
cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2025

Lecture 6: Binary search tree (BST)

Instructor: Ashutosh Gupta

IITB India

Compile date: 2025-09-13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 2

Ordered dictionary

Recall: There are two kinds of dictionaries.

▶ Dictionaries with unordered keys
▶ We use hash tables to store dictionaries for unordered keys.

▶ Dictionaries with ordered keys
▶ Let us discuss the efficient implementations for them.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 3

Recall: Dictionaries via ordered keys on arrays

▶ Searching is O(log n)
▶ Insertion and deletion is O(n)

▶ Need to shift elements before insertion/after deletion

Can we do better?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 4

Topic 6.1

Binary search trees

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 5

Binary search trees (BST)

Definition 6.1
A binary search tree is a binary tree T such that for each n ∈ T

▶ n is labeled with a key-value pair of some dictionary,
▶ (if label(n) = (k, v), we write key(n) = k)

▶ for each n′ ∈ descendants(left(n)), key(n′) ≤ key(n), and

▶ for each n′ ∈ descendants(right(n)), key(n′) ≥ key(n).

Note that we allow two entries to have the same keys. The same key can be in either of the
subtrees.

Commentary: We assume descendants(Null) = ∅.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 6

Example: BST

Example 6.1

In the following BST, we show only keys stored at the node.

8

5

7

17

11 21

≤ 8 ≥ 8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 7

Example: many BSTs for the same data
Example 6.2

The same set of keys may result in different BSTs.

8

5

7

17

11 21

11

5

7

8

21

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 8

Exercise: Identify BST

Exercise 6.1
Which of the following are BSTs?

17

5 21

11

17

5

11

21

17

5

21 11

17

5

5 11

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 9

Topic 6.2

Algorithms for BST

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 10

Algorithms for BST

We need the following methods on BSTs
▶ search
▶ insert
▶ minimum/maximum
▶ successor/predecessor: Find the successor/predecessor key stored in the dictionary
▶ delete

Exercise 6.2
Give minimum and successor algorithms for sorted array-based implementation of a dictionary.

Commentary: Recall that we did not discuss algorithms for minimum and successor in our earlier discussion of unordered dictionaries, which are implemented using hash
tables. Since we cannot define successor and minimum for unordered keys, the question of such algorithms does not arise. However, we do need them for operations on
BSTs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 11

Searching in BST

Example 6.3
Searching 11 in the following BST.

▶ We start at the root, which is node 8

▶ At node 8, go to the right child because 11 > 8.

▶ At node 17, go to the left child because 11 < 17.

▶ We find 11 at the node.

8

5

7

17

11 21

Commentary: By the definition of BST, we are guar-
anteed that 11 will not occur in the left subtree of 8.
This is the same reasoning as the binary search that
we discussed earlier.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 12

Unsuccessful search in BST

Example 6.4
Searching 6 in the following BST.

▶ We start at the root, which is node 8

▶ At node 8, go to the left child because 6 < 8.

▶ At node 5, go to the right child because 6 > 5.

▶ At node 7, go to the left child because 6 < 7.

▶ Since node 7 has no left child the search fails.

8

5

7

17

11 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 13

Algorithm: Search in BST
Algorithm 6.1: search(BST T, int k)

1 n := root(T);
2 while n ̸= Null do
3 if key(n) = k then
4 break
5 if key(n) > k then
6 n := left(n)
7 else
8 n := right(n)

9 return n

▶ Running time is O(h), where h is height
of BST.

▶ If there are n keys in the BST, the worst
case running time is O(n).

Exercise 6.3
a. Modify the above algorithm to find all occurrences of key k.
b. Give an input of search that exhibits worst-case running time.

Commentary: Answer:
a. We search in the BST. If the key is found on a
node, then we start two(Why?) searches in both the
subtrees of the found node. We recursively start the
searches.

b. Find N in the following BST
1

2

..

N

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 14

Topic 6.3

Insert in BST

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 15

Example: Insert in BST
Example 6.5
key 10 was not there in the BST and we want to insert 10. Where do we insert 10?

8

5

2 7

6

17

11

10

21

We always insert the new key as leaf.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 16

Algorithm: Insert in BST
Algorithm 6.2: insert(BST T, Node n)

1 x := root(T);y := Null;
2 while x ̸= Null do
3 y := x;
4 if key(x) > key(n) then
5 x := left(x)
6 else
7 x := right(x)

8 if y = Null then
9 root(T) = n;

10 if key(y) > key(n) then
11 left(y) := n
12 else
13 right(y) := n
14 parent(n) = y

Exercise 6.4
a. What is the running time of the algorithm?
b. Give an order of insertion for the maximum tree height.
c. Give an order of insertion for the minimum tree height.
d. What does happen if key(n) already exists?

Commentary: Answer:
a. the same as search,
b. 1,2,3,4,5,...,n
c. n/2,n/4,3n/4,n/8,3n/8,5n/8,7n/8,..
d. This algorithm always goes right. It is correct but
may not be a good idea. It should randomly choose
left or right.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 17

Topic 6.4

Minimum in BST

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 18

Example: minimum in BST

Example 6.6
What is the minimum of the following BSTs?

8

5

2 7

17

11 21

8

5

7

17

11 21

Commentary: Always go left to find a smaller node.
As soon as we do not have a left child, we have found
the minimum node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 19

Algorithm: Minimum in BST

The following algorithm computes the minimum in the subtree rooted at node n.

Algorithm 6.3: minimum(Node n)
1 while n ̸= Null and left(n) ̸= Null do
2 n := left(n)
3 return n

▶ Runtime analysis is the same as
search.

Exercise 6.5
Modify the above algorithm to compute the maximum

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 20

Correctness of minimum
Theorem 6.1
If n ̸= Null, the returned node by minimum(n) has the minimum key in the subtree rooted at n.

Proof.
If left(n) = Null, key(n) is the minimum key.

Otherwise, we go to n′ = left(n). Any node not in
descendants(n′) must have a larger key than key(n′).(Why?)

So the minimum of descendants(n′) is the overall mini-
mum.

This argument continues to hold for any number of iter-
ations of the loop. (induction)

Therefore, our algorithm will compute the minimum.

n

n’

.. ..

.. ..

..

..

≥ key(n′)

Commentary: Note that key(n′) ≤ key(n) ≤
key(n′′) where n′′ ∈ descendants(right(n))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 21

Topic 6.5

Successor in BST

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 22

Example: successor in BST
We now consider the problem of finding the node that has the successor key of a given node.
Example 6.7
Where is the successor of 8?

8

5

2 7

6

17

11 21

Observation: Minimum of right subtree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 23

Example: successor in BST(2)
Example 6.8
Where is the successor of 7?

8

5

2 7

6

17

11 21

Exercise 6.6
a. When do we not have the successor in the right subtree?
b. If the successor is not in the right subtree, where else can it be?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 24

Cases for the location of the successor
Finding a successor to n

Case 1: If there is a right subtree:

n

...

..

successor

Null

Case 2: If there is no right subtree:

successor

...

..

n

Null

Go right and
follow left

Follow parent
until turn right

Commentary: Successor may be found in two possible
areas. The second case is slightly difficult to under-
stand, where the successor is one of the ancestors. It
is the closest ancestor that is bigger than n. This hap-
pens when the path turns right first time. The formal
proof is at the end of the slides.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 25

Successor in BST
Algorithm 6.4: successor(BST T, node n)

1 if right(n) ̸= Null then
2 return minimum(right(n))
3 while parent(n) ̸= Null and right(parent(n)) = n do
4 n := parent(n);
5 return parent(n)

Exercise 6.7
a. Modify the above algorithm to compute predecessor
b. What is the running time complexity of successor?
c. What happens when we do not have any successor?
d. What is returned if multiple keys have the same value?
e. What is the connection between the above algorithm and in-order walk?
f. Can we modify the above algorithm to find the strict successor?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 26

Topic 6.6

Deletion

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 27

Example: deleting a leaf

Example 6.9
How can we delete leaf 11?

8

5

2 7

6

17

11 21
7

We delete leaf 11 by simply removing the node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 28

Example: deleting a node with a single child
Example 6.10
How can we delete node 7, which has a single child?

8

5

2 7

6

17

11 21
7

We delete node 7 by making 6 the child of 5 and removing the node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 29

Example: deleting a node with both children
Example 6.11
How can we delete node 8, which has both the children?

8

5

2 7

6

17

11

14

2111
7

⇝

11

5

2 7

6

17

14 21

We delete node 8 by removing 11, which is the successor of 8, and moving the data of 11 to 8.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 30

Algorithm: delete in BST*
Algorithm 6.5: delete(BST T, Node n)

1 y := (left(n) = Null ∨ right(n) = Null) ? n : Successor(T, n); // y will be deleted
2 if y ̸= n then
3 key(n) := key(y) // copy all data on y
4 x := (left(y) = Null) ? right(y) : left(y); //x is the child of y or x is Null
5 if x ̸= Null then
6 parent(x) = parent(y) //y is not a leaf, update the parent of x
7 if parent(y) = Null then
8 root(T) = x // y was the root, therefore x is root now
9 else

10 if left(parent(y)) = y then
11 left(parent(y)) := x //Remove y from the tree
12 else
13 right(parent(y)) := x //Remove y from the tree

Exercise 6.8
a. How can we delete by key instead of node? Does it change the complexity? b. Do we need to free y?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 31

Topic 6.7

Average BST depth**

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 32

How often do we get a small height?

All BST algorithms are O(height).

Can we estimate the average cost of the operations?

Here is an analysis that suggests that most often BSTs have small height.

Exercise 6.9
Why are we saying that the analysis suggests instead of proves?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 33

Average cost of n-inserts

Let us consider a random permutation of 1, .., n and an empty BST.

We insert the sequence of numbers in the BST.

The total cost of insertions will be the sum of the levels of nodes in the resulting BST.

Definition 6.2
Let T(n) denote the average time taken over n! permutations to insert n keys.

We will use the number of comparisons as the cost to insert a node.

Exercise 6.10
What are the best and worst insertion times?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 34

Example: Computing T(n)
Example 6.12
Let us compute the average of total cost of inserting three elements in an empty BST.

1

2

3

1 2 3

Insertion cost 3

1

3

2

1 3 2

3

2

1 3

2 1 3

2

2

1 3

2 3 1

2

3

1

2

3 1 2

3

3

2

1

3 2 1

3

T(3) = 16/6

Commentary: The insertion cost of a key is the num-
ber of comparisons to insert the key. For example, in
the first tree, we insert 1 without any comparison, 2
with one comparison, and 3 with two comparisons. In
total, we have three comparisons.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 35

Recurrence for T(n)
Out of all n! permutations, i is the first element in (n − 1)! permutations. (Why?)

In the BSTs generated for the permutations,
▶ i is the root,
▶ keys 1, ..., i − 1 are in the left subtree, and
▶ keys i + 1, ..., n are in the right subtree.

i

...

...

...

... ...

< i > i

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 36

Recurrence for T(n)(2)
Note that there are (i − 1)! orderings for keys 1, ..., i − 1.

i

...

...

...

... ...

In the (n−1)! permutations, each permutation
of 1, ..., i − 1 is embedded (n − 1)!

(i − 1)! times.
In the (n−1)! permutations, each permutation
of i + 1, ..., n is embedded (n − 1)!

(n − i)! times.

Commentary: The following counting argument of the
number of embeddings of a permutation is non-trivial.
Let n = 5 and i = 3. There are two permutations of
1 and 2, which are 1 2 and 2 1. There are (5 − 1)! =
24 permutations, where 3 occurs at the first position.
Permutation 1 2 is embedded in the 12 permutations
out of the 24, which are as follows.
3 1 2 4 5 3 1 2 5 4
3 1 4 2 5 3 1 5 2 4
3 1 4 5 2 3 1 5 4 2
3 4 1 2 5 3 5 1 2 4
3 4 1 5 2 3 5 1 4 2
3 4 5 1 2 3 5 4 1 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 37

Recurrence for T(n)(3)

Consider left subtree:
▶ In the subtree, the average of total insert time is T(i − 1).
▶ Since we have one more node above, the average of total insert time is T(i − 1) + i − 1.
▶ The total time to insert in all the orderings is (i − 1)!(T(i − 1) + i − 1).

Consider right subtree:
▶ In the subtree, the average insert time is T(n − i).
▶ Since we have one more node above, the average of total insert time is T(n − i) + n − i.
▶ The total time to insert in all the orderings is (n − i)!(T(n − i) + n − i).

While inserting keys 1, .., i − 1, each
key is compared with root i, which is
an additional unit cost per insertion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 38

Recurrence for T(n)(4)
Total time of insertion for all the (n − 1)! permutations, where i is the root.

i

...

...

...

... ...

(n − 1)!
(i − 1)! × (i − 1)!(T(i − 1) + i − 1)

= (n − 1)!(T(i − 1) + i − 1)

+

+

(n − 1)!
(n − i)! × (n − i)!(T(n − i) + n − i)

(n − 1)!(T(n − i) + n − i)

= (n − 1)!(T(i − 1) + T(n − i) + n − 1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 39

Recurrence for T(n)(5)
The total time of insertions in all n! permutations

n∑
i=1

(n − 1)!(T(i − 1) + T(n − i) + n − 1).

Therefore, the average time of insertions in all permutations

T(n) = (n − 1)!
n!

n∑
i=1

(T(i − 1) + T(n − i) + n − 1).

After simplification,

T(n) = 2
n

n−1∑
i=0

T(i) + n − 1,

where T(0) = 0.

Exercise 6.11
Compute T(3) via the above equation.

Commentary: T(1) = 0, T(2) = 1,
T(3) = 2/3(1 + 0 + 0) + (3 − 1) = 2 2

3
T(4) = 2/4(8/3 + 1 + 0 + 0) + (4 − 1) = 4 10

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 40

What is the growth of T(n)?

We need to find an approximate upper bound of T(n).

Let us solve the recurrence relation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 41

Simplify the recurrence relation
Now we will derive the relation between T(n) and T(n − 1).
Let us write the relation for T(n − 1).

T(n − 1) = 2
n − 1

n−2∑
i=0

T(i) + n − 2.

After reordering the terms, we obtain
n−2∑
i=0

T(i) = n − 1
2 (T(n − 1)− n + 2).

Let us look at the expression for T(n) again. After reordering of terms in T(n),

T(n) = 2
n

n−2∑
i=0

T(i) + 2
nT(n − 1) + n − 1 =

2
n

n − 1
2 (T(n − 1)− n + 2) + 2

nT(n − 1) + n − 1,

T(n) = n + 1
n T(n − 1) + n − 1

n (−n + 2) + n − 1 =
n + 1

n T(n − 1) + 2(n − 1)
n .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 42

Approximate recurrence relation

From

T(n) = n + 1
n T(n − 1) + 2(n − 1)

n ,

we can conclude

T(n) ≤ n + 1
n T(n − 1) + 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 43

Expanding the approximate recurrence relation

T(n) ≤ n + 1
n T(n − 1) + 2

≤ n + 1
n (

n
n − 1T(n − 2) + 2) + 2

=
n + 1
n − 1T(n − 2) + n + 1

n 2 + 2

≤ n + 1
n − 1(

n − 1
n − 2T(n − 3) + 2) + n + 1

n 2 + 2

=
n + 1
n − 2T(n − 3) + n + 1

n − 12 +
n + 1

n 2 + 2

After a sequence of substitutions till T(0), we obtain

T(n) ≤ n + 1
n − (n − 1)T(0) + n + 1

2 2 + ...+
n + 1

n 2 + 2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 44

Expanding the approximate recurrence relation
T(n) ≤ 2(n + 1)(1

2 + ...+
1
n︸ ︷︷ ︸

≤ln n

) + 2

T(n) ≤ 2(n + 1)(ln n) + 2

Therefore,
T(n) ∈ O(n log n)

Run the following Python code to numerically
visualize the gap in the approximation.

Texact = [0.0, 0.0]
Tapprox = [0.0, 2]
fsum = 0.0
for n in range(2,1000):

Texact.append((n+1)/n*Texact[n-1]+2*(n-1)/n)
fsum += 1/n
Tapprox.append(2*(n+1)*fsum+2)
print(Tapprox[n]/Texact[n])

Exercise 6.12
Prove/Disprove T(n) ∈ Θ(n log n). [Hint: Consider T(n) ≥

n + 1
n

T(n − 1) + α, where α < 2 and n > 2/(2 − α)]

Commentary:
1
2

+ ... +
1
n

≤
∫ n

1
1
x

dx = ln n
T(1) ≤ 2
T(2) ≤ 2 ∗ (2 + 1)(1/2) + 2 = 3 + 2 = 5
T(3) ≤ 2∗(3+1)(1/2+1/3)+2 = 8∗5/6+2 = 8 4

6
T(4) ≤ 2 ∗ (4 + 1)(1/2 + 1/3 + 1/4) + 2 = 12 10

12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 45

Topic 6.8

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 46

Exercise: sorting via BST

Exercise 6.13
a. Show that in order printing of BST nodes produces a sorted sequence of keys.
b. Give a sorting procedure using BST.
c. Give the complexity of the procedure.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 47

Exercise: delete all smaller keys

Exercise 6.14
Given a BST T and a key k, the task is to delete all keys less than k from T. Please write a
pseudocode for this. What is the running time of your algorithm? What is the structure of the
leftover tree? What is the root of the tree?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 48

Exercise: expected height

Exercise 6.15
Let H(n) be the expected height of the tree obtained by inserting a random permutation of
1,...,n. Write the recurrence relation for H(n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 49

Exercise: find the leftmost and rightmost

Exercise 6.16
Given a BST tree T and a value v, write a program to locate the leftmost and rightmost
occurrence of the value v.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 50

Topic 6.9

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 51

True or False

Exercise 6.17
Mark the following statements True / False and also provide justification.

1. Binary search trees are always balanced.
2. In binary search tree containing n nodes, the worst-case running time of insertion is O(log n).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 52

Exercise: post-order search tree

Exercise 6.18
Consider a binary tree with labels such that the postorder traversal of the tree lists the elements
in increasing order. Let us call such a tree a post-order search tree. Give algorithms for search,
min, max, insert, and delete on this tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 53

Exercise: permutations

Exercise 6.19
Let [a(1),...,a(n)] be a random permutation of n. Let p(i) be the probability of event a(a(1))=i.
Compute p(i).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 54

Topic 6.10

Extra slides: proof of correctness of successor

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 55

Parts of BST with respect to a node n

n

Left subtree Right subtree

Path to n

Off-path nodes

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 56

The least common ancestor(LCA) is in the middle

Theorem 6.2
For nodes n1 and n2, let n = LCA(n1, n2). If key(n1) ≤ key(n2), key(n1) ≤ key(n) ≤ key(n2).

Proof.
We have four cases.
case n1 ∈ ancestors(n2): Trivial.(Why?)

case n2 ∈ ancestors(n1): Trivial.

case key(n1) = key(n2):
Since key(n) divided one of the nodes to left and the other to right, key(n) = key(n1).

case key(n1) < key(n2):
n1 and n2 must be in the left and right subtree of n respectively.
Therefore, key(n1) ≤ key(n) ≤ key(n2).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 57

Larger ancestors keep growing!

Theorem 6.3
If n2 ∈ ancestors(n1), n1 ∈ ancestors(n), and key(n2) > key(n), then key(n2) ≥ key(n1).

Proof.
n must be in the left subtree of n2.

n1 must be in the subtree.(Why?)

Since n1 is in the left subtree of n2, key(n2) ≥ key(n1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 58

Correctness of successor

In the following proof, we assume that all nodes have distinct elements.
Theorem 6.4
Let T be a BST, node n ∈ T, and n′ = successor(n).
If n′ ̸= Null, key(n′) > key(n) and for each node n′′ ∈ T − {n, n′}, we have

¬(key(n) < key(n′′) < key(n′)).

Proof.
Claim: A successor of n cannot be an off-path node.
Assume an off-path node n′ is the successor of n.
Therefore, key(n) < key(n′).
Due to theorem 6.2, key(n) ≤ key(LCA(n, n′)) ≤ key(n′).
Therefore, key(LCA(n, n′)) is between the nodes. Contradiction. ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 59

Correctness of successor(2)
Proof(Continued).
Claim: Successor of n cannot be in left subtree.
All nodes will have keys that are less than key(n).

Claim: If the right subtree exists, then a successor cannot be on the path to n.
1. Consider n′ ∈ descendants(right(n)).
2. Therefore, key(n′) > key(n).
3. For some n′′ ∈ ancestors(n), let us assume n′′ is successor of n.
4. Therefore, key(n′′) > key(n).
5. Therefore, n ∈ descendants(left(n′′)).
6. Therefore, n′ ∈ descendants(left(n′′)). due to 1 and 5
7. Therefore, key(n′′) > key(n′).
8. Therefore, key(n′′) > key(n′) > key(n).
9. Therefore, key(n′′) is not a successor. Contradiction. ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 60

Correctness of successor(2)
Proof(Continued).
Claim: If the right subtree exists, the successor is the minimum of the right subtree.
Since the successor is nowhere else, it must be the minimum.

Claim: If there is no right subtree and there is a node greater than n, the successor is the closest
node on the path to n such that the key of the node is greater than n.
Let n1, n2 ∈ ancestors(n) such that n2 ∈ ancestors(n1), key(n2) > key(n), and key(n1) > key(n).
Due to theorem 6.3, key(n2) > key(n1).
Therefore, n2 cannot be a successor.
Therefore, the closest node to n is the successor.

Exercise 6.20
a. Show that the closest node in the above proof must have n in its right subtree.
b. There is a final case missing in the above proof. What is the case? Prove the case.
b. Modify the above proof to support repeated elements in BST.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 61

End of Lecture 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Binary search trees
	Algorithms for BST
	Insert in BST
	Minimum in BST
	Successor in BST
	Deletion
	Average BST depth**
	Tutorial problems
	Problems
	Extra slides: proof of correctness of successor

