
cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 1

CS213/293 Data Structure and Algorithms 2025

Lecture 12: Data compression

Instructor: Ashutosh Gupta

IITB India

Compile date: October 3, 2025

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 2

Data compression

You must have used Zip, which reduces the space a file uses.

How does Zip work?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 3

Fixed-length vs. Variable-length encoding

▶ Fixed-length encoding. Example: An 8-bit ASCII code encodes each character in a text file.

▶ Variable-length encoding: each character is given a different bit length encoding.

▶ We may save space by assigning fewer bits to the characters that occur more often.

▶ We may have to assign some characters more than 8-bit representation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 4

Example: Variable-length encoding

Example 12.1
Consider text: “agra”

▶ In a text file, the text will take 32 bits of space.
▶ 01100001011001110111001001100001

▶ There are only three characters. Let us use encoding, a = ‘‘0”, g = ‘‘10”, and r = ‘‘11”.
The text needs six bits.
▶ 010110

Exercise 12.1
Are the six bits sufficient?

Commentary: If the encoding depends on the text content, we also need to record the encoding along with the text.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 5

Example: decoding variable-length encoding

Example 12.2
Consider encoding a = ‘‘0”, g = ‘‘10”, and r = ‘‘11” and the following encoding of a text.

101100001110
The text is ‘‘graaaarg”.

We scan the encoding from the left. As soon as a match is found, we start matching the next
symbol.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 6

Example: decoding bad variable-length encoding

Example 12.3
Consider encoding a = ‘‘0”, g = ‘‘01”, and r = ‘‘11” and the following encoding of a text.

0111000011001
We cannot tell if the text starts with a ‘‘g” or an ‘‘a”.

Prefix condition: Encoding of a character cannot be a prefix of encoding of another character.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 7

Topic 12.1

An example of variable-length encoding:
Unicode and UTF-8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 8

How can we support all languages?

ASCII is designed for only english like languages.

How can we support all symbols ever used by humanity, including Emojis?

Answer: Unicode

Example 12.4
Character A is U+41
Character क is U+915
Emoji is U+1F609

The maximum length of unicode is 21 bits.

Variable length
encoding

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 9

Storing unicode in a file
Unicode itself does not satisfy prefix condition.

If we do fixed-length encoding, we will be wasting space and ASCII files will be incompatible.

How to remain backward compatible and not waste space?

Answer: UTF-8
Unicode U+uvvvvwwwwxxxxyyyyzzzz will be encoded as follows.

Start code Last code Byte1 Byte2 Byte3 Byte4
U+00 U+7F 0yyyzzzz
U+80 U+7FF 110xxxyy 10yyzzzz

U+800 U+FFFF 1110wwww 10xxxxyy 10yyzzzz
U+10000 U+10FFFF 11110uvv 10vvwwww 10xxxxyy 10yyzzzz

UTF-8 ensures prefix condition.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 10

Example: UTF-8 encoding

Example 12.5
Consider U+915, which is the code for character क.

wwww = 0000, xxxx = 1001, yyyy = 0001, zzzz = 0101

The code will be stored using the following three bytes.

11100000 10100100 10010101

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 11

Topic 12.2

Principles of variable-length encoding

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 12

Encoding trie

Definition 12.1
An encoding trie is a binary trie that has the
following properties.
▶ Each terminating leaf is labeled with an encoded

character.
▶ The left child of a node is labeled 0 and the

right child of a node is labeled 1

Exercise 12.2
Show: An encoding trie ensures that the prefix
condition is not violated.

0

0

C

1

0

A

1

R

1

0

D

1

B

Character encoding/codewords:
C = 00, A = 010, R = 011,
D = 10, and B = 11.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 13

Example: Decoding from a Trie

0

0

C

1

0

A

1

R

1

0

D

1

B

Encoding: 01011011010000101001011011010

Text: ABRACADABRA

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 14

Encoding length

Example 12.6
Let us encode ABRACADABRA using the following two tries.

0

0

C

1

0

A

1

R

1

0

D

1

B

Encoding:(29 bits)
01011011010 0001010 01011011010

0

0

A

1

0

C

1

D

1

0

R

1

B

Encoding:(24 bits)
00111000 01000011 00111000

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 15

Drawing with tries without labels

Since we know the label of an internal node by observing that a node is a left or right child, we
will not write the labels.

A

C D

R B

Commentary: We can assign any bit to a node as long as the sibling will use a different bit.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 16

Topic 12.3

Optimal compression

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 17

Optimal compression

Different tries will result in different compression levels.

Design principle: We encode a character that occurs more often with fewer bits.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 18

frequency

Definition 12.2
The frequency fc of a character c in a text T is the number of times c occurs in T.

Example 12.7
The frequencies of the characters in ABRACADABRA are as follows.
▶ fA = 5

▶ fB = 2

▶ fR = 2

▶ fC = 1

▶ fD = 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 19

Characters encoding length

Definition 12.3
The encoding length lc of a character c in a trie is the number of bits needed to encode c.

Example 12.8

A

C D

R B

In the left trie, the encoding length of the characters are
as follows.
▶ lA = 2

▶ lB = 2

▶ lR = 2

▶ lC = 3

▶ lD = 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 20

Weighted path length == number of encoded bits

A

C D

R B

The total number of bits needed to store a text is∑
c∈Leaves

fclc.

Example 12.9
The number of bits needed for ABRACADABRA using
the left trie is the following sum.

fA ∗ lA + fC ∗ lC + fD ∗ lD + fR ∗ lR + fB ∗ lB

= 5 ∗ 2 + 1 ∗ 3 + 1 ∗ 3 + 2 ∗ 2 + 2 ∗ 2 = 24

Is this the best trie for compression? How can we find the best trie?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 21

Huffman encoding

Algorithm 12.1: Huffman(Integers fc1 , ...., fck)
1 for i ∈ [1, k] do
2 N := CreateNode(ci,Null,Null);
3 Ti := CreateNode(fci ,N,Null);
4 return BuildTree(T1, ...,Tk)

Algorithm 12.2: BuildTree(Nodes T1, ....,Tk)
1 if k == 1 then
2 return T1

3 Find Ti and Tj such that value(Ti) and value(Tj) are minimum;
4 Tnew := CreateNode(value(Ti) + value(Tj),Ti,Tj);
5 return BuildTree(T1, ...,Ti−1,Ti+1, ...,Tj−1,Tj+1, ...,Tk,Tnew)

Exercise 12.3
a. Is BuildTree tail
recursive?
b. How should we
resolve non-determinism
if there is a tie in
finding the minimum?

CreateNode( Value, LeftChild, RightChild )
is a constructor of a node.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 22

Running time analysis of Huffman encoding

We need to find minimums repeatedly. We use a heap to store the values of the roots.

Running time analysis
▶ BuildTree will be recursively called k times.
▶ In each recursive call, we need to call

▶ two deleteMins for removing two trees and
▶ an insertion for the new tree

in the heap.
▶ Total running time

1∑
i=k

O(log i) = O(k log k)

Commentary: We have proven the above equality in tutorial problems!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 23

Example: Huffman encoding

Example 12.10
After initialization.

5

A

2

B

2

R

1

C

1

D

We choose nodes labeled with 1 to join and create a larger tree.

5

A

2

B

2

R

2

1

C

1

D

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 24

Example: Huffman encoding(2)

After the next recursive step

5

A

2

B

4

2

R

2

1

C

1

D

After another recursive step:

5

A

6

2

B

4

2

R

2

1

C

1

D

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 25

Example: Huffman encoding(3)
After the final recursive step:

11

5

A

6

2

B

4

2

R

2

1

C

1

D

We scrub the frequency labels.

A

B

R

C D

Exercise 12.4
How many bits do we need to encode ABRACADABRA?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 26

Using Huffman in compression

To compress a file, we need to compute the frequencies of the symbols.

The number of symbols may be constant with respect to the file size.

Therefore, the cost of computing Huffman is constant time if the frequencies are given.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 27

Frequency (alternative definition!)

Definition 12.4 (Equivalent definition)
The frequency fc of a character c in a text T is the fraction (or %) of times c occurs in T.

Example 12.11
The frequencies of the characters in ABRACADABRA are as follows.
▶ fA = 5/11

▶ fB = 2/11

▶ fR = 2/11

▶ fC = 1/11

▶ fD = 1/11

Huffman can work with the fractions without any change. (Why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 28

Topic 12.4

Proof of optimality of Huffman encoding

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 29

Is Huffman optimal?

Exercise 12.5
Let us suppose a file contains a, b, c, and d with frequencies 25%, 25%, 25%, and 25%
respectively.
a. Should you be able to compress this file?
b. Do Huffman codes compress this file?

We need to prove that Huffman encoding indeed produces optimal encoding.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 30

Minimum weighted path length
Definition 12.5
Given frequencies fc1 , ..., fck , minimum weighted path length MWPL(fc1 , ..., fck) is the minimum
weighted path length among the tries that encode c1, ..., ck.
We say a trie is a witness of MWPL(fc1 , ..., fck) if it encodes c1,... ,ck and it produces encoding of
length MWPL(fc1 , ..., fck) for a text with frequencies fc1 , ..., fck

Example 12.12

We have seen MWPL(5, 2, 2, 1, 1) = 23.

The witness trie is on the right.

5

.. 2

.. 2

.. 1

..

1

..
Commentary: The MWPL is the property of the frequency distribution.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 31

A recursive relation

Theorem 12.1
MWPL(fc1 , ..., fck) ≤ fc1 + fc2 + MWPL(fc1 + fc2 , fc3 , ..., fck)

Proof.
Let trie T be a witness of MWPL(fc1 + fc2 , fc3 , ..., fck) containing a node labeled with fc1 + fc2
with a terminal child.

fc1 + fc2

...

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 32

A recursive relation(2)

Proof(contd.)
We construct a trie for frequencies fc1 , ..., fck such that the weighted path length of the trie is
fc1 + fc2 + MWPL(fc1 + fc2 , fc3 , ..., fck).

fc1 + fc2

...fc1 fc2

c1 c2

Therefore, MWPL(fc1 , ..., fck) must be less than equal to the above expression.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 33

Example: MWPL(fc1, ..., fck) ≤ fc1 + fc2 + MWPL(fc1 + fc2, fc3, ..., fck)

Example 12.13

5

.. 2

.. 2

..

2

..

Witness for MWPL(5, 2, 2, 2)

5

1

..

4

..

2

.. 2

..

2

..

The weighted path length of the above is
1 + 4 + MWPL(5, 2, 2, 2)

The witness of MWPL(1, 4, 2, 2, 2) must have weighted path length ≤ the above right trie.

MWPL(1, 4, 2, 2, 2) ≤ 1 + 4 + MWPL(5, 2, 2, 2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 34

Reverse recursive relation
Theorem 12.2
If fc1 and fc2 are the minimum two, MWPL(fc1 , ..., fck) = fc1 + fc2 + MWPL(fc1 + fc2 , fc3 , ..., fck).
Proof.
There is a witness of MWPL(fc1 , ..., fck) where the parents of c1 and c2 are siblings. (Why?)

fc1 + fc2

fc1 fc2

c1 c2

...Commentary: Explaining why: Show that the smallest frequency symbol can always be moved to the last level to improve weighted path length. Furthermore, since there
must be a sibling at the last level, the second last frequency symbol can also be moved to the sibling to improve the weighted path length.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 35

Reverse recursive relation(2)

Proof(contd.)
We construct a tree for frequencies fc1 + fc2 , fc3 , ..., fck such that the weighted path length of the
tree is MWPL(fc1 , ..., fck)− fc1 − fc2 .

fc1 + fc2

...

Therefore, MWPL(fc1 , ..., fck)− fc1 − fc2 ≥ MWPL(fc1 + fc2 , fc3 , ..., fck).

Due to the previous theorem, MWPL(fc1 , ..., fck) = fc1 + fc2 + MWPL(fc1 + fc2 , fc3 , ..., fck).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 36

Example: MWPL(fc1 + fc2, fc3, ..., fck) ≤ MWPL(fc1, ..., fck)− fc1 − fc2
Example 12.14

5

.. 2

.. 2

..

2

..

Witness for MWPL(5, 2, 2, 2). Since 2 and 2 are the
least two frequencies, they are on the longest path.

5

.. 2

..

4

..

The weighted path length of the
above is MWPL(5, 2, 2, 2)−2− 2

The witness of MWPL(5, 2, 4) must have weighted path length ≤ the above right trie.

MWPL(5, 2, 4) ≤ MWPL(5, 2, 2, 2)− 2− 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 37

Proof compatible BuildTree
Our BuildTree does not follow the pattern of updates of theorem 12.2. So, writing a proof
over the algorithm is hard. We consider the following version of BuildTree for writing the
proof.

Algorithm 12.3: BuildTree2(Nodes T1, ....,Tk)

1 if k == 1 then
2 return T1

3 Find Ti and Tj such that value(Ti) and value(Tj) are minimum;
4 Tnew := CreateNode(value(Ti) + value(Tj),Null,Null);
5 T := BuildTree2(T1, ...,Ti−1,Ti+1, ...,Tj−1,Tj+1, ...,Tk,Tnew);
6 left(Tnew) := Ti;
7 right(Tnew) := Tj; //Only highlighted parts are different from BuildTree.
8 return T

Exercise 12.6
Show that algorithms 12.2 and 12.3 are equivalent.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 38

Correctness of Huffman
Theorem 12.3
Huffman(fc1 , ..., fck) always returns a tree that is a witness of MWPL(fc1 , ..., fck).

Proof.
We assume Huffman is calling BuildTree2. We prove inductively over k in the call of BuildTree2(T1, ..,Tk).

Base case:
Trivial. There is a single tree with a single node and we return the node.

Induction step:
We assume the recursive call BuildTree2 returns witness T of
MWPL(value(T1), ..., value(Ti−1), value(Ti+1), ..., value(Tj−1), value(Tj+1), ..., value(Tk), value(Tnew)).

Therefore, T is a witness of
MWPL(value(T1), ..., value(Ti−1), value(Ti+1), ..., value(Tj−1), value(Tj+1), ..., value(Tk), value(Ti) + value(Tj)).

Subsequently, we insert nodes Ti and Tj in T according to the scheme of theorem 12.2.

Therefore, the T at line 10 is a witness of MWPL(value(T1), ...., value(Tk)).

Commentary: In the proof, the induction step is non-
trivial to understand.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 39

Topic 12.5

Repeated string (LZ77)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 40

LZ77 for repeated string

In LZ77, if a string is repeated within the sliding window on the input stream, the repeated
occurrence is replaced by a reference, which is a pair of the length of the string and offset.

The references are viewed as yet another symbol on the input stream.

Example 12.15
Before encoding ABRACADABRA using a trie, the string will be transformed to

ABRACAD[4, 7].

We run Huffman on the above string.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 41

Multiple repetitions

Example 12.16
Consider the following input text of 16 characters.

abababababababab

We will transform the text as follows.
ab[14, 2]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 42

Topic 12.6

DEFLATE

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 43

Practical Huffman

When we compress a file, we do not compute the frequencies for the entire file in one go.

▶ We compute the encoding trie of a block of bytes.
▶ We check if the data allows compression, if it does not we do not compress the block
▶ If the block is small, we use a precomputed encoding trie.

Exercise 12.7
How many bits are needed per character for 8 characters if frequencies are all equal?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 44

DEFLATE

The Linux utility gzip uses the DEFLATE algorithm for compression, which combines Huffman
encoding and the LZ77 algorithm.

DEFLATE compresses one file in blocks. Each block may be compressed in one of three modes.
▶ No compression
▶ Dynamically computed Huffman coding
▶ Fixed encoding

To compress multiple files, we first use a tar utility that concatenates the files into one file.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 45

Let us look the content of the gzip file

Example 12.17

Let us consider a file “name.txt” that contains “abracadabra”.

We compress the file using the following command.

gzip -kf name.txt

The command will generate file name.txt.gz . We may view the content of the file as follows.

xxd -b name.txt.gz

The contents are displayed in the next slide.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 46

gzip output file format https://www.rfc-editor.org/rfc/rfc1952

00000000: 00011111 10001011 00001000 00001000 00000101 01001101
|- magic number-| |-algo-| |Flags-| |---time stamp---

00000006: 00010010 01100101 00000000 00000011 01101110 01100001
----------------| |-XFL--| |--OS--| |---file name----

0000000c: 01101101 01100101 00101110 01110100 01111000 01110100
-----------------------------------------------------

00000012: 00000000 01001011 01001100 00101010 01001010 01001100
-------| |-------- DEFLATE stream -------------------

00000018: 01001110 01001100 01001001 00000100 01010010 01011100
-----------------------------------------------------

0000001e: 00000000 01000101 11001010 11000101 01100111 00001100
-------| |---- checksum (CRC-32)-----------| |-------

00000024: 00000000 00000000 00000000
uncompressed filesize----|

The content of the compressed file
“name.txt.gz” for a file “name.txt”
containing “abracadabra”.

Commentary: Meaning of flag bits:
0x01 FTEXT Text or Binary
0x02 FHCRC header checksum (CRC-16) is present
0x04 FEXTRA extra field is present
0x08 FNAME original file name is present
0x10 FCOMMENT comment is present
0x20 Reserved
0x40 Reserved
0x80 Reserved

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.rfc-editor.org/rfc/rfc1952


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 47

A printing problem

The print in the previous slide is generated via the following command.

xxd -b name.txt.gz

It prints the bytes from MSB to LSB. So, we are seeing each byte reversed.

We need to reverse each byte to see the actual DEFLATE stream.

Example 12.18
The first byte of the DEFLATE stream is printed as 01001011 , which should be read as
11010010 .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 48

DEFLATE stream https://www.rfc-editor.org/rfc/rfc1951

The following is the DEFLATE stream of 12 bytes from the previous slide.

1 10 10010001 10010010 10100010 10010001 10010011 10010001
BF BT |---a--| |---b--| |---r--| |---a--| |---c--| |---a--|

10010100 10010001 0000001 00101 0 00111010 0000000 0
|---d--| |---a--| |len=3| |dist=7| |--LF--| |-End-|

Exercise 12.8
a. Check the RFC to validate the interpretation of the bits.
b. How does gzip identify repeated patterns?

1 indicates
that it is a
last block.

10 indicates the fixed encoding for
this block (see sec 3.2.3 of RFC)

00110000+ASCII(’a’) = 00110000+01100001
(see sec 3.2.6 of RFC)

257th symbol encodes length=3 (sec 3.2.5)
0000001 encodes 257th symbol (sec 3.2.6)

After a length symbol, a distance symbol of 5 bits is
expected. 00101 indicates the distance of 7 or 8 and
the 0 in the following one bit indicates 7. (sec 3.2.5)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.rfc-editor.org/rfc/rfc1951


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 49

Topic 12.7

Tutorial problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 50

Single-bit Huffman code

Exercise 12.9
a. In a Huffman code instance, show that if there is a character with a frequency greater than 2

5
then there is a codeword of length 1.
b. Show that if all frequencies are less than 1

3
then there is no codeword of length 1.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 51

Predictable text

Exercise 12.10
Suppose that there is a source that has three characters a,b,c. The output of the source cycles in
the order of a,b,c followed by a again, and so on. In other words, if the last output was a b, then
the next output will either be a b or a c. Each letter is equally probable. Is the Huffman code the
best possible encoding? Are there any other possibilities? What would be the pros and cons of
this?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 52

Compute Huffman code tree

Exercise 12.11
Given the following frequencies, compute the Huffman code tree.

a 20
d 7
g 8
j 4
b 6
e 25
h 8
k 2
c 6
f 1
i 12
l 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 53

Topic 12.8

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 54

True or False

Exercise 12.12
Mark the following statements True / False and also provide justification.

1. In Huffman encoding, the code length does not depend on the frequency of occurrence of characters.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 55

Exercise: Huffman tree for fixed encoding of DEFLATE

Example 12.19
Draw the Huffman tree for the fixed encoding used in DEFLATE.

In DEFLATE, there are 288 symbols. 0-255 are the input byte, 257-287 are the length symbols,
and the 256th symbol is for the end of a block. The following is from DEFLATE RFC.

The Huffman codes for the two alphabets are fixed, and are not
represented explicitly in the data. The Huffman code lengths
for the literal/length alphabet are:

Lit Value Bits Codes
--------- ---- -----

0 - 143 8 00110000 through 10111111
144 - 255 9 110010000 through 111111111
256 - 279 7 0000000 through 0010111
280 - 287 8 11000000 through 11000111

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 56

Exercise: UTF-8 encoding (Final 2024)

Exercise 12.13
Consider the following Tamil word.

1. Give the sequence of character codes to
represent the sentence in unicode.
Please note that some letters are
combinations of characters and
modifiers.

2. Let us suppose this word is stored in
UTF-8 file format in a file. Give the
sequence of bytes stored in the file.

Tamil character codes

UTF-8 encoding of character codes/points

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS213/293 Data Structure and Algorithms 2025 Instructor: Ashutosh Gupta IITB India 57

End of Lecture 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	An example of variable-length encoding:  Unicode and UTF-8
	Principles of variable-length encoding
	Optimal compression
	Proof of optimality of Huffman encoding
	Repeated string (LZ77)
	DEFLATE
	Tutorial problems
	Problems

