
cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2025

Lecture 7: Red-Black Trees

Instructor: Ashutosh Gupta

IITB India

Compile date: 2025-09-15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 2

Topic 7.1

Balance and rotation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 3

Maintain balance

BST may have a large height, which is bad for the algorithms.

Height is directly related to branching. More branching implies a shorter height.

We call BST imbalanced when the difference between the left and right subtree height is large.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 4

Balancing height by rotation

A

B
T1

T2 T3

h1

h2 h3

max(h1, h2 + 1, h3 + 1) + 1
(A,B)-rotate

(B,A)-rotate

B

A

h1
T1

h2
T2

h3
T3

max(h1 + 1, h2 + 1, h3) + 1

For example, if h3 > h2 = h1 and we rotate the BST, we will get a valid and more balanced BST
with less height.

Rotation may be applied in the reverse direction, where A is the left child of B. We define the
symmetric rotation in both directions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 5

Example: rotation

Example 7.1
In the following BST, we can rotate 8-17 edge.

8

5 17

11 21

18 30

(8, 17) rotate
17

8

5 11

21

18 30

Commentary: This tree operation is important. Please carefully observe the destination of red,blue, and brown subtrees.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 6

When to rotate? Can only rotation fix imbalance?

Rotation is a local operation, which must be guided by non-local measure height.

We need a definition of balance such that rotations operations should be able to achieve the
balance.

Design principle:
We minimize the number of rotations while allowing some imbalance.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 7

Topic 7.2

Red-black tree

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 8

Null leaves

To describe a red-black tree, we replace the null pointers for absent children with dummy null
nodes.
Example 7.2
The following tiny nodes are the dummy null nodes.

8

5 17

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 9

Red-black tree

Definition 7.1
A red-black tree T is a binary search tree
such that the following holds.
▶ All internal nodes are colored either red

or black
▶ Null leaves have no color
▶ Root is colored black
▶ No red node has a red child
▶ All paths from the root to null leaves

have the same number of black nodes.

Example 7.3
An example of a red-black tree.

8

5 17

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 10

Exercise: Identify red-black trees
Exercise 7.1
Which of the following are red-black trees?

17

5

16

17

5

16

17

5 17

Observations:
▶ Red nodes are not counted in the imbalance. We need them only when there is an

imbalance.
▶ There cannot be too many red nodes. (Why?)

▶ Red nodes can be at every level except the root.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 11

Black height

Definition 7.2
The black height (bh) for each node is defined as follows.

bh(n) =


0 n is a null leaf
max(bh(right(n)), bh(left(n))) + 1 n is a black node
max(bh(right(n)), bh(left(n))) n is a red node

Until it is stated otherwise, all heights mentioned in this lecture are black heights.

Exercise 7.2
Prove that for each node n in a red-black tree, bh(right(n)) == bh(left(n)).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 12

Example: black height

Example 7.4
The black height of the following red-black tree is 2.

Exercise 7.3
Can we change the color of some nodes without breaking the conditions of a red-black tree?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 13

Bound on the height of a red-black tree

Let h be the black height of a red-black tree containing n nodes.

▶ n is the smallest when all nodes are black. Therefore, the tree is a complete binary tree.
Therefore, n = 2h − 1.

▶ n is largest when the alternate levels of the tree are red. The height of the tree is 2h.
Therefore, n = 22h − 1.

log4 n < h ≤ log2(n + 1)

Exercise 7.4
Define red-black tree inductively and write the proof of the above bounds using induction.

Commentary: Our definition of red-black tree is not inductive therefore the above proof does not read so formal. However, an inductive definition would make proof
formal. Can you write an inductive definition of red-black tree and prove the above statements?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 14

Search, Maximum/Minimum, and Successor/Predecessor

We can search, maximum/minimum, and successor/predecessor on the red-black tree as usual.

Their running time will be O(log n) because h < 1+ log2 n.

How do we do insertion and deletion on a red-black tree?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 15

Topic 7.3

Insertion in red-black tree*

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 16

BST insertion in red-black tree

1. Follow the usual algorithm of insertion in the BST, which inserts the new node n as a leaf.
▶ Note that there are dummy nodes. n is inserted as the parent of a dummy node.

2. We color n red.

▶ Good news: No change in the black height of the tree.
▶ Bad news: n may have a red parent.

After insertion, we may have a red-red violation, where a red node has a red child.

Commentary: We have null nodes in this setting. We need to add nulls as children to the new node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 17

Example: insert in red-black tree

Example 7.5
Inserting 20 in the following tree.

8

5 17

21

Insert 20 8

5 17

21

20

The insertion results in violation of the condition of the red-black tree, which says red nodes can
only have black children.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 18

Iteratively remove red-red violation
A red-red violation starts at a leaf. However, an attempt to remove the violation may push up
the violation to the parent.

p

n
red-red violation

Commentary: We attempt to remove the violation by
local transformations on the tree. The transformation
may cause the violation to traverse up the tree until we
reach the root. In the following, we need to consider
a general situation where a violation has occurred in
the middle of the tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 19

Pattern around red-red violation

If n has a red parent, we correct the error by rotation and re-coloring operations.

g

u p

n

h
T2

h
T3

h
T4

h + 1

Exercise 7.5
Why must g exist and be black?

Orange means that we need to consider all possible colors of
the nodes.

We have three cases.

▶ Case 1: u is red

▶ Case 2: u is not red and the g to n path is not straight

▶ Case 3: u is not red and the g to n path is straight

No transformation should change the black height of g.

“not red” means either
black node or null node.

h is the
black
height.

Commentary: Since the new node is always added at
the leaf, one may think that h must be zero, which
may not be the case. As noted in the previous slide,
the violation may move upwards.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 20

Case 1: The uncle is red
g

u p

n
T1

T2 T3

T4

h + 1

h

h h

h

re-color
g

u p

n
T1

T2 T3

T4

h h

h

h + 1

h + 1

In the subtree of g, there is no change in the black height and no red-red violation.

Now g is red. We have three possibilities: the parent of g is black, the parent of g is red, and g
is the root.
Exercise 7.6
What do we do in each of the possibilities?

Commentary: Possibility 1: Nothing. Possibility 2:
We have a red-red violation a level up and need to
apply the transformations there. Possibility 3: turn g
back to black.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 21

Case 2: The uncle is not red and the path to the grandparent is not
straight

g

p

n
T1

T2 T3

T4

h

h h

h

h + 1 (p,n) rotate g

n

p
T1

T2

T3 T4

h

h

h h

h + 1

This transformation does not resolve the violation but converts the violation to case 3.

straight means left2(parent2(n)) = n
or right2(parent2(n)) = n

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 22

Case 3: The uncle is not red and the path to the grandparent is straight

g

p

n
T1

T2

T3 T4

h

h

h h

h + 1

(g, p) rotate
swap colors

p

g n

T1 T2 T3 T4
h h h h

h + 1

The transformation removes the red-red violation.

Exercise 7.7
a. Why are the roots of T2, T3, and T4 not red?
b. Show that if the root of T1 is red then the above operation does not work.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 23

Example: red-red correction case 1

Example 7.6
We just inserted 20 in the following tree. We need to apply case 1 to obtain a red-black tree.

8

5 17

12 21

20

re-color 8

5 17

12 21

20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 24

Example: red-red correction case 2
Example 7.7
Consider the following example. We are attempting to insert 20. We apply case 2 to move
towards a red-black tree.

8

5 17

21

20

(20,21)-rotate 8

5 17

20

21

The above is not a red-black tree. Furthermore, we need to apply case 3 to obtain the red-black
tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 25

Example: red-red correction case 3 (continued)

We apply case three as follows.

8

5 17

20

21

(17,20)-rotate
and color swap

8

5 20

17 21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 26

Summary of insertion

Insert like BST, make the new node red, and run the following algorithm.

Algorithm 7.1: RedRedRepair(Node n)
1 ASSUME(there is no red-red violation at any other node);
2 if n is root then n.color := black; return;
3 p := parent(n);
4 if p is black then return;
5 g := parent(p); u := sibling(p);
6 if u.color is red then g.color:=red; u.color:=p.color:=black; RedRedRepair(g); return; // Case 1 ;
7 if left2(g) ̸= n and right2(g) ̸= n then Rotate(p,n);RedRedRepair(p);return; //Case 2->3 ;
8 Rotate(g,p); g.color,p.color := p.color,g.color; //Case 3 ;

Commentary: What is the intuitive difference between cases 1 and 3? Answer: Case 1 reduces the total number of red nodes in a subtree. Case 3 balances if there are
too many red nodes on one side of the subtree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 27

Topic 7.4

Deletion in red-black tree**

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 28

BST deletion in red-black tree

▶ Delete a node as if it is a binary search tree.

▶ Recall: In the BST deletion we always delete a node n with at most one non-null child.

p

n

x

T1

T2

Remove n p

x

T1
T2

x can be either a null or non-null node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 29

What can go wrong with a red-black tree?

Since a child x of n takes the role of n, we need to check if x can replace n.

▶ If n was red, no violations occur. (Why?)

▶ If n was black, bh(x) = bh(n)− 1︸ ︷︷ ︸
black height violation

, or it is possible that both x and p are red︸ ︷︷ ︸
red-red violation

.

The leaves of the subtree rooted at x
will have one less black depth.

Commentary: The or in the second bullet point is not xor. Both violations are possible at the same time.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 30

Violation removal procedure
To remove the violation at x, we may recolor and rotate around x, which may push the violation
to the parent. Therefore, we assume that the violation is somewhere in the middle of the tree.

p

x s
height violation
h to h − 1 h

Orange means that we need to consider all possible colors of the nodes.

x may be red and also have a red-
red violation with parent or a child.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 31

Violation pattern
After the deletion, we may need to consider the following five nodes around x.

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

Exercise 7.8
Show if x is not root and not red,
s is non-null.

We correct the violation either by rotation or
re-coloring.

There are six cases
1. x is red
2. x is not red and root.
3. x is not red and s is red
4. x is not red and s is black

4.1 c2 is red
4.2 c2 is not red and c1 is red
4.3 c2 is not red and c1 is not red

The goal is to restore the black height of p.
Trick: find a red node and turn it black.

Commentary: Please check that if cases are exhaus-
tive. You will notice that the case where x is not red,
x is not root, and s is null-leaf is missing. The exercise
in the slide proves that the case is not possible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 32

Case 1: x is red

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

re-color x
p

x s

c1 c2
T1

T2 T3

T4

h h

Violation solved!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 33

Case 2: x is not red and root.

Do nothing.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 34

Case 3: x is not red and the sibling of x is red

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

(p, s) rotate
and swap colors

s

p

x c1

c2

T1

T2 T3

T4h − 1 h

h

The transformation does not solve the height violation at the parent of x but changes the sibling
of x from red to black.

Exercise 7.9
Why must p, c1, and c2 be non-null and black?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 35

Case 4.1: x is not red, the sibling of x is black, and the far nephew is red
The color of p and c1 does not matter.

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

h − 1 h − 1

(p, s) rotate
swap the color of p and s,
and c2 is turned black

s

p

x c1

c2

T1

T2 T3

T4h − 1 h − 1

hh

The above transformation solves the black height violation.

Exercise 7.10
Write the above case if x is the right child of p.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 36

Case 4.2: x is not red and the sibling is black, and the near and far
nephews are red and not red respectively

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

(s, c1) rotate
and swap colors

p

x c1

s

c2

T1

T2

T3 T4

h − 1 h

The above transformation does not solve the height violation. It changes the right child of the
sibling from not red to red, which is the case 4.1.
Exercise 7.11
a. Why can case 4.1 transformation not be applied to case 4.2?
b. Write the above case if x is the right child of p.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 37

Case 4.3: x is not red, the sibling of x is black, and the nephews of x are
not red

p

x s

c1 c2
T1

T2 T3

T4

h to h − 1 h

color s red
p

x s

c1 c2
T1

T2 T3

T4

h − 1 h − 1

The above transformation reduces bh(p) by 1. There may be a potential violation at p, which is
at the lower level. If p is red, then p and s will also have red-red violation.

We apply the case analysis again at node p. The only case that kicks the can upstairs!!
All cases are covered.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 38

Structure among cases

▶ Cases 1, 2, and 4.1 solve the violation at the node.
▶ Case 3 turns the violation into 4.1, 4.2, or (4.3 → 1).
▶ Case 4.2 turns the violation into 4.1.
▶ Case 4.3 moves the violation from x to its parent p.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 39

Summary of deletion
Delete n like BST, if there is a height violation at the parent of x then run the following algorithm.

Algorithm 7.2: HeightRepair(Node x)
1 ASSUME(there is no red-red violation at any other node);
2 ASSUME(there is no height violation below x);
3 if x is red then x.color := black; return; // Case 1;
4 if x is root then return; // Case 2;
5 p := parent(x); s := sibling(x);
6 c1 := (x = left(p)) ? left(s) : right(s); // near nephew;
7 c2 := (x = left(p)) ? right(s) : left(s); // far nephew;
8 if s is red then RotateAndSwapColor(p,s); HeightRepair(x); return; // Case 3 → 4.1, 4.2, or (4.3→1);
9 if c2 is red then RotateAndSwapColor(p,s); color(c2) := black; return; // Case 4.1;

10 if c1 is red then RotateAndSwapColor(s,c1);HeightRepair(x); return; // Case 4.2 → 4.1;
11 color(s) := red;
12 HeightRepair(p); // Case 4.3

Exercise 7.12
Is the above a tail-recursive function?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 40

Example: deletion in Red-black tree

Example 7.8
Let us delete 20 in the following red black tree

17

8

5 12

15

20

Delete like BST 17

8

5 12

15

xs

Node x is in Case 3, where the sibling s is red.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 41

Example: deletion in red-black tree (continued) – applying Case 3

17

8

5 12

15

xs

Rotate(17,8)
swap colors

8

5 17

12

15

x

c2 c1

s

p

Now node x is in Case 4.2, where the sibling s is not red, nephew c2 is not red, nephew c1 is
red.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 42

Example: deletion in red-black tree (continued) – applying Case 4.2

8

5 17

12

15

x

c2 c1

s

p

Rotate(12,15)
swap colors

8

5 17

15

12

x

c1c2

s

p

Now node x is in Case 4.1, where the sibling s is not red and nephew c2 is red.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 43

Example: deletion in red-black tree (continued) – applying Case 4.1

8

5 17

15

12

x

c1c2

s

p

Rotate(17,15)
swap colors

color c2 black

8

5 15

12 17

Height imbalance due to the deletion is repaired.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 44

Exercise: identify the case for deletion and apply deletion

Exercise 7.13
On deletion of 12 in the following red-black trees, which case of deletion will be applied?

8

5 12

8

5 12

17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 45

Summary of deletion

1. Delete like BST. There may be a black height violation at the child of the deleted node.
2. While case 4.3 occurs, re-color nodes and move up the black height violation.
3. For all the other cases, we rotate or re-color, and the violation is finished.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 46

Topic 7.5

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 47

Exercise: validity of rotation

Exercise 7.14
Prove that after rotation the resulting tree is a binary search tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 48

Exercise: sorted insert

Exercise 7.15
Insert sorted numbers 1,2,3,..., 10 into an empty red-black tree. Show all intermediate red-black
trees.

Exercise 7.16
Exact number of rotations needed to insert sorted numbers 1, ..., n into an empty red-black
tree.**

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 49

Insert and delete
Exercise 7.17
Consider the tree below. Can it be colored and turned into a red-black tree? If we wish to store
the set 1, . . . , 22, label each node with the correct number. Now add 23 to the set and then
delete 1. Also, do the same in the reverse order. Are the answers the same? When will the
answers be the same?

A

B

D

H

E

I

O

J

C

F

K

P Q

L

G

M

R S

N

T U

V

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 50

Exercise: Hash table vs red-black tree

Exercise 7.18
a. Give running time complexities of delete, insert, and search in the red-black tree.
b. What are the advantages of the red-black tree compared to the Hash table, where every
operation (search, insert, delete) is almost constant time?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 51

Topic 7.6

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 52

True or False

Exercise 7.19
Mark the following statements True / False and also provide justification.

1. Each black node of a red-black tree must have a red child.
2. Unordered maps in C++ use red-black trees.
3. An insertion in red-black tree needs at most two rotations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 53

Exercise: consistent hashing** (midsem 2024)
Exercise 7.20
Let us suppose we want to store n keys on m servers. The servers have IDs. We may use a hash function
h to map the keys to servers. Both keys and IDs of the servers are hashed. The computed hash values are
placed on a ring, like a clock. Some of the points on the ring are the servers and some are keys. A key is
stored on the closest server in the clockwise direction. Each time a server is added/removed the keys are
moved according to the above rule.
Example: Let h(x) = 1+ x%11. We want to store keys 21, 60, and 90 on
three server with IDs 141, 201, and 738. The hash values of the keys are
11, 6, 3 and the hash values of the servers are 10, 4, 2. The keys 21, 60,
and 90 will be stored in servers 738, 141, and 201 respectively.

a. Give an efficient algorithm for adding/removing keys on the servers.
b. Give an efficient algorithm for implementing add/remove of servers.

1
23

4

5

6

7
8 9

10

11 21
60

90 738

141

201

Commentary: Solution: To implement the above scheme. We store the server hashes in a red black tree R.
findNext(k,s,s’){ if(s=Null) return s’;if(key(s) < k) return findNext(k,key(s),s’); else return findNext(k,left(s),s);}
findServer(k){s = findNext(k,R.root,Null) if(s == Null) s = minimum(R.root); if(s == Null) Return Null; Return value(s)}
AddKey(k){ s = findServer(h(k));storeInServer(k,s)} RemoveKey(k){ s = findServer(h(k),R.root); removeInServer(k,s)}
AddServer(s){ s’ := h(s) R.Insert((s’,s)); t = nextServer(s’); for k in GreaterKeysOnServer(s’,t) {removeInServer(k,t);storeInServer(k,s)} }
RemoveServer(s){ s’ := h(s) R.Delete(s’); t = nextServer(s’); for k in KeysOnServer(s) { removeInserver(k,s);storeInServer(k,t); } }
Assume red-black Insert takes (key,value) pair as input and no two servers have collision, which can be easily avoided by renaming the IDs. Keys are again stored as
Red-black tree on the servers such that we can efficiently implement GreaterKeysOnServer. removeInServer are storeInServer are trivial calls to insert/delete of RB Tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 54

Excercise: Is BST red-black colorable?**

Exercise 7.21
Given a BST, can we check if there exists a colouring which makes it a valid RB-Tree?

Commentary: Solution: https://cs.stackexchange.com/questions/10990/colour-a-binary-tree-to-be-a-red-black-tree

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://cs.stackexchange.com/questions/10990/colour-a-binary-tree-to-be-a-red-black-tree

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 55

Topic 7.7

Extra slides: AVL trees (In GATE/GRE syllabus)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 56

AVL (Adelson, Velsky, and Landis) tree
Definition 7.3
An AVL tree is a binary search tree such that for each node n

|height(right(n))− height(left(n))| ≤ 1.

Example 7.9
An example of an AVL tree.

8

5

7

17

11

10 14

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 57

Exercise: Identify the AVL trees

Exercise 7.22
Which of the following are AVL trees?

17

5

3

17

21

20

18

17

5

11

21

17

5

5 11

21

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 58

Topic 7.8

Height of AVL tree

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 59

AVL tree height

Theorem 7.1
The height of an AVL tree T having n nodes is O(log n).

Proof.
Let n(h) be the minimum number of nodes for height h.

Base case:
n(1) = 1 and n(2) = 2.

Induction step:
Consider an AVL tree with height h ≥ 3. In the minimum case, one child will have a height of
h − 1 and the other child will have a height of h − 2. (Why?)

Therefore, n(h) = 1+ n(h − 1) + n(h − 2). ...
Commentary: We need to show that n(h) > n(h − 1) is monotonous. Ideally, n(h) = 1 + n(h − 1) + min(n(h − 2), n(h − 1)). This proves that n(h) > n(h − 1).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 60

AVL tree height(2)
Proof(continued.)
Since n(h − 1) > n(h − 2),

n(h) > 2n(h − 2).

Therefore,
n(h) > 2in(h − 2i).

For i = h/2− 1(Why?),
n(h) > 2h/2−1n(2) = 2h/2.

Therefore,
h < 2 log n(h).

Therefore, the height of an AVL tree is O(log n). (Why?)

Commentary: Here is the explanation of the last step.
Consider an AVL tree with m nodes and h height. By
definition, h(n) ≤ m. Since h < 2 log n(h), h <
2 log m. Therefore, h is O(log m).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 61

Closest leaf

Theorem 7.2
Let T be an AVL tree. Let the level of the closest leaf to the root of T is k.

height(T) ≤ 2k − 1

.Proof.Let D be the closest leaf of the tree.
▶ The height of right(C) cannot be more than 2. (Why?)

▶ Therefore, the maximum height of C is 3.
▶ Therefore, the maximum height of right(B) is 4.
▶ Therefore, the maximum height of B is 5.
▶ Continuing the argument, the maximum height of

root r is 2k − 1.

r

B

C

D1
2

3
4

5

2k − 2

2k − 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 62

A part of AVL is a complete tree

Theorem 7.3
Let T be an AVL tree. Let the level of the closest leaf to the root of T is k. Upto level k − 2 all
nodes have two children.

Proof.
A node at level k − 2− i cannot be a leaf for i ≥ 0. (Why?)

Let us assume that a node n at level k − 2− i has a single child n′.

The height of n′ cannot be more than 1. (Why?)

Therefore, n′ is a leaf. Contradiction.

Exercise 7.23
Show T has at least 2k−1 nodes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 63

Another proof of tree height bound

Let T have n nodes and the height of T be h.

We know the following from the previous theorems.
▶ n ≥ 2k−1, and
▶ 2k − 1 ≥ h.

Therefore,
n ≥ 2k−1 ≥ 2(h−1)/2

Exercise 7.24
What is the maximum number of nodes given height h?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 64

Problem: A sharper bound for the AVL tree

Exercise 7.25
a. Find largest c such that ck−2 + ck−1 ≥ ck

b. Recall n(h) = 1+ n(h − 1) + n(h − 2). Let c0 be the largest c. Show that n(h) ≥ ch−1.
c. Prove that the above bound is a sharper bound than our earlier proof.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 65

Topic 7.9

Insertion and deletion in AVL trees

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 66

Insert and delete

Insert and delete like BST.

At most a path to one node may have height imbalances of 2. (Why?)

We have to repair height imbalances by rotations around the deepest imbalanced node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 67

Rebalancing AVL trees
Let x be the deepest imbalanced node. Let t be the taller child. Let g be the grandchild via t
that is not on the straight path from x.

x

t

gT1

T2 T3

T4

h + 3

h + 2h

Three cases:
1. Case 1: Height of g is h + 1 and T4 is h + 1.
2. Case 2: Height of g is h and T4 is h + 1.
3. Case 3: Height of g is h + 1 and T4 is h.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 68

Case 1: Both grandchildren via t have height h + 1

x

t

gT1

T2 T3

T4

h + 3

h + 2h

h + 1 h + 1

rotate(x,t) t

x

g
T1

T2 T3

T4

h

h + 1

h + 1

h + 3

h + 2

The imbalance in the subtree is repaired. We check the parent of t.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 69

Case 2: Right-left grandchild has height h

x

t

gT1

T2 T3

T4

h + 3

h + 2h

h h + 1

rotate(x,t) t

x

g
T1

T2 T3

T4

h

h + 1

h

h + 2

h + 1

Imbalance is repaired. But, the parent of t may need repair.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 70

Case 3: Right right grandchild has height h

x

t

gT1

T2 T3

T4

h + 3

h + 2

h + 1

h

{h, h − 1} ∋ ∈ {h, h − 1}

h

rotate(t,g)
rotate(x,g)

g

x t

T1 T2 T3 T4
h h

h + 2

h + 1 h + 1

Imbalance is repaired. But, the parent may need repair.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 71

Complexity of insertion/deletion

Exercise 7.26
a. What is the bound on the number of rotations for a single insert/delete?
b. Compare the bounds with RB trees insertion/deletion.
c. Which definition is more strict RB or AVL? Or, are they incomparable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 72

End of Lecture 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Balance and rotation
	Red-black tree
	Insertion in red-black tree*
	Deletion in red-black tree**
	Tutorial problems
	Problems
	Extra slides: AVL trees (In GATE/GRE syllabus)
	Height of AVL tree
	Insertion and deletion in AVL trees

