search is O(n)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 10

Dictionaries via unordered keys on arrays

Example 4.2
An example of process to application map stored in an array.

2,Chrome 10,Emailer 8,Network 19,Shell 34,Firefox 23,FileManager

Operation costs:
▶ Searching and deletion is O(n)
▶ Insertion is O(1)

Application: Log files, (frequent insertion, but rare searches and deletion)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 11

Dictionaries via ordered keys on arrays
Key value pairs are stored on a sorted array.

2,Chrome 8,Network 10,Emailer 19,Shell 23,FileManager 34,Firefox

Operation costs:
▶ Searching is O(log n)
▶ Insertion and deletion is O(n) (Need to shift keys before insertion/after deletion)

Application: Look-up tables (e.g. precomputed values for trigonometric functions),
(frequent searches, but rare insertion and deletion)

Exercise 4.2
Can we use a linked list?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 12

One crazy idea: direct addressing!
Consider application: caller ID. We need a map from phone numbers to names.

We have 10-digit-long phone numbers. So let us allocate an array A of size 1010.

Names are stored at the phone number index.

Null Maria Null Null Divya Null
9898927391 9898927392 9898927393 9898927394 9898927395 9898927396

▶ All operations are O(1)
▶ Huge waste of space.

Exercise 4.3
Do we really have O(1) cost for the operations?

Commentary: Answer: If we allocate a large amount
of memory, we may not have O(1) access to the mem-
ory. When we say a read from the memory uses O(1)
time, there is an implicit assumption that that the to-
tal memory is small enough such that the underlying
hardware can provide constant time access.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 13

Topic 4.3

Hash table for unordered keys

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 14

Can we improve direct addressing?

Can we somehow avoid the waste of space and still benefit from direct addressing?

Let the table size be m and the number of keys be n.

We will design a data structure, where O(1) is the expected time for all operations and the
needed storage is O(m + n).

m is roughly equal to n.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 15

Hashing

We choose a function, called the hash function,

h : Keys → HashValues
such that |HashValues| = m.

We use h(key) to index the storage array instead of keys.

We assume the time to compute h(key) is Θ(1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 16

Example: Hashing
Example 4.3
Suppose we want to store caller IDs of phone numbers from your contacts in your phone.

You probably have less than 1000 contacts.

Let us use h(number) = (number mod 1000).

We create an array of 1000 entries and store the contact names as follows. Let us suppose
Maria’s phone number is 9898927392 and Divya’s phone number is 9869755395.

Null Maria Null Null Divya Null
391 392 393 394 395 396

One problem: Let us suppose Tanushree’s phone number is 9868733392. We have a collision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 17

Collision resolution: chaining

In the case of h(k1) = h(k2), we cannot store two values in the same place on the array.

We maintain a linked list for key-value pairs that have the same hash value of their keys and a
table (array) indexed by the hash values points to the linked lists.

NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 18

Collision resolution: chaining(2)

To search/insert/delete a (key,value) pair
▶ using h(key) find position in the table
▶ search/insert/delete the pair in the linked list of the position.

NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 19

Example: telephone directory

NULL

NULL

(9898927392,Maria) (9868733392,Tanushree)
NULL

NULL

NULL

(9869755395,Divya)

391

392

393

394

395

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 20

Topic 4.4

Analysis of hash functions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 21

A good hash function

A good hash function
▶ distributes keys evenly amongst the positions.
▶ has a low probability of collision.
▶ is quick to compute.

Good hash functions are rare - Birthday paradox!

Exercise 4.4
What is a bad hash function?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 22

Load factor

If n >> m, there is a greater chance of collisions.

We define load factor α =
n
m .

Keep α roughly around 1.

▶ If α is too small, we are wasting space.
▶ If α is too large, we have long chains.

Exercise 4.5
What to do if α is not known upfront?

Commentary: We start with some default table size. As we utilize more and more of the table, we may resize the table, which may trigger rehashing of the table.
Rehashing is an expensive operation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 23

Simple uniform fictional hash function

▶ An ideal hash function would pick a position uniformly at random and assign the key to it.
▶ However, this is not a real hash function, because we will not be able to search later.
▶ Only for our analysis, we use this simple uniform hash function

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 24

Cost of unsuccessful search

▶ Simple uniform hashing will result in the average list length of α
▶ Number of elements traversed is α

▶ Search time is O(1 + α)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 25

Cost of successful search (1)

▶ Assume that a new key-value pair is inserted at the end of the linked list
▶ Upon insertion of ith key-value pair the expected length of the list is i − 1

m
▶ In the case of a successful search of the ith key, the expected number of keys examined is 1

more than the number of keys examined when the ith key-value pair was inserted.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 26

Cost of successful search (2)

▶ Expected number of key-value pairs examined for each key search

1
n

n∑
i=1

(1 +
i − 1

m) = 1 +
1

mn

n∑
i=1

(i − 1) = 1 +
1

mn
n(n − 1)

2 = 1 +
n

2m − 1
2m

▶ Including the time for computing the hash function we obtain

2 +
n

2m − 1
2m ∈ Θ(1 + α)

Exercise 4.6
Let us assume that a new key-value pair is inserted at the front of the linked list. How will it
change the analysis?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 27

Topic 4.5

Designing hash functions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 28

Hash function design

h : Keys → {0, ...,m − 1}

Keys can be of a variety of types.
▶ Biometric fingerprints
▶ Addresses
▶ Words of language dictionaries

Usually, h is the composition of the following two functions.
▶ encode : Keys → Z
▶ compression : Z → {0, ...,m − 1}

h = compression ◦ encode

m is the size of
hash table!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 29

Useful functions for encode

▶ Integer cast: Interpret the bit representation of the key as an integer, if the representation is
less than the size of a word (32 bits/64 bits)

▶ Component sum: If the representation is longer than a word, sum the blocks of 8-bits to
compute the integer code.

Example 4.4
encode(“Disaster”) = ’D’+ ’i’+’s’+’a’+’s’+’t’+’e’+’r’

= 0x44 + 0x69 + 0x73 + 0x61 + 0x73 + 0x74 + 0x65 + 0x72 = 0x33F

Exercise 4.7
Is this a good coding scheme?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 30

Useful functions for encode: polynomial accumulation

▶ Let a0, ..., ak be the list of 8-bit blocks of the binary representation of the key.

encode(a0a1....ak) = a0 + a1x + a2x2 + ...+ akxk

where x is a constant.

▶ The idea is borrowed from error-correcting codes (e.g. Reed-Solomon codes)

▶ Observation: the choice of x = 33, 37, 39, or 41 gives at most 6 collisions in English
vocabulary of 50K+ words. (Please check the claim!)

Exercise 4.8
How can we efficiently compute the polynomial?

Commentary: Usually the polynomial is computed using Horner’s rule or precomputed values of xk. This kind of encoding is widely used in ai. Overflow is ignored in the
computation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 31

unordered_map in C++ uses Murmurhash2 for encode
size_t _Hash_bytes(const char* buf, size_t len, size_t seed) {

const size_t m = 0x5bd1e995;
size_t hash = seed ^ len;
while(len >= 4) { // Mix 4 bytes at a time into the hash.

size_t k = *((const size_t*)buf);
k *= m; k ^= k >> 24; k *= m;
hash *= m; hash ^= k; //something like polynomial accumulation
buf += 4;len -= 4;

}
size_t k;
switch(len) { // Handle the last few bytes of the input array.

case 3: k = buf[2]; hash ^= k << 16;
case 2: k = buf[1]; hash ^= k << 8;
case 1: k = buf[0]; hash ^= k; hash *= m;

};
hash ^= hash >> 13; hash *= m; hash ^= hash >> 15;//Do final mixes.
return hash;

}
Commentary: The above code is from https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/hash_bytes.cc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/hash_bytes.cc

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 32

Design of compression
Remainder compression:

compression(e) = e mod m

Here the size of the table matters.
▶ If m = 2k, the least significant bits of e determine the position in the table. If the output of

encode is not uniformly distributed, then we do not have enough randomization.

▶ If m is a prime, compression(e) will return uniformly distributed output. Rule of thumb: stay
away from powers of 2.

Example 4.5
Let us suppose, we want to store 2000 keys and we are ok with three collisions.

A good choice of m is 701, which is prime near 2000/3 and away from powers of 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 33

Design of compression(2)

Multiplicative compression:

compression(e) = ⌊m{ae}⌋,

where a ∈ (0, 1) is a constant.

▶ Here the size of the table does not matter.

▶ However, some values work better than others. Folklore,
√

5 − 1
2 (golden ratio) works well!

Exercise 4.9
Show compression(e) ∈ {0, ..,m − 1}

Commentary: For extended discussion look at The Art of Computer Programming. Volume 3. Sorting and Searching, by Donald Knuth

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 34

Design of compression(3)

MAD(multiplication, add, divide) compression:

compression(e) = |ak + b| mod m,

where a, b ∈ Z are constants.

▶ Eliminates patterns in input keys if m does not divide a.

▶ The technique is borrowed from pseudo-random generators!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 35

Quality of encode and compression

Exercise 4.10
How do we evaluate the quality of encode and compression?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 36

Other applications of Hashing

Hashing is widely used in cryptography, which needs more properties on Hash functions.

Exercise 4.11
Your SSO-OTP is a hash value of

totp(secret) = truncate(HMACSHA1(secret, ⌊current epoch time
30 ⌋)) mod 106

Let us see a demo. RFC for OTPs: https://www.rfc-editor.org/rfc/rfc4226

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.rfc-editor.org/rfc/rfc4226

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 37

Topic 4.6

Open addressing: an alternative to chaining!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 38

Open addressing

Open addressing is another way of handling collision.

▶ The method needs α ≤ 1
▶ Each table entry has a key or Null
▶ We may have to examine many positions for the search

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 39

Hash function for open addressing

A slight modification of the hash function.

h : Keys × {0, ..,m − 1} → {0, ..,m − 1}

such that h(k, 0),, h(k,m − 1) is a permutation of 0,,m − 1 for any key k.

Example 4.6
Let m = 5.

For some key k,
h(k, 0),, h(k, 4) = 3, 0, 2, 4, 1.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 40

Hash function for open addressing(2)

▶ h(key, 0) is our usual hash function to place the key.

▶ h(key, i) is an alternative available choice to place the key if earlier choices h(key, j) for each
j < i are occupied.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 41

Open addressing insert

Algorithm 4.1: OpenAddressInsert(k)
1 if Table is full then
2 error;
3 i := 0;
4 do
5 probe := h(k,i);
6 i = i + 1;
7 while table[probe] is occupied;
8 table[probe] = k;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 42

Linear probing

Linear probing is a special case of open addressing.

In linear probing, we chose h as follows

h(k, i) = (h(k, 0) + i) mod m for each i > 0.

If a position is occupied, take the next one.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 43

Example: insertion in linear probing

Example 4.7

Let m = 11 and h(k, 0) = k mod 11.

Let us consider the following sequence of insertions: 41, 22, 44, 59, 32, 31, 74

m = 11

0 1 2 3 4 5 6 7 8 9 10
4122 44 59 323174

Commentary: Please try running the linear probing yourself without looking at the solution.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 44

Open addressing search

Algorithm 4.2: OpenAddressSearch(k)
1 i := 0;
2 do
3 probe := h(k,i);
4 if table[probe] == k then
5 return probe;
6 i = i + 1;
7 while (table[probe] is occupied or has tombstone) and i < m;
8 return -1;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 45

Example: search in linear probing
Example 4.8

Let m = 11 and h(k, 0) = k mod 11.

Let us search for 33 in the following table. We will examine locations from 0 to 3.

m = 11

0 1 2 3 4 5 6 7 8 9 10
4122 44 59 323174

Exercise 4.12
How many locations will we examine for the following searches?
▶ 74
▶ 44

▶ 61
▶ 43

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 46

Example: deletion in open addressing

Example 4.9

Let m = 11 and h(k, 0) = k mod 11.

Let us delete the key at position 1 in the following table. Will it be correct?

We need to place a marker (tombstone) to indicate that something was here such that we
continue to search 74 correctly.

m = 11

0 1 2 3 4 5 6 7 8 9 10
4122 4444X 59 323174

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 47

Deletion in open addressing

Algorithm 4.3: OpenAddressDelete(k)
1 probe = OpenAddressSearch(k);
2 if probe ≥ 0 then
3 table[probe] = ’X’ // Tombstone marker ’X’ indicates that the place was occupied!

Exercise 4.13
After many deletions, the performance of the search degrades. How can we recover performance?

We can reuse the tombstone location for insertion
but assume it is occupied for search.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 48

Topic 4.7

Tutorial Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 49

Problem: probability of collision (Quiz 2023)

Exercise 4.14
What is the probability for the 3rd insertion to have exactly two collisions while using linear
probing in the hash table?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 50

Problem: birthday paradox

Exercise 4.15
Given that k elements have to be stored using a hash function with target space n. What is the
probability of the hash function having an inherent collision? What is an estimate of the
probability of a collision in the insertion of N elements?

Hint: Stirling’s approximation
√

2πn
(n

e
)n

e
1

12n+1 < n! <
√

2πn
(n

e
)n

e 1
12n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 51

Problem: analysis of linear probing

Exercise 4.16
Let C(i) be the chain of array indices that are queried to look for a key k in linear probing where
h(k) = i.
a. How does this chain extend by an insertion, and how does it change by a deletion?
b. A search for a key k ends when an empty cell is encountered. What if we mark the end of C(i)
with an end marker. We stop the search when this marker is encountered. Would this work?
Would this be efficient?
c. Is there a way to avoid using tombstones?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 52

Exercise: Double hashing

Exercise 4.17
Let m = 11, h1(k) = (k mod 11), h2 = 6 − (k mod 6).

Let us use the following hash function for an open addressing scheme.

h(k, i) = (h1(k) + i ∗ h2(k)) mod m.

1. What will be the state of the table after insertions of 41, 22, 44, 59, 32, 31, and 74?
2. Let h2(k) = p− (p mod k). What should be the relationship between p and m such that h

is a valid function for linear probing?
3. What is the average number of probes for an unsuccessful search if the table has α load

factor?
4. What is the average time for a successful search?

Commentary: Double hashing avoids the problem of bunching up the keys, therefore improving search.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 53

Problem: searchable by both keys and values

Exercise 4.18
Suppose you want to store a large set of key-value pairs, for example, (name,address). You have
operations, which are addition, deletion, and search of elements in this set. You also have queries
whether a particular name or address is there in the set, and if so then count them and delete all
such entries. How would you design your hash tables?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 54

Topic 4.8

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 55

True or False

Exercise 4.19
Mark the following statements True / False and also provide justification.

1. A hash function must be one-to-one.
2. A hash function must be difficult to compute.
3. Let α be the load factor of a hash table with chaining, the average search time in the hash table is O(α) if α > 1.
4. C++ uses hash function “SHA256” to implement unordered maps.
5. In open addressed hash table, we can insert a key where there is a Tombstone symbol.
6. The number of collisions in a hash table is solely dependent on the table capacity and the hash function.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 56

Exercise: expected collision (Quiz 2024)

Suppose we use a hash function h to hash k1,, kn distinct keys into an array T of length m.
Assuming simple uniform hashing, what is the expected number of collisions? More precisely,
what is the expected cardinality of {{ki, kj} : i ̸= j ∧ h(ki) = h(kj)} ?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 57

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Problem of dictionary
	Design choices for dictionaries
	Hash table for unordered keys
	Analysis of hash functions
	Designing hash functions
	Open addressing: an alternative to chaining!
	Tutorial Problems
	Problems

