
Solving Recursion-Free Horn Clauses
over LI+UIF

Ashutosh Gupta1,2, Corneliu Popeea2, and Andrey Rybalchenko2

1IST Austria 2Technische Universität München

Abstract. Verification of programs with procedures, multi-threaded
programs, and higher-order functional programs can be effectively au-
tomated using abstraction and refinement schemes that rely on spurious
counterexamples for abstraction discovery. The analysis of counterexam-
ples can be automated by a series of interpolation queries, or, alterna-
tively, as a constraint solving query expressed by a set of recursion free
Horn clauses. (A set of interpolation queries can be formulated as a single
constraint over Horn clauses with linear dependency structure between
the unknown relations.) In this paper we present an algorithm for solving
recursion free Horn clauses over a combined theory of linear real/rational
arithmetic and uninterpreted functions. Our algorithm performs resolu-
tion to deal with the clausal structure and relies on partial solutions to
deal with (non-local) instances of functionality axioms.

1 Introduction

Constraint solving is a vehicle of software verification that provides symbolic
reasoning techniques for dealing with assertions describing program behaviors.
In particular, abstraction and refinement techniques greatly benefit from ap-
plying constraint solving, where interpolation techniques [1–3,5,6,10–12,15–18]
play a prominent role today. Roughly, interpolation computes an assertion that
separates two mutually unsatisfiable assertions and only refers to their shared
symbols.

Certain abstraction refinement tasks cannot be directly expressed as an in-
terpolation question. For example, abstraction refinement for imperative pro-
grams with procedures [11] and for higher order functional programs [13, 19],
require additional pre-processing that splits discovered spurious counterexam-
ples in multiple ways and applies interpolation on each splitting. Alternatively,
as exemplified by an abstraction refinement procedure for multi-threaded pro-
grams [9], this preprocessing and series of interpolation computations can be
expressed using a single constraint that consists of a finite set of recursion-free
Horn clauses interpreted over the logical theory that is used to describe program
behaviors.

In this paper, we present an algorithm for solving Horn clauses over a com-
bination of linear rational/real arithmetic, uninterpreted functions and queries.
Our algorithm opens new possibilities for the development of abstraction re-
finement schemes by providing the verification method designer an expressive,

declarative way to specify what the refinement procedure needs to compute us-
ing Horn clauses. Several existing abstraction refinement schemes can directly
benefit from our algorithm, e.g., for programs with procedures [10,11], for multi-
threaded programs [9], and for higher-order functional programs [13,19,20].

Related work In [9] we presented an algorithm that deals with recursion-free
Horn clauses over linear real/rational arithmetic. Here, we present an extension
with uninterpreted functions.

Technically, our treatment of uninterpreted functions can be seen as a gener-
alization of partial interpolants [16] to partial solutions for recursion-free Horn
clauses, i.e., clauses that do not have cyclic dependencies between the occur-
ring queries. Our algorithm follows a general scheme of combining interpolation
procedures for different theories [8, 21].

The following example illustrates the relation to interpolation. First, we con-
sider an interpolation question for a pair of mutually unsatisfiable assertions
a(x, y) and b(y, z) in a logical theory. An interpolant is an assertion I(y) such
that I(y) is a logical consequence of a(x, y), I(y) and b(y, z) are mutually unsat-
isfiable, and I(y) only contains non-theory constants that are shared by a(x, y)
and b(y, z), which is y in our example. Now, we present our re-formulation of
interpolation as a constraint solving question for constraints given by recursion-
free Horn clauses. We introduce a relation QI(y) that represents an interpolant
that we want to compute. We represent the interpolation conditions by the fol-
lowing two Horn clauses: a(x, y) → QI(y) and QI(y) ∧ b(y, z) → false. Any
interpretation of QI(y) that only refers to y (and theory constants) is an inter-
polant for a(x, y) and b(y, z). In Section 6, we discuss the relation of this paper
with [16] in more detail.

Horn clauses with more that two unknown queries in the body do not directly
correspond to interpolation problems. For example, we consider two relations
QI(y) and QJ(y) that represent assertions we want to compute together with
the Horn clauses a(x, y) → QI(y), b(y, z) → QJ(y), and QI(y) ∧ QJ(y) →
false. Solving these clauses using interpolation requires two invocations of an
interpolation procedure (i.e., interpolation between a(x, y) and b(y, z) determines
QI(y) interpolation between b(y, z) and QI(y) determines QJ(y)) that we would
like to avoid for efficiency considerations. Furthermore, by computing QI(y) and
QJ(y) one after the other it is not evident how to compute solutions satisfying
certain preference conditions, e.g., where all constrants are within predefined
bounds (such conditions are useful for abstraction refinement, as shown by the
FOCI procedure [14]).

Organization Section 2 illustrates our algorithm. Section 3 provides formal defi-
nitions. We present the solving algorithm in Section 4 and discuss its correctness
and complexity in Section 5. Section 6 conclude and clarifies the connection of
our algorithm to interpolation procedures. Appendix A illustrates how Horn
clauses can be used to refine abstraction for procedural and multi-threaded pro-
grams. Appendix B contains a complete example execution of our algorithm.
Appendix C presents proofs of the key theorems.

2

2 Illustration

In this section, we shall illustrate our proposed algorithm by solving an example
set of Horn clauses. The example set of Horn clauses HC is presented in Fig-
ure 1(a) and consists of three clauses. Our algorithm is looking for solutions to
the two symbols S(t, u, v) and E(t, u) that we name queries. To obtain solutions
over the domain of linear arithmetic and uninterpreted functions, our algorithm
proceeds following three steps.

Resolution tree Our solving algorithm starts by constructing from HC a reso-
lution tree R shown in Figure 1(b). We label nodes of R with indices for easy
reference. From the first clause, the algorithm constructs the subtree rooted at
label 2. In this subtree, we have edges between the node corresponding to the
head of the clause (labeled 2) and the nodes corresponding to the body of the
clause (labeled 3–6). A second subtree rooted at the node labelled 7 is con-
structed from the second clause. With the appearance of the queries S(t, u, v)
and E(t, u) in the body of the third clause from HC , the two previously con-
structed subtrees are extended in a tree with the root labeled corresponding to
the clause head, (1 : false) . The extension of the subtrees leads to the variables
occurring in these subtrees to be renamed to a common set of variables p, q, c .
Note that, the set of clauses HC is satisfiable, and, consequently, the conjunction
of the predicates from the leaves of the resolution tree is unsatisfiable.

Proof tree Next, our algorithm constructs a proof tree that proves unsatisfiability
of the constraints from the leaves of the resolution tree. For the resolution tree
from Figure 1(b), our algorithm computes the proof tree P shown in Figure 1(c).
A linear combination rule is applied to derive the constraint (c−d ≤ 0) from the
premises (c−q ≤ 0) and (q−d ≤ 0) . The linear combination rule is also used to
derive (d− c ≤ 0) from the premises (p− c ≤ 0) and (d− p ≤ 0) . A congruence
rule is used to relate function symbols applied to equivalent arguments. This rule
derives (f(c)− f(d) ≤ 0) from the premises (c− d ≤ 0) and (d− c ≤ 0) . Lastly,
(1 ≤ 0) is derived by applying the linear combination rule on three premises,
(f(d) ≤ 0) , (f(c)− f(d) ≤ 0) , and (−f(c) + 1 ≤ 0) .

Partial and final solutions The proof tree P explicates the inference rules and
the order in which to apply them to derive the false constraint (1 ≤ 0) . The main
idea behind our solving algorithm is to apply corresponding inference rules in the
same order to derive a solution for the Horn clauses. We obtain an annotated
proof tree (see Figure 1(d)) where for each of the premises used in P , our
algorithm creates one tree with the same number of nodes as R . We call these
trees, which are annotated with formulas that will be explained next, partial-
solution trees.

The tree Π1 corresponds to the premise (c − q ≤ 0) , Π2 corresponds to
the premise (q − d ≤ 0) and both trees are shown in Figure 2. Two or more
premises are used to derive a new fact in the proof tree and, likewise, two or
more corresponding partial-solution trees are used to derive a new tree using a

3

HC = { ∀p, q, c : p ≤ c ∧ c ≤ q ∧ −f(c) + 1 ≤ 0 ∧ f(c)− 1 ≤ 0→ S(p, q, c),

∀r, s, d : s ≤ d ∧ d ≤ r ∧ f(d) ≤ 0 ∧ −f(d) ≤ 0→ E(r, s),

∀t, u, v : S(t, u, v) ∧ E(t, u)→ false }

(a)

1 : false

2 : S(p, q, c) 7 : E(p, q)

3 : p− c ≤ 0

4 : c− q ≤ 0 5 : −f(c) + 1 ≤ 0

6 : f(c)− 1 ≤ 0 8 : q− d ≤ 0

9 : d− p ≤ 0 10 : f(d) ≤ 0

11 : −f(d) ≤ 0

(b)

f(d) ≤ 0

c− q ≤ 0 q− d ≤ 0

c− d ≤ 0

p− c ≤ 0 d− p ≤ 0

d− c ≤ 0

f(c)− f(d) ≤ 0 −f(c) + 1 ≤ 0

1 ≤ 0

(c)

f(d) ≤ 0[. . .]

c− q ≤ 0[Π1] q− d ≤ 0[Π2]

c− d ≤ 0[Π3]
. . .

f(c)− f(d) ≤ 0[. . .] −f(c) + 1 ≤ 0[. . .]

1 ≤ 0[Π]

(d)

Fig. 1. (a) A set of Horn clauses HC . (b) Corresponding resolution tree R . (c) Proof
of unsatisfiability P for the constraints from the leaves of the resolution tree. For
abbreviation, we did not mark nodes of subtree of f(c) − f(d) ≤ 0 with the applied
proof rules. (d) A part of the annotated proof tree. The partial solutions Π1, Π2, Π3,
and Π are presented in Figure 2.

specific inference rule. The two trees Π1 and Π2 shown in the top part of Figure 2
are combined using a rule corresponding to the arithmetic combination rule. The
rule takes a pair of corresponding nodes, one from Π1 and one from Π2 , and
computes a node in the resulting tree Π3 . For the node labeled (2 : c− q ≤ 0)
from Π1 and the node labeled (2 : 0 ≤ 0) from Π2, the algorithm adds the two

4

1 : c− q ≤ 0

2 : c− q ≤ 0 7 : 0 ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : 0 ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π1

1 : q− d ≤ 0

2 : 0 ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : 0 ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π2

1 : c− d ≤ 0

2 : c− q ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π3

1 : 1 ≤ 0

2 : (p− q ≤ 0) ∧ (q− p ≤ 0→ 1 ≤ f(p)) 7 : (q− p ≤ 0) ∧ (p− q ≤ 0→ f(q) ≤ 0)

3 : . . .

4 : . . . 5 : . . .

6 : . . . 8 : . . .

9 : . . . 10 : . . .

11 : . . .

Π

Fig. 2. Four partial-solution trees Π1 , Π2 , Π3 , and Π . Π1 and Π2 are derived from
the nodes (c − q ≤ 0) and (q − d ≤ 0) from the proof tree P from Figure 1(d). Π3 is
obtained by applying a combination rule to Π1 and Π2. Π annotates the false constraint
(1 ≤ 0) from P and the final solution of HC can be derived from Π . In particular, the
nodes labeled “2” and “7” contain the solutions for S(p, q, c) and E(p, q), respectively.

5

constraints and creates a node labeled (2 : c − q ≤ 0) in Π3 . Similarly, the
nodes labeled (1 : c − q ≤ 0) and (1 : q − d ≤ 0) are used to obtain a node
labeled (1 : c− d ≤ 0) in Π3 .

Following the derivation of the proof tree P , inference rules are used to
combine partial-solution trees until a final-solution tree corresponding to the
rule applied at the bottom of the proof tree. The final-solution tree is Π and is
shown in Figure 2. The node labeled “2” contains the solution for S(p, q, c) and
it can be simplified to S(p, q, c) = (p < q∨p ≤ q∧f(p) ≥ 1) . The solution from
the node labeled “7” can be simplified to E(p, q) = (p > q ∨ p ≥ q ∧ f(p) ≤ 0) .
The solutions obtained for S(p, q, c) and E(p, q) indeed satisfy the set of Horn
clauses HC from Figure 1(a).

3 Recursion-free Horn clauses

This section presents auxiliary definitions together with the syntax and semantics
of recursion-free Horn clauses over linear arithmetic, uninterpreted functions,
and queries.

Syntax We assume countable sets of variables V, with v ∈ V, function symbols
F , with f ∈ F , and predicate symbols P, with p ∈ P. Let the arity of function
and predicate symbols be encoded in their names. In addition, we assume a set
of number symbols N , with {0, n} ⊆ N , and an inequality symbol ≤. Then, we
define:

terms 3 t ::= n | nv | t+ t | f(t, . . . , t)

atoms 3 a ::= t ≤ 0

queries 3 q ::= p(v, . . . , v)

bodies 3 b ::= a | q | b ∧ b
heads 3 h ::= a | q | false

Horn clauses 3 s ::= b→ h

Without loss of generality, as justified later, we assume that all variables that
occur in a query are distinct.

A set of Horn clauses defines a binary dependency relation on predicate sym-
bols. A predicate symbol p ∈ P depends on a predicate symbol pi ∈ P if there is
a Horn clause · · · ∧ pi(. . .) ∧ · · · → p(. . .) , i.e., when p appears in the head of a
clause that contains pi in its body. A set of Horn clauses is recursion-free if the
corresponding dependency relation does not contain any cycles. A set of Horn
clauses is tree-like if the corresponding dependency relation defines a tree-like
graph, i.e., when 1) each predicate symbol appears at most once in the set of
bodies and at most once in the set of heads of the given clauses, 2) there is no
clause with an atom in its head, 3) there is one clause whose head is false. For
example, the set of clauses {p(v1) ∧ p(v2) → q(v1, v2), q(v3, v4) → false} is not
tree-like since the predicate symbol p appears more than once in the body of the
first clause.

For the rest of the presentation, we consider a finite set of Horn clauses HC
that satisfies the following conditions. First, we assume that each variable occurs
in at most one clause and that all variables occurring in a query are distinct.

6

These assumptions simplify our presentation and can be established by an appro-
priate variable renaming and additional (in)equality constraints. Furthermore,
we assume that HC is recursion-free and tree-like. The recursion-free assumption
is critical for ensuring termination of the solving algorithm presented in this
paper. The tree-like assumption simplifies our presentation without imposing
any restrictions on the algorithm’s applicability. Any finite set of recursion-free
clauses can be transformed into the tree-like form. The solution for the computed
tree-like form can be translated into the solution for the original set of clauses.

Finally, we define constraints together with a conjunctive constraint fragment
below.

constraints 3 c ::= a | ¬c | c ∧ c | c ∨ c conjunctive constraints 3 ĉ ::= a | ĉ ∧ ĉ

Auxiliary definitions We assume the following standard functions. For dealing
with trees, let nodes(T) be the nodes of a tree T , root(T) be the root node of T ,
leaves(T) be the leaves of T , and subtree(o, T) be the subtree of T rooted in its
node o. Furthermore, let subterms(C) be the subterms occurring in a constraint
C and atoms(C) be the atoms occurring in C. Let sym(t) be the variables and
uninterpreted function symbols occurring in a term t.

Let match(p(v1, . . . , vn), p′(v′1, . . . , v
′
m)) return a substitution {v1 7→

v′1, . . . , vn 7→ v′m} if p = p′ (and hence n = m). Thus, if a substitution
σ is the result of match(p′(v1, . . . , vn), p′(v′1, . . . , v

′
m)) then p′(v1, . . . , vn)σ =

p′(v′1, . . . , v
′
m), i.e., by applying the substitution we equate the queries. For ex-

ample, match(p1(v1), q(v2, v3)) is not defined, and match(q(v1, v2), q(v3, v4)) =
{v1 7→ v3, v2 7→ v4}. We assume a canonical extension of the unifier application
to constraints and their combination into sequences and sets.

Given two substitutions σ1 = {v1 7→ v′1, . . . , vn 7→ v′n} and σ2 = {w1 7→
w′1, . . . , wm 7→ w′m} over disjoint domains, i.e., {v1, . . . , vn} ∩ {w1, . . . , wm} = ∅,
we define a combined substitution σ1 + σ2 = {v1 7→ v′1, . . . , vn 7→ v′n, w1 7→
w′1, . . . , wm 7→ w′m}.

Semantics Let |= be the (logical) satisfaction relation for our constraints in the
combined theory of linear real/rational arithmetic and uninterpreted functions.
We write |= c when c is a valid constraint.

Let Σ be a function from queries to constraints. We assume that in the
domain of Σ no two queries have an equal predicate symbol, all queries have
disjoint variables, and each query is mapped to a constraint whose free variables
occur in the query. For example, consider Σ = {p(v1) 7→ (v1 ≥ 0), q(v2, v3) 7→
(v2 ≤ f(v3))}.

We use Σ function to transform the set of Horn clauses containing queries
into a set of query-free clauses as follows. In each clause s ∈ HC we replace
each query q in s with the constraint Σ(q′)σ where q′ is in the domain of Σ,
queries q′ and q have an equal predicate symbol, and σ = match((q′, q)). For
example, the above Σ transforms the clause x ≤ f(y) ∧ p(x) ∧ q(y, z) → false
into x ≤ f(y) ∧ (x ≤ 0) ∧ (y ≤ f(z))→ false.

7

1
2
3
4
5
6
7
8
9
10
11

algorithm SolveHorn(li+uif)
input
HC : Horn clauses

vars
R : resolution tree
C : conjunctive constraint
P : proof tree
A : annotated proof tree

output
Σ : solution

begin
R := exhaustively apply RInit and RStep on HC
C :=

∧
leaves(R)

if exists P inferred from C by PHyp, PComb, and PCong
such that |= (root(P)→ 1 ≤ 0)

then
A := exhaustively apply AHyp, AComb, and ACong on P
false [Π] := root(A)
Σ := {(o, π) | (o, π) ∈ Π ∧ o 6∈ (leaves(R) ∪ {false})}
return Σ

else
return “no solution exists”

end.

Fig. 3. Solving algorithm SolveHorn(li+uif). Line 7 extracts the partial solution Π
annotating the root node of A. Line 8 obtains Σ by restricting the domain of Π to
intermediate nodes of R, i.e., to the nodes that are labeled by queries.

Let HCΣ be the set of query-free clauses obtained by applying Σ. Σ is a
solution for HC if each clause cΣ in HCΣ is a valid implication, i.e, |= cΣ , and
the following condition holds for the uninterpreted function symbols occurring
in the range of the solution function. An uninterpreted function symbol f can
occur in the solution Σ(q) for a query q if f appears in the atoms of a Horn
clause from HC whose head depends on q and in the atoms of a Horn clause
from HC, whose head does not depend on q. For example, given the clauses
{f(v1) = 0 → p(v1), f(v2) = 1 → q(v2), v3 = v4 ∧ p(v3) ∧ q(v4) → false} the
function symbol f can appear in the solution of each query. A set of clauses is
satisfiable if it has a solution.

4 Algorithm

Our goal is an algorithm for computing solutions for recursion-free Horn clauses
over linear arithmetic, uninterpreted functions, and queries. This section presents
our solving algorithm SolveHorn(li+uif).

See Figure 3. The algorithm SolveHorn(li+uif) consists of the following
main steps. First, we compute a resolution treeR on the given set of Horn clauses.
Next, we take a conjunction C of the leaves of the resolution tree and attempt

8

RInit
a1 ∧ · · · ∧ am → h

{(a1, . . . , am, h)}

RStep

R1 . . . Rn

q1 ∧ · · · ∧ qn ∧ a1 ∧ · · · ∧ am → h

R1σ ∪ · · · ∪Rnσ ∪
{(q1, . . . , qn, a1, . . . , am, h)}σ

σ = (match(q1, root(R1))+
· · ·+ match(qn, root(Rn)))

Fig. 4. Resolution tree inference rules RInit and RStep.

to find a proof of its unsatisfiability. If no such proof can be found, then we
report that there is no solution for the given set of Horn clauses. Otherwise, we
proceed with the given proof by annotating its steps. Each intermediate atom
derived by proof is annotated by a function that assigns constraints to nodes
of the resolution tree. Finally, the annotation of the root of the proof yields a
solution for the given set of Horn clauses.

In the rest of this section we provide a detailed presentation of the main steps
of SolveHorn(li+uif).

4.1 Resolution tree

We put together individual Horn clauses from HC by applying resolution infer-
ence. A resolution tree keeps the intermediate results of this computation. An
edge of a resolution tree is a sequence of queries and atoms that is terminated by
a query or false. Each edge consists of n > 2 elements. The first n− 1 elements
represent the children nodes and the n-th element represents the parent node.

Given the set of Horn clauses HC, we compute the corresponding resolu-
tion tree by applying the inference rules shown in Figure 4. Each rule takes as
a premise a set of resolution trees and a Horn clause and infers an extended
resolution tree.

The rule RInit initiates the resolution tree computation by inferring a tree
from each clause that does not have any queries in its body. The atoms a1, . . . , am
become the children of the node h. The rule RStep performs the extension of a
set of trees computed so far using a Horn clause. The extension is only possible
if the root nodes of the respective trees can be unified with the queries occurring
in the body of the clause. This condition is formalized by the side condition
requiring the existence of the most general unifier σ. The computed unifier is
applied on the trees and the clause before they are combined into an extended
resolution tree.

The resolution tree computation terminates since HC is recursion-free. Let
R be the resulting tree. We consider the set of leaves of the tree, and take their
conjunction C =

∧
leaves(R).

For a node o of the resolution tree, we define insym(o) to be variables and
uninterpreted function symbols that occur in atoms in the leaves of the subtree
of o, and let outsym(o) be variables and uninterpreted function symbols that

9

PHyp
t ≤ 0

t ≤ 0 ∈ atoms(C) PComb
t1 ≤ 0 . . . tn ≤ 0

λ1t1 + · · ·+ λntn ≤ 0
λ1, . . . , λn > 0

PCong

t1 − s1 ≤ 0 s1 − t1 ≤ 0
...

...
tn − sn ≤ 0 sn − tn ≤ 0

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
f(t1, . . . , tn), f(s1, . . . , sn) ∈ subterms(C)

Fig. 5. Standard, complete proof rules PHyp, PComb, and PCong for combination
of linear rational/real arithmetic and uninterpreted functions. C is the conjunction of
leaves of the resolution tree R obtained from the Horn clauses HC.

occur in the leaves outside of the subtree of o. Formally, we have

insym(o) =
⋃
{sym(o′) | o′ ∈ leaves(subtree(o,R))} ,

outsym(o) =
⋃
{sym(o′) | o′ ∈ (leaves(R) \ leaves(subtree(o,R)))} .

The following proposition allows a transition from the clausal structure to
the conjunction of atoms.

Proposition 1. The set of Horn clauses HC is satisfiable if and only if the
conjunction C is not satisfiable.

The proof of Proposition 1 follows directly by applying induction over the reso-
lution treee and relying on the definitions of RInit and RStep.

4.2 Proof tree

The algorithm SolveHorn(li+uif) relies on unsatisfiability proofs. We use a
standard set of proof rules for the combination of linear rational/real arithmetic
and uninterpreted functions [16]. The implementation of the corresponding proof
search procedure is irrelevant for our algorithm, yet we assume that this proce-
dure is complete and use an existing tool for this task, e.g. [4, 7].

See Figure 5 for the proof rules, which we apply to the conjunction of
atoms C. The rule PHyp states that atoms appearing in C are provable from C.
The rule PComb infers that a set of inequalities implies a non-negatively
weighted sum thereof. The congruence rule PCong represents a form of the
functionality axiom, which states that equal inputs to a function lead to equal
results. We are only interested in one inequality part of this axiom. The side
condition of PCong is taken from the interpolating proof rules of [16], and
simplifies the proof tree annotation in a way similar to [16].

We assume that there exists a mechanism that uniquely identifies the nodes of
the proof tree, even in the presence of nodes that are labeled by equal inequalities,
for example by numbering them. For clarity of exposition, we omit any details of
such mechanism and assume that the node label carries all necessary information.

10

AHyp
t ≤ 0 [MkHyp(t ≤ 0)]

AComb
t1 ≤ 0 [Π1] . . . tn ≤ 0 [Πn]

λ1t1 + · · ·+ λntn ≤ 0 [MkComb(Π1, . . . , Πn, λ1, . . . , λn)]

ACong

t1 − s1 ≤ 0 [Π1] s1 − t1 ≤ 0 [Π ′1]
...

...
tn − sn ≤ 0 [Πn] sn − tn ≤ 0 [Π ′n]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0 [MkCong(f(t1, . . . , tn), f(s1, . . . , sn),
Π1, . . . , Πn, Π

′
1, . . . , Π

′
n)]

Fig. 6. Annotation rules. The function MkHyp, MkComb, and MkCong are shown
in Figure 7.

If no proof can be found then our algorithm reports that no solution exists.
Otherwise, let P be the discovered proof. We assume that P is represented by a
tree where nodes are atoms and the children of a node are defined by the rules
PHyp, PComb, and PCong. Furthermore, we assume that each edge is labeled
by the name of the proof rule that created it.

4.3 Annotated proof tree

We construct a solution for the given Horn clauses through an iterative process,
where the intermediate results are called partial solutions. Each partial solution
is parameterized by a constraint c. A c-partial solution Π for the resolution tree
R is a function from nodes of the resolution tree, nodes(R), to constraints that
satisfies the following conditions.

(∀o ∈ leaves(R) : (|= o→ Π(o))) ∧ (PS1)

(∀(o1, . . . , om, o) ∈ R : |= Π(o1) ∧ · · · ∧Π(om)→ Π(o)) ∧ (PS2)

(|= Π(false)→ c) ∧ (PS3)

(∀o ∈ nodes(R) : sym(Π(o)) ⊆ (insym(o) ∩ outsym(o)) ∪ sym(c)) (PS4)

Our annotation uses constraints of the following form, called solution con-
straints.

solution constraints 3 π ::= t ≤ 0 | ĉ ∧ (ĉ→ π)

To simplify the presentation, we represent a solution constraint

C1 ∧ (D1 → (. . . Cr ∧ (Dr → p ≤ 0)))

as a pair consisting of a corresponding sequence and a
term 〈((C1, D1), . . . , (Cr, Dr)), p〉. A solution constraint p ≤ 0 is represented
by 〈[], p〉.

11

Given the proof tree P , we annotate its nodes with partial solutions using
the rules shown in Figure 6 and auxiliary functions shown in Figure 7. The
rule AHyp annotates each leaf of the proof tree with the result of applying
the function MkHyp. The annotation is enclosed by a pair of square brackets.
The rule AComb shows how to annotate a parent node when provided with
an annotation of its children in case when the parent was obtained by a non-
negatively weighted sum. The parent annotation is computed by MkComb.
Similarly, the rule ACong annotates parent nodes obtained by the congruence
rule.

For each node of R at line 6, ACong has four cases that deal with the
difficulty of solving Horn clauses over uninterpreted functions, i.e., a sub term
may contain variables that are not allowed to appear in the partial solutions.
The proof of theorem 3 explains how these cases avoid such variables in the
partial solutions.

We annotate P and obtain an annotated proof tree A. Our algorithm Solve-
Horn(li+uif) uses the annotation of the root of A to derive a solution to the
Horn clauses HC.

5 Correctness and complexity

This section presents the correctness and complexity properties of our algorithm.
The corresponding proofs are in Appendix C.

The correctness of our algorithm follows from Proposition 1 and Theorems 1–
3 below. First, we establish that a (1 ≤ 0)-partial solution, which satisfies Equa-
tions (PS1)–(PS4), defines a solution for the given Horn clauses.

Theorem 1. (1 ≤ 0)-partial solution defines a solution of the Horn clauses.

Now, we show that the annotations computed by the rules in Figure 6 satisfy
the partial solution conditions in Equations (PS1)–(PS4). This step relies on the
following inductive invariant.

Definition 1 (t ≤ 0-annotation invariant). Π is t ≤ 0-annotation invariant
for the resolution tree R if there exists r ≥ 0 such that for each o ∈ nodes(R)
the following conditions hold.

– Π(o) is a solution constraint such that

Π(o) = 〈((C1, D1), . . . , (Cr, Dr)), p〉. (AI-1)

– If o ∈ leaves(R) then(
∀i ∈ 1..r : |= o ∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-2a)

(
|= o ∧

r∧
k=1

Dk → p ≤ 0

)
. (AI-2b)

12

1
2
3
4
5
6

function MkHyp
input
t ≤ 0 : inequality term/node in R

begin
for each o ∈ nodes(R) do

if t ≤ 0 ∈ leaves(subtree(o,R)) then
Π(o) := 〈[], t〉

else
Π(o) := 〈[], 0〉

return Π
end

1
2
3
4
5
6
7

function MkComb
input
Π1, . . . , Πn : partial solutions
λ1, . . . , λn : constants

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, ti〉 := Πi(o)

L := L1 • · · · • Ln

t := λ1t1 + · · ·+ λntn
Π(o) := 〈L, t〉

return Π
end

1
2
3
4
5
6
7

8

9

10

11

12

13

14

15

16

function MkCong
input
f(t1, . . . , tn), f(s1, . . . , sn) : terms
Π1, . . . , Πn, Π ′1, . . . , Π

′
n : partial solutions

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, pi〉 := Πi(o)
〈L′i, p′i〉 := Π ′i(o)

(C,D, p) :=
match sym(f(t1, . . . , tn)) ⊆ outsym(o),

sym(f(s1, . . . , sn)) ⊆ outsym(o) with

| true, true -> (
∧n

i=1(pi ≤ 0 ∧ p′i ≤ 0), true, 0)

| true, false -> (
∧n

i=1 pi + p′i ≤ 0,
∧n

i=1−pi − p
′
i ≤ 0,

f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn))

| false, true -> (
∧n

i=1 pi + p′i ≤ 0,
∧n

i=1−pi − p
′
i ≤ 0,

f(t1, . . . , tn)− f(t1 + p′1, . . . , tn + p′n))

| false, false -> (true,
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0),

f(t1, . . . , tn)− f(s1, . . . , sn))

Π(o) := 〈L1 • · · · • Ln • L′1 • · · · • L′n • (C,D), p〉
return Π

end

Fig. 7. Computation of partial solutions to annotate nodes of the proof tree, as shown
in Figure 6. We use • to denote concatenation of sequences.

13

– If (o1, . . . , om, o) ∈ R and ∀j ∈ 1..m : Π(oj) = 〈((Cj1 , D
j
1), . . . , (Cjr , D

j
r)), p

j〉
then (

∀i ∈ 1..r : |=

(
i∧

k=1

m∧
l=1

Clk

)
∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-3a)

 ∀i ∈ 1..r
∀j ∈ 1..m

: |=

(∧
l∈1..m\{j} C

l
i

)
∧(∧i−1

k=1

∧m
l=1 C

l
k

)
∧
∧i
k=1Dk → Dj

i

 ∧ (AI-3b)

(
|=

(
r∧

k=1

m∧
l=1

Clk

)
∧

r∧
k=1

Dk → p− p1 − · · · − pm ≤ 0

)
. (AI-3c)

– If o = false then

p = t ∧ ∀i ∈ 1..r : Di = Ci = true. (AI-4)

– Conditions on symbol appearance:

sym({C1, . . . , Cr, D1, . . . , Dr, p ≤ 0}) ⊆ insym(o) ∧ (AI-5)

sym({C1, . . . , Cr, D1, . . . , Dr, t− p ≤ 0}) ⊆ outsym(o). (AI-6)

The above definition act as an intermediate step. In theorem 2, we show that
a t ≤ 0-annotation invariant satisfies all the conditions for being a t ≤ 0-partial
solution.

Theorem 2. Each t ≤ 0-annotation invariant is a t ≤ 0-partial solution.

Now, we show that the presented algorithm computes the partial solutions
that satisfies the invariant.

Theorem 3. The annotation rules in Figure 6 compute annotation invariants.

Theorem 4 (Complexity). The application of the annotation rules from Fig-
ure 6 takes time proportional to the product of the size of the proof tree and the
size of the resolution tree. The size of the resolution tree is linear in the size of
the corresponding set of recursion-free, tree-like Horn clauses.

Note that we present the complexity of our algorithm in terms of the size of the
proof tree. Since the size of a resolution tree can also be exponential in the size
of the set of Horn clauses, the size of a proof tree can be exponential.

6 Conclusion

We presented an algorithm for computing solutions for recursion-free Horn
clauses over the combination of linear rational/real arithmetic, uninterpreted
functions, and queries.

14

Connection to interpolation The interpolation algorithm presented in [16] is
a special case for the algorithm presented in this paper. As illustrated in the
introduction, an interpolation problem can be translated into solving a set of re-
cursion free Horn clauses. The set Horn clauses resulting from an interpolation
problem has only one unknown query. Therefore, the corresponding resolution
tree obtain from the set of Horn clauses contains only one internal node. The
partial solution of this internal node in the (1 ≤ 0)-partial solution will be the
interpolant. In this special case, we only need to track partial solutions of the
internal node in the annotated proof tree. We can transform our algorithm for
this case such that nodes of the proof tree are annotated with a formula corre-
sponding to the partial solution of this internal node. The resulting algorithm
will be the algorithm presented in [16].

Our algorithm can be directly applied to support abstraction and refinement
tasks for the verification of programs with procedures, threads and higher order
functions.

7 Acknowledgment

Ashutosh Gupta was supported in part by the DFG Graduiertenkolleg 1480
(PUMA), FWF NFN Grant No S11407-N23 (RiSE), and the ERC Advanced
Grant QUAREM.

References

1. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software
model checking via large-block encoding. In FMCAD, 2009.

2. D. Beyer, D. Zufferey, and R. Majumdar. CSIsat: Interpolation for LA+EUF. In
CAV, 2008.

3. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent
calculus for quantifier-free Presburger arithmetic. In Proceedings of IJCAR, LNCS,
pages 384–399. Springer, 2010.

4. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4SMT solver. In CAV, 2008.

5. A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant generation for UTVPI. In
CADE, 2009.

6. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Logic, 12, November 2010.

7. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

8. A. Goel, S. Krstic, and C. Tinelli. Ground interpolation for combined theories. In
CADE, 2009.

9. A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement
for verifying multi-threaded programs. In POPL, 2011.

10. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, 2010.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, 2004.

15

12. H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig interpolation for lin-
ear Diophantine (dis)equations and linear modular equations. Formal Methods in
System Design, pages 6–39, 2009.

13. R. Jhala and R. Majumdar. Counterexample refinement for functional programs.
available from http://www.cs.ucla.edu/˜rupak/Papers/CEGARFunctional.ps,
2009.

14. R. Jhala and K. L. McMillan. A practical and complete approach to predicate
refinement. In TACAS, 2006.

15. D. Kroening, J. Leroux, and P. Rümmer. Interpolating quantifier-free Presburger
arithmetic. In Proceedings of LPAR, LNCS, pages 489–503. Springer, 2010.

16. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

17. K. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136, 2006.
18. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.

In VMCAI, 2007.
19. T. Terauchi. Dependent types from counterexamples. In POPL, 2010.
20. H. Unno and N. Kobayashi. Dependent type inference with interpolants. In PPDP,

2009.
21. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.

In CADE, pages 353–368, 2005.

16

// take_lock : multi-thread program

int f[N];

int p, q;

// Thread1(int c)

a1: assume(p <= c <= q);

a2: take_lock(f, c);

a3: // critical

// Thread2(int d)

b1: assume(q <= d <= p);

b2: take_lock(f, d);

b3: // critical

(a)

int p, q;

int main() {

m1: int c = ..;

m2: assume(p <= c <= q);

m3: if (f(c) == 1) { foo(); }

m4: assert(false);

}

void foo() {

n1: int d = ..;

n2: assume(q <= d <= p);

n3: if (f(d) == 0)

n4: return;

n5: ...

}

(b)

Fig. 8. Two example programs take lock and main. (a) take lock illustrates how
Horn clauses can represent an abstraction refinement task in presence thread interac-
tion. (b) main illustrates a formalization the abstraction refinement for programs with
procedures using Horn clauses.

A Refinement using Horn clauses

We present examples of Horn clauses obtained during the abstraction refinement
step when verifying multi-threaded programs and programs with procedures.

Abstraction refinement for multi-threaded programs See Figure 8(a) for a pro-
gram take lock that consists of two threads. These threads attempt to access
a critical section and synchronize their accesses using a lock stored in the global
array f. The two threads receive the identifier of the lock as an integer argument
c for the first thread and d for the second thread. The assume statements at
labels a1 and b1 ensure that the two integer indices, c and d , are equal. The
calls at labels a2 and b2 ensure that the two threads cannot both enter the crit-
ical section, i.e., the assertion ¬(pc1 = a3 ∧ pc2 = b3) holds for all executions
of the program. We write V = {f, p, q, c, d, pc1, pc2} for the set of all program
variables, where pc1 and pc2 are local program counter variables of the first
and second thread, respectively. Let G = {p, q} be the set of global program
variables.

To verify the program take lock, the method described in [9] performs ab-
stract reachability computations for each thread considering both local thread
transitions and environment transitions that capture updates of program state

17

done by the other thread. Let us assume that the abstract reachability pro-
cedure finds a spurious error state following an interleaving of the statements
from the two threads represented by two assertions ρ1 and ρ2 . In this case, the
results computed by the abstract reachability are an abstract state s and an
environment transition e such that:

s = α̇(post(ρ1, true)), e = α̈(ρ2),

where post denotes the successor function and α̇ and α̈ denote abstraction func-
tions for over-approximation of sets of states and sets of pairs of states, respec-
tively. The constraint ρ1 represents program statements at location a1 and a2

from the first thread, while ρ2 represents the program statements at location b1

and b2 from the second thread. Both transitions are over unprimed and primed
program variables. We only show the critical part of these constraints that is
relevant to the infeasibility of the interleaving:

ρ1 = (p ≤ c ∧ c ≤ q ∧ f(c) = 1 ∧ p = p′ ∧ q = q′ ∧ c = c′) ,

ρ2 = (q ≤ d ∧ d ≤ p ∧ f(d) = 0 ∧ p = p′ ∧ q = q′ ∧ d = d′) .

We model the fact that the first thread acquires the lock indexed by c using
f(c) = 1. The constraint f(d) = 0 from ρ2 represents the requirement that the
lock indexed by d must be released in order to complete the call to take lock

at program location b2 .
Following the reachability of an abstract state that intersects the error states

(pc1 = a3∧pc2 = b3) , abstraction refinement constraints are derived. We obtain
a set of Horn clauses where the unknown query S(V) represents the refined
abstract state s and E(G,G′) represents the refined environment transition e :

HCtake lock = { ρ1 → S(V ′), ρ2 → E(G,G′), S(V) ∧ E(G,G′)→ false } .

The third clause requires that the intersection of the set of states S(V) and the
environment transition is empty. In general, solutions for the refined environment
transitions can be expressed in terms of the whole set of program variables
V . However, an efficient verification procedure relies on using thread-modular
solutions (in terms of only global variables) whenever they exist [9]. In our
example, preference towards thread-modular solutions is declared using E(G,G′)
instead of E(V,V ′). Each Horn clause is implicitly universally quantified over the
variables that appear in the clause, i.e., V and V ′. The set of clauses HCtake lock

is satisfiable if and only if the abstraction can be refined to exclude the spurious
interleaving. Note that the solving procedure for Horn clauses proposed in [9] is
not applicable here due to the presence of uninterpreted function symbols.

Abstraction refinement for programs with procedures We use the second program
in Figure 8(b) to illustrate refinement constraints for proving the infeasibility of
an interprocedural path that is expressed using Horn clauses. This program has
same set of program variables V and program global variables G as take lock.

18

The procedure main establishes at line m2 that the value of the local variable
c is in a required range of integer values. At line m3 , foo is called if an unspecified
function f returns the integer value 1. Due to the conditions at lines n2 and n3 ,
the procedure foo cannot return at line n4 from the calling context at line m3.
However, due to over-approximation, an abstract reachability computation may
result in a summary for the foo procedure that is too imprecise. Assuming that
the constraint ρ1 represents the calling context of foo at line m3.

ρ1 = (p ≤ c ∧ c ≤ q ∧ f(c) = 1 ∧ p = p′ ∧ q = q′ ∧ c = c′) ,

An abstract state s is computed as follows:

s = α̇(post(ρ1, true)) .

Further, using a transition abstraction function α̈ , a summary transition e is
computed for the foo procedure:

ρ2 = (q ≤ d ∧ d ≤ p ∧ f(d) = 0 ∧ p = p′ ∧ q = q′) ,

e = α̈(ρ2) .

In order to show the infeasibility of the interprocedural path denoted by the
sequence of program labels m1, m2, m3, n1, n2, n3, n4, m4 , abstraction refinement
constraints are expressed by the following Horn clauses:

HCfoo = { ρ1 → S(V ′), ρ2 → E(G,G′), S(V) ∧ E(G,G′)→ false } .

We require that the solution for the procedure summary refers only to global
variables p and q, but not to the local variable d. Therefore, E(G,G′) refers to
only global variables.

We constructed the above examples so that HCtake lock = HCfoo. We further
simplify the Horn clauses and drop the variables from the queries that do not
contribute to the satisfiability of the set of Horn clauses. After the simplification,
we obtain

HC = { ρ1 → S(p, q, c), ρ2 → E(p, q), S(p, q, c) ∧ E(p, q)→ false } .

Our algorithm computes a solution to this set of Horn clauses as illustrated
in Section 2.

B Example execution of SolveHorn(li+uif)

This section presents an execution example for our algorithm Solve-
Horn(li+uif). We apply it on the set of Horn clauses shown in Figure 9(a).
The corresponding resolution tree is given in in Figure 9(b) and the proof tree
for the conjunction of leaves in the resolution tree is shown in Figure 9(c). The
annotated tree is shown in Figure 9(d), where the partial solutions Π1, . . . ,Π7

are presented below.

19

B
(w
,x
,y
,z

)∧
A

(w
,x
,y
,z

)
→

fa
lse

z
−
y
≤

0
∧
x
−
w
≤

0
→
A

(w
,x
,y
,z

)

C
(x
,z

)∧
D

(y
,z

)∧
E

(w
,x
,y

)
→
B

(w
,x
,y
,z

)

f
(z

)−
x
≤

0
→
C

(x
,z

)

y
−
z
≤

0
→
D

(y
,z

)

w
−
f

(y
)
≤

0
∧
g
(w

)−
g
(x

)
+

1
≤

0
→
E

(w
,x
,y

)

(a
)

1
:
fa
lse

2
:
A

(w
,x
,y
,z

)

3
:
z
−
y
≤

0∧
x
−
w
≤

0

4
:
B

(w
,x
,y
,z

)

5
:
C

(x
,z

)

6
:
f

(z
)−

x
≤

0

7
:
D

(y
,z

)

8
:
y
−
z
≤

0

9
:
E

(w
,x
,y

)

1
0

:
w
−
f

(y
)
≤

0∧
g
(w

)−
g
(x

)
+

1
≤

0

(b
)

P
C
o
m
b

P
C
o
n
g

x
−
w
≤

0
P
C
o
m
b

P
C
o
n
g

y
−
z
≤

0
z
−
y
≤

0

f
(y

)−
f

(z
)
≤

0
w
−
f

(y
)
≤

0
f

(z
)−

x
≤

0

w
−
x
≤

0

g
(x

)−
g
(w

)
≤

0
g
(w

)−
g
(x

)
+

1
≤

0

1
≤

0
(c
)

A
C
o
m
b

A
C
o
n
g

x
−
w
≤

0
[Π

5]
A
C
o
m
b

A
C
o
n
g

y
−
z
≤

0
[Π

1]
z
−
y
≤

0
[Π

2]

f
(y

)−
f

(z
)
≤

0
[Π

3]
w
−
f

(y
)
≤

0
[...]

f
(z

)−
x
≤

0
[...]

w
−
x
≤

0
[Π

4]

g
(x

)−
g
(w

)
≤

0
[Π

6]
g
(w

)−
g
(x

)
+

1
≤

0
[...]

1
≤

0
[Π

7]
(d

)

F
ig
.
9
.

(a
)

A
n

ex
a
m

p
le

o
f

H
o
rn

cla
u
ses

(b
)

R
eso

lu
tio

n
tree

o
f

th
e

H
o
rn

cla
u
ses

(c)
P

ro
o
f-tree

o
f

u
n
sa

tisfi
a
b
ility

(d
)

A
n
n
o
ta

te
p
ro

o
f-tree

o
f

u
n
sa

tisfi
a
b
ility

20

A(w, x, y, z) z − y ≤ 0 ∧ (0 ≤ 0→ x− w ≤ 0 ∧ (0 ≤ 0→ 0 ≤ 0))

B(w, x, y, z) 0 ≤ 0 ∧ (z − y ≤ 0→ 0 ≤ 0 ∧ (x− w ≤ 0→ 1 ≤ 0))

C(x, z) 0 ≤ 0 ∧ (0 ≤ 0→ f(z)− x ≤ 0 ∧ (0 ≤ 0→ 0 ≤ 0))

D(y, z) y − z ≤ 0 ∧ (0 ≤ 0→ 0 ≤ 0 ∧ (0 ≤ 0→ 0 ≤ 0))

E(w, x, y) 0 ≤ 0 ∧ (0 ≤ 0→ 0 ≤ 0 ∧ (f(y)− x ≤ 0 ∧ x− w ≤ 0→ 1 ≤ 0))

Table 1. Solution for Horn clauses in Figure 9(a).

1 : y − z ≤ 0

2 : 0 ≤ 0

3 : 0 ≤ 0

4 : y − z ≤ 0

5 : 0 ≤ 0

6 : 0 ≤ 0

7 : y − z ≤ 0

8 : y − z ≤ 0

9 : 0 ≤ 0

0 ≤ 0

Π1

1 : z − y ≤ 0

2 : z − y ≤ 0

3 : z − y ≤ 0

4 : 0 ≤ 0

5 : 0 ≤ 0

6 : 0 ≤ 0

7 : 0 ≤ 0

8 : 0 ≤ 0

9 : 0 ≤ 0

0 ≤ 0

Π2

1 : 0 ≤ 0 ∧ (0 ≤ 0→
f(y)− f(z) ≤ 0)

2 :
z − y ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

3 :
z − y ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

4 : 0 ≤ 0 ∧ (z − y ≤ 0→
f(y)− f(z) ≤ 0)

5 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

6 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

7 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

8 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

9 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

10 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

Π3

21

1 : 0 ≤ 0 ∧ (0 ≤ 0→
w − x ≤ 0)

2 :
z − y ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

3 :
z − y ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

4 : 0 ≤ 0 ∧ (z − y ≤ 0→
w − x ≤ 0)

5 :
0 ≤ 0 ∧ (0 ≤ 0→
f(z)− x ≤ 0)

6 :
0 ≤ 0 ∧ (0 ≤ 0→
f(z)− x ≤ 0)

7 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

8 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0)

9 :
0 ≤ 0 ∧ (0 ≤ 0→
w − f(y) ≤ 0)

10 :
0 ≤ 0 ∧ (0 ≤ 0→
w − f(y) ≤ 0)

Π4

1 : x− w ≤ 0

2 : x− w ≤ 0

3 : x− w ≤ 0

4 : 0 ≤ 0

5 : 0 ≤ 0

6 : 0 ≤ 0

7 : 0 ≤ 0

8 : 0 ≤ 0

9 : 0 ≤ 0

0 ≤ 0

Π5

1 : 0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0 ∧ (0 ≤ 0→
g(x)− g(w) ≤ 0))

2 :
z − y ≤ 0 ∧ (0 ≤ 0→
x− w ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0))

3 :
z − y ≤ 0 ∧ (0 ≤ 0→
x− w ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0))

4 : 0 ≤ 0 ∧ (z − y ≤ 0→
0 ≤ 0 ∧ (x− w ≤ 0→
g(x)− g(w) ≤ 0))

5 :
0 ≤ 0 ∧ (0 ≤ 0→

f(z)− x ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

6 :
0 ≤ 0 ∧ (0 ≤ 0→

f(z)− x ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

7 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

8 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

9 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0∧
(f(y)− x ≤ 0∧
x− w ≤ 0→

g(x)− g(w) ≤ 0))

10 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0∧
(f(y)− x ≤ 0∧
x− w ≤ 0→

g(x)− g(w) ≤ 0))

Π6

22

1 : 0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0 ∧ (0 ≤ 0→
1 ≤ 0))

2 :
z − y ≤ 0 ∧ (0 ≤ 0→
x− w ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0))

3 :
z − y ≤ 0 ∧ (0 ≤ 0→
x− w ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0))

4 : 0 ≤ 0 ∧ (z − y ≤ 0→
0 ≤ 0 ∧ (x− w ≤ 0→

1 ≤ 0))

5 :
0 ≤ 0 ∧ (0 ≤ 0→

f(z)− x ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

6 :
0 ≤ 0 ∧ (0 ≤ 0→

f(z)− x ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

7 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

8 :
y − z ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0 ∧ (0 ≤ 0→
0 ≤ 0))

9 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0∧
(f(y)− x ≤ 0∧
x− w ≤ 0→

1 ≤ 0))

10 :
0 ≤ 0 ∧ (0 ≤ 0→

0 ≤ 0∧
(f(y)− x ≤ 0∧
x− w ≤ 0→

1 ≤ 0))

Π7

C Proofs

Proof (Proof for Theorem 1). Due to (PS1)–(PS3), a 1 ≤ 0-partial solution satisfies
the Horn clauses. Since, sym(1 ≤ 0) is empty, (PS4) is equivalent to the restriction on
symbols appearance for a solution of the Horn clauses.

Proof (Proof for Theorem 2). Let Π be a t ≤ 0-annotation invariant and let o ∈
nodes(R). Then, Π(o) satisfies (AI-1)–(AI-6). We will prove that Π is t ≤ 0-partial
solution by showing (PS3),(PS4), (PS1), and (PS2).

(PS3): If o = false then (AI-4) directly implies (PS3).

(PS4): Due to (AI-5), sym(Π(o)) ⊆ insym(o). Due to (AI-6), sym(t − p ≤ 0) ⊆
outsym(o). Now, let us assume there is a subterm s in p such that sym(s) * outsym(o)∪
sym(t ≤ 0) and s does not have + as the outermost function symbol. Therefore, s
must be a subterm of t− p. Therefore, sym(t− p ≤ 0) * outsym(o). Hence, we obtain
a contradiction. Therefore, sym(p ≤ 0) ⊆ outsym(o) ∪ sym(t ≤ 0). So we deduce
sym(Π(o)) ⊆ insym(o) ∩ (outsym(o) ∪ sym(t ≤ 0)). Hence, (PS4) holds.

(PS1): Let o ∈ leaves(R). First, we will prove the following validity for all i ∈ 0..r by
induction.

|= o ∧
∧r−i

k=1Dk → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉

Base case: i = 0. (AI-2b) implies |= o ∧
∧r

k=1Dk → 〈(), p〉.
Induction step: r > i > 0. By induction hypothesis, we have

|= o ∧
∧r−i

k=1Dk → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉.

23

By separating Dr−i, we obtain

|= o ∧
∧r−i−1

k=1 Dk → (Dr−i → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉).

Due to the (AI-2a), |= o ∧
∧r−i−1

k=1 Dk → Cr−i. Therefore,

|= o ∧
∧r−i

k=1Dk → (Cr−i ∧ (Dr−i → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉)),

which is equivalent to

|= o ∧
∧r−i−1

k=1 Dk → 〈((Cr−i, Dr−i), . . . , (Cr, Dr)), p〉.

From our proved validity, we obtain for i = r:

|= o→ 〈((Cr−i, Dr−i), . . . , (Cr, Dr)), p〉.

Hence, (PS1) holds.

(PS2): Let (o1, . . . , om, o) ∈ R. First, we will prove the following validity for all
i ∈ 0..r by induction.

|=
∧m

j=1〈((Cj
r−i+1, D

j
r−i+1), . . . , (Cj

r , D
j
r)), pj〉 ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i

k=1Dk → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉

Base case: i = 0. (AI-3c) implies

|=
∧m

j=1〈(), p
j〉 ∧

(∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r

k=1Dk → 〈(), p〉,

which is the base case.
Induction step: r > i > 0. Consider the left hand side of induction step i+ 1,∧m

j=1〈((Cj
r−i, D

j
r−i), . . . , (C

j
r , D

j
r)), pj〉 ∧

(∧r−i−1
k=1

∧m
l=1 C

l
k

)
∧
∧r−i−1

k=1 Dk.

By unfolding definition of a solution constraint once,∧m
j=1(Dj

r−i → 〈((Cj
r−i+1, D

j
r−i+1), . . . , (Cj

r , D
j
r)), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i−1

k=1 Dk.

Due to (AI-3a), the above formula implies Cr−i.
Now lets take conjunction of the above formula and Dr−i,∧m

j=1(Dj
r−i → 〈((Cj

r−i+1, D
j
r−i+1), . . . , (Cj

r , D
j
r)), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i

k=1Dk.

Due to (AI-3b), the above formula implies∧m
j=1(Dj

r−i → 〈((Cj
r−i+1, D

j
r−i+1), . . . , (Cj

r , D
j
r)), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i

k=1Dk ∧
∧m

j=1D
j
r−i.

Therefore, ∧m
j=1〈((Cj

r−i+1, D
j
r−i+1), . . . , (Cj

r , D
j
r)), pj〉 ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i

k=1Dk.

24

Due to the induction hypothesis, the above formula implies

〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉.

So, we have proven that the left hand side of the induction step at i+ 1 implies

Cr−i ∧ (Dr−i → 〈((Cr−i+1, Dr−i+1), . . . , (Cr, Dr)), p〉),

which is the right hand side of the induction step at i+ 1.
From our proved validity, we obtain for i = r,

|=
∧m

j=1〈((Cj
1 , D

j
1), . . . , (Cj

r , D
j
r)), pj〉 → 〈((C1, D1), . . . , (Cr, Dr)), p〉.

Hence, (PS2) holds. ut
The following three lemmas will be used to prove Theorem 3.

Lemma 1. Let Π be t ≤ 0-annotation invariant and let Π ′ be t′ ≤ 0-annotation
invariant. Let Π1 and Π1 be a function from R to constraints such that

∀o ∈ nodes(R) : Π(o) = 〈L, p〉 ∧Π ′(o) = 〈L′, 〉 → Π1(o) = 〈L • L′, p〉

and

∀o ∈ nodes(R) : Π(o) = 〈L, p〉 ∧Π ′(o) = 〈L′, 〉 → Π2(o) = 〈L′ • L, p〉.

Π1 and Π2 are t ≤ 0-annotation invariants.

Proof. We will only deal with Π1. The proof for Π2 is similar.
Let o ∈ nodes(R), Π(o) = 〈((C1, D1), . . . , (Cn, Dn)), p〉, and

Π ′(o) = 〈((Cn+1, Dn+1), . . . , (Cn+m, Dn+m)), 〉. Then, Π1(o) =
〈((C1, D1), . . . , (Cn+m, Dn+m)), p〉. Π1(o) maps to a solution constraint that
has prefix sequence of length n + m. Therefore, (AI-1) holds. (AI-2a)–(AI-3c) for
Π1(o) are satisfied since these conditions have stronger left hand sides compare to the
corresponding conditions for Π(o) and Π ′(o). (AI-4)–(AI-6) are directly holds. ut

The above lemma can be applied multiple times on a t ≤ 0-annotation invariant
satisfying Π to show that a prefix extension in the above way does not violate t ≤ 0-
annotation invariant.

Lemma 2. Let (o1, . . . , om, o) ∈ R. If sym(f(t1, . . . , tn)) ⊆ outsym(o) then ∀l ∈
1..m : sym(f(t1, . . . , tn)) ⊆ outsym(ol).

The proof of above lemma is left for the reader to verify.

Lemma 3. Let (o1, . . . , om, o) ∈ R. If sym(f(t1, . . . , tn)) * outsym(o) then either of
the following cases is true.

1. ∀l ∈ 1..m : sym(f(t1, . . . , tn)) ⊆ outsym(ol)
2. ∃j : sym(f(t1, . . . , tn)) * outsym(oj) ∧

∀l ∈ 1..m \ {j} : sym(f(t1, . . . , tn)) ⊆ outsym(ol).

Proof. Since PComb does not allow introduction of terms that are not present in the
input atoms, if sym(f(t1, . . . , tn)) * outsym(o) then sym(f(t1, . . . , tn)) ⊆ insym(o)
and there exist at least one child node oj such that sym(f(t1, . . . , tn)) ⊆ insym(oj).

If there are at least two children oj1 and oj2 such that sym(f(t1, . . . , tn)) ⊆
insym(oj1) and sym(f(t1, . . . , tn)) ⊆ insym(oj2) then first case will be true.

If there is exactly one child oj such that sym(f(t1, . . . , tn)) ⊆ insym(oj1) then
second case will be true. ut
Proof (Proof for Theorem 3). We will proof that AHyp computes annotation invariants
as base case and AComb and ACong inductively compute the annotation invariants.

25

AHyp rule: Let Π = MkHyp(t ≤ 0). For each o ∈ R, Π(o) is 〈[], p〉, which implies
r = 0 in the Definition 1 with respect to Π. Therefore, (AI-1),(AI-2a), (AI-3a), and
(AI-3b) hold, trivially.

Let o ∈ leaves(R). (AI-2b) holds since if o = (t ≤ 0) then p = t else p = 0.

Let (o1, . . . , om, o) ∈ R. If (t ≤ 0) is in the subtree of the node o then p = t. Since
R is a tree, there is j ∈ 1..m such that the subtree of oj contains (t ≤ 0). Therefore,
pj = t and ∀l ∈ 1..m \ {j} : pl = 0. Therefore, the right hand side of (AI-3b) is 0 ≤ 0.
In other case,i.e., t ≤ 0 is not in subtree of node o, p = 0 and ∀j ∈ 1..m : pl = 0. Again
the right hand side of (AI-3b) is 0 ≤ 0. Therefore, in both the cases (AI-3b) holds.

Since all leaves are in the subtree rooted at the node false, (AI-4) is satisfied.

If (t ≤ 0) is in the subtree of o then p = t. Hence, p− t = 0. Therefore (AI-5) and
(AI-6) hold. Otherwise, i.e., if (t ≤ 0) is not in the subtree of o, then p = 0. Hence,
p− t = −t. Therefore (AI-5) and (AI-6) holds.

AComb rule: By the induction hypothesis, Πi is ti ≤ 0-annotation invariant for each
i ∈ 1..n. Let Π = MkComb(Π1, . . . , Πn, λ1, . . . , λn). We show that Π is λ1t1 + · · · +
λntn ≤ 0-annotation invariant. For each i ∈ 1..n, we first construct Πi such that

∀o ∈ nodes(R) :

Π1(o) = 〈L1, p1〉

∧
...
∧

Πn(o) = 〈Ln, pn〉

→ Πi(o) = 〈L1 • · · · • Ln, pi〉.

Due to Lemma 1, Πi is ti ≤ 0-annotation invariant. MkComb constructs Π such that

∀o ∈ nodes(R) :

Π1(o) = 〈L, p1〉

∧
...
∧

Πn(o) = 〈L, pn〉

→ Π(o) = 〈L, λ1p1 + · · ·+ λnpn〉.

(AI-1), (AI-2a), (AI-3a), (AI-3b), and (AI-4) w.r.t. λ1t1 + · · · + λntn ≤ 0-annotation
invariant are trivially satisfied.

Let o ∈ leaves(R). The left hand sides of (AI-2b) w.r.t. Π1(o), . . . , Πn(o) are equal
and they also equal to the left hand side of (AI-2b) w.r.t. Π(o). The right hand side
of (AI-2b) w.r.t. Π(o) is a linear combination of the right hand sides of (AI-2b) w.r.t.
Π1(o), . . . , Πn(o). Therefore, (AI-2b) w.r.t. Π(o) holds. A similar argument proves
(AI-3c). sym({p1 ≤ 0, . . . , pn ≤ 0}) ⊆ insym(o), therefore sym(λ1p1 + · · · + λnpn) ⊆
insym(o). Hence, (AI-5) holds. A similar argument proves (AI-6).

ACong rule: By the induction hypothesis, Πi is ti − si ≤ 0-annotation in-
variant and Π ′i is ti − si ≤ 0-annotation invariant for i ∈ 1..n. Let Π =
MkCong(f(t1, . . . , tn), f(s1, . . . , sn), Π1, . . . , Πn, Π

′
1, . . . , Π

′
n). We prove that Π is

f(t1, . . . , tn) − f(s1, . . . , sn) ≤ 0-annotation invariant. For each i ∈ 1..n, we construct

26

Πi and Π ′n such that

∀o ∈ nodes(R) :

Π1(o) = 〈L1, p1〉
∧
...
∧

Πn(o) = 〈Ln, pn〉
∧

Π ′1(o) = 〈L′1, p′1〉
∧
...
∧

Π ′n(o) = 〈L′n, p′n〉

→

Πi(o) = 〈 L1 • · · · • Ln•

L′1 • · · · • L′n, pi 〉
∧

Π ′i(o) = 〈 L1 • · · · • Ln•
L′1 • · · · • L′n, p′i 〉

 .

Due to Lemma 1, Πi satisfies ti−si ≤ 0-annotation invariant and Π ′i satisfies si−ti ≤
0-annotation invariant for i ∈ 1..n.

Let o ∈ nodes(R). Let Πi(o) = 〈((C1, D1), . . . , (Cr, Dr)), pi〉 and let Π ′i(o) =
〈((C1, D1), . . . , (Cr, Dr)), p′i〉 for each i ∈ 1..n. MkCong returns Π such that Π(o) =
〈((C1, D1), . . . , (Cr, Dr), (Cr+1, Dr+1)), p〉, where Cr+1, Dr+1 and p are computed at
line 5. At line 6 of function MkCong, match has four cases which we will lead to four or
more cases distinction for proving (AI-1)–(AI-6) w.r.t. f(t1, . . . , tn)−f(s1, . . . , sn) ≤ 0-
annotation invariant. Now rest of the proof is divided into proving each of the condi-
tions.

(AI-1): SinceΠ maps all nodes ofR to solution constraints that have prefix sequence
of length r + 1, (AI-1) holds.

(AI-5) and (AI-6): We show in the following four cases that Cr+1, Dr+1, and p
satisfy (AI-5) and (AI-6).

1. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o) :
Let i ∈ 1..n. Due to the condition of this case, sym(ti − si) ⊆ outsym(o). (AI-6)
w.r.t. Πi(o) implies sym(ti−si−pi) ⊆ outsym(o). Therefore, sym(pi) ⊆ outsym(o).
Due to (AI-5) w.r.t. Πi(o), sym(pi) ⊆ insym(o). A similar argument proves
sym(p′i) ⊆ outsym(o) and sym(p′i) ⊆ insym(o). Therefore, Cr+1 satisfies (AI-5)
and (AI-6) w.r.t. Π(o). Since, Dr+1 = true and p = 0, we do not need to prove
anything for them.

2. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) :

Let i ∈ 1..n. Due to (AI-5) w.r.t. Πi(o) and Π ′i(o), sym(pi + p′i) ∈ insym(o). Due
to (AI-6), sym(ti−si−pi) ∈ outsym(o) and sym(si−ti−p′i) ∈ outsym(o) therefore
sym(−pi − p′i) ∈ outsym(o). Therefore, Cr+1 and Dr+1 satisfy (AI-5) and (AI-6)
of Π.
sym(f(s1, . . . , sn)) * outsym(o) implies sym(f(s1, . . . , sn)) ⊆ insym(o). There-
fore, sym(si) ⊆ insym(o). Therefore, sym(si + pi) ⊆ insym(o). Therefore,
sym(f(s1 + p1, . . . , sn + pn) − f(s1, . . . , sn)) ⊆ insym(o). Hence, (AI-5) w.r.t.
Π(o) holds. Due to conditions (AI-6) w.r.t. Πi(o), sym(ti − si − pi) ⊆ outsym(o).
Since sym(ti) ⊆ outsym(o), sym(si + pi) ⊆ outsym(o). Therefore,
sym(f(t1, . . . , tn) − f(s1 + p1, . . . , sn + pn)) ⊆ outsym(o). Hence, (AI-6)
w.r.t. Π(o) holds.

27

3. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o) :
A similar argument as in the previous case.

4. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) :
Due to the condition of this case, sym(f(t1, . . . , tn) − f(s1, . . . , sn)) ⊆ insym(o).
Hence, p satisfies (AI-5) and (AI-6) w.r.t. Π(o). Let i ∈ 1..n. Due to (AI-6)
w.r.t. Πi(o) and Π ′i(o), sym(ti − si − pi, si − ti − p′i) ⊆ outsym(o). Due to (AI-5)
w.r.t. Πi(o) and Π ′i(o), sym(pi, p

′
i) ⊆ insym(o). Due to the condition of this case,

sym(ti − si) ⊆ insym(o). Therefore, sym(ti − si − pi, si − ti − p′i) ⊆ insym(o).
Hence, Dr+1 satisies (AI-5) and (AI-6) w.r.t. Π(o). Since Cr+1 = true, we do not
have to prove anything for it.

(AI-2a) and (AI-2b): Let o ∈ leaves(R). In (AI-2a) w.r.t. Π(o), the implications for
i ∈ 1..r are satisfied due to (AI-2a) w.r.t. Π1(o) and we only prove r+1th instantiation
of the implications, i.e.,

|= o ∧
∧r

k=1Dk → Cr+1. (6)

We also prove condition (AI-2b) w.r.t. Π(o). There are again four cases.

1. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o)

Since Cr+1 =
∧n

i=1(pi ≤ 0 ∧ p′i ≤ 0), (AI-2b) w.r.t. Πi(o) and Π ′i(o) imply (6).
(AI-2b) w.r.t. Π(o) is trivially satisfied.

2. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o)

Since Cr+1 =
∧n

i=1(pi + p′i ≤ 0), (AI-2b) w.r.t. Πi(o) and Π ′i(o) imply (6). In this
case, Dr+1 =

∧n
i=1(−pi−p′i ≤ 0). Let i ∈ 1..n. The left hand side of (AI-2b) w.r.t.

Π(o) implies −pi − p′i ≤ 0 ∧ p′i ≤ 0 ∧ pi ≤ 0. So, pi = 0. Therefore, si + pi = si.
Therefore, f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) ≤ 0, which is the right hand side
of (AI-2b) w.r.t. Π(o). Hence, (AI-2b) w.r.t. Π(o) holds.

3. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o)
A similar argument as in the previous case.

4. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o)
In this case, Cr+1 = true and Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0).

(6) is trivially satisfied. Left hand sides of (AI-2b) w.r.t. Πi and Π ′i are equal, and
their conjunction with Dr+1 is equal to the left hand side of (AI-2b) w.r.t. Π(o).
Therefore, the left hand side of (AI-2b) w.r.t. Π(o) implies

∧n
i=1(ti − si − pi ≤

0∧si−ti−p′i ≤ 0)∧
∧n

i=1(pi ≤ 0∧p′i ≤ 0). Therefore,
∧n

i=1(ti−si ≤ 0∧si−ti ≤ 0).
Therefore,

∧n
i=1 ti = si. Therefore, f(t1, . . . , tn) − f(s1, . . . , sn) ≤ 0, which is the

right hand side of (AI-2b) w.r.t. Π(o). Hence, (AI-2b) w.r.t. Π(o) holds.

(AI-3a), (AI-3b) and (AI-3c): Let (o1, . . . , om, o) ∈ R. For each l ∈ 1..m, let

Πi(o
l) = 〈((Cl

1, D
l
1), . . . , (Cl

r, D
l
r)), pli〉, Π ′i(o

l) = 〈((Cl
1, D

l
1), . . . , (Cl

r, D
l
r)), p

l′
i 〉, and

Π(ol) = 〈((Cl
1, D

l
1), . . . , (Cl

r, D
l
r)), pl〉. In (AI-3a) w.r.t. Π(o), the implications for

i ∈ 1..r are satisfied due to (AI-3a) w.r.t. Π1(o). We only prove r + 1th instantia-
tion of the implications, i.e.,(∧r+1

k=1

∧m
l=1 C

l
k

)
∧
∧r

k=1Dk → Cr+1.

28

By reorganizing the above formula, we obtain∧m
l=1 C

l
r+1 ∧

((∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r

k=1Dk

)
→ Cr+1.

Due to (AI-3c) w.r.t. Π1(o), . . . , Πn(o) and Π ′1(o), . . . , Π ′n(o), we need to prove the
following formula in order to prove the formula above.

∧m
l=1 C

l
r+1 ∧

∧n
i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ Cr+1 (7)

In (AI-3b) w.r.t. Π(o), the implications for i ∈ 1..r are satisfied due to (AI-3b)
w.r.t. Π1(o). We only prove r + 1th instantiations of the implications, i.e.,

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧(∧r

k=1

∧m
l=1 C

l
k

)
∧
∧r+1

k=1Dk → Dj
r+1.

By reorganizing the above formula, we obtain

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧Dr+1 ∧((∧r

k=1

∧m
l=1 C

l
k

)
∧
∧r

k=1Dk

)
→ Dj

r+1.

Due to (AI-3c) w.r.t. Π1(o), . . . , Πn(o) and Π ′1(o), . . . , Π ′n(o), we need to prove the
following formula in order to prove the formula above.

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧Dr+1 ∧∧n

i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ Dj

r+1

(8)

(AI-3c) w.r.t. Π(o) is

|=
(∧r+1

k=1

∧m
l=1 C

l
k

)
∧
∧r+1

k=1Dk → p− p1 − · · · − pm ≤ 0.

By reorganizing the above formula, we obtain

|=
∧m

l=1 C
l
r+1 ∧Dr+1 ∧

((∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r

k=1Dk

)
→ p− p1 − · · · − pm ≤ 0.

Due to (AI-3c) w.r.t. Π1(o), . . . , Πn(o) and Π ′1(o), . . . , Π ′n(o), we need to prove the
following formula in order to prove the formula above.

|=
∧m

l=1 C
l
r+1 ∧Dr+1 ∧∧n

i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ p− p1 − · · · − pm ≤ 0

(9)

We prove (7), (8), and (9) for the following ten cases, which are consequence of
Lemmas 2 and 3. In each case, we will present the table of values of Cr+1, Dr+1, p,
and, for each l ∈ 1..m, Cl

r+1, Dl
r+1 and pl. Then, provide proves of (7), (8), and (9)

for the given values.

29

1. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o) :

∀l ∈ 1..m

Cr+1 =
∧n

i=1(pi ≤ 0 ∧ p′i ≤ 0) Cl
r+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 = true Dl
r+1 = true

p = 0 pl = 0

(8) and (9) are trivially satisfied. Placing values of Cl
r+1 in left hand side of (7),

we obtain∧m
l=1

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0) ∧

∧n
i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By taking linear combination of above atoms, we obtain∧n
i=1

(
pi ≤ 0 ∧ p′i ≤ 0

)
,

which is right hand side of (7).

2. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) ∧(
∀j ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj) ∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj)

)
:

∀l ∈ 1..m

Cr+1 =
∧n

i=1(pi + p′i ≤ 0) Cl
r+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 =
∧n

i=1(−pi − p′i ≤ 0) Dl
r+1 = true

p = f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) pl = 0

(8) is trivially true. The left hand side of (7) is equal to the previous case,
therefore, it implies

∧n
i=1

(
pi ≤ 0 ∧ p′i ≤ 0

)
. By taking linear combination of

inequalities, we obtain
∧n

i=1 (pi + p′i ≤ 0), which is the right hand side of (7).
In the right hand side of (9), p−p1−· · ·−pn = f(s1+p1, . . . , sn+pn)−f(s1, . . . , sn).
Left hand side of (9) implies

m∧
l=1

n∧
i=1

(pli ≤ 0 ∧ pl′i ≤ 0) ∧Dr+1 ∧
n∧

i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By taking linear combinations, we obtain

Dr+1 ∧
∧n

i=1 (pi ≤ 0 ∧ p′i ≤ 0) .

After placing value of Dr+1,∧n
i=1(−pi − p′i ≤ 0) ∧

∧n
i=1 (pi ≤ 0 ∧ p′i ≤ 0) .

By taking linear combinations, we obtain∧n
i=1(−pi ≤ 0 ∧ pi ≤ 0).

So for all i ∈ 1..n, pi = 0. Therefore, si + pi = si. Therefore,
f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) ≤ 0, which is right hand side of (9).

3. sym(f(t1, . . . , tn)) ⊆ outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o)∧(
∃j ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj) ∧
sym(f(s1, . . . , sn)) * outsym(oj)

)
:

30

∀l ∈ 1..m \ {j}
Cr+1 =

∧n
i=1(pi + p′i ≤ 0) Cl

r+1 =
∧n

i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 =
∧n

i=1(−pi − p′i ≤ 0) Dl
r+1 = true

p = f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) pl = 0

Cj
r+1 =

∧n
i=1(pji + p

j′
i ≤ 0)

Dj
r+1 =

∧n
i=1(−pji − p

j′
i ≤ 0)

pj = f(s1 + pj1, . . . , sn + pjn)− f(s1, . . . , sn)

Left hand side of (7) implies

(
∧

l∈1..m\{j}
∧n

i=1(pli ≤ 0 ∧ pl′i ≤ 0)) ∧
∧n

i=1(pji + p
j′
i ≤ 0) ∧∧n

i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By taking linear combinations, we obtain
∧n

i=1 pi + p′i ≤ 0, which is right hand
side of (7).
For (8), we only need to prove the instance of implications in which, Dj

r+1 is equal

to
∧n

i=1(−pji − p
j′
i ≤ 0). Lets consider left hand side of (8), which implies

n∧
i

(∧l∈1..m\{j}(p
l
i ≤ 0 ∧ pl′i ≤ 0)

)
∧(

pi − p1i − · · · − pmi ≤ 0 ∧ p′i − p
1′
i − · · · − p

m′
i ≤ 0

)
∧ −pi − p′i ≤ 0

 .

By by adding above linear inequalities, we can obtain
∧n

i=1−p
j
i − p

j′
i ≤ 0, which

is right hand side of (8).
In the right hand side of (9), p− p1 − · · · − pm = f(s1 + p1, . . . , sn + pn)− f(s1 +
pj1, . . . , sn +pjn). So for proving (9), we need to show that the left hand side implies∧n

i=0 si+pi = si+p
j
i . By further simplification,

∧n
i=0 pi−p

j
i = 0. Now, lets consider

the left hand side, which implies

n∧
i

∧

l∈1..m\j p
l
i ≤ 0 ∧ pi − p1i − · · · − pmi ≤ 0∧∧

l∈1..m\j p
l′
i ≤ 0 ∧ p′i − p

1′
i − · · · − p

m′
i ≤ 0∧

(pji + p
j′
i ≤ 0) ∧ −pi − p′i ≤ 0

By adding inequalities of each row, we obtain

n∧
i

 pi − pji ≤ 0∧
p′i − p

j′
i ≤ 0∧

pji + p
j′
i − pi − p

′
i ≤ 0

 .

By adding 2nd and 3rd row, we obtain

n∧
i

(
pi − pji ≤ 0 ∧ pji − pi ≤ 0

)
,

which we were aiming to prove.

4. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o)∧(
∀j ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj)∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj)

)
:

Argument is similar to case 2.

31

5. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) ⊆ outsym(o)∧(
∃j ∈ 1..m :

sym(f(t1, . . . , tn)) * outsym(oj)∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj)

)
:

Argument is similar to case 3.

6. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o)∧(
∀j ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj)∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj)

)
:

Cr+1 = true

Dr+1 =
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m

Cl
r+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

(7) and (8) are trivially true. In the right hand side of (9), p − p1 − · · · − pm =
f(t1, . . . , tn) − f(s1, . . . , sn). So, we only need to prove that left hand side of (9)
implies

∧n
i=1 ti = si. By placing values of Cl

r+1 and Dr+1, the left hand side
implies ∧n

i=1(pi ≤ 0 ∧ p′i ≤ 0 ∧ ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0).

By taking linear combinations, we obtain∧n
i=1(ti − si ≤ 0 ∧ si − ti ≤ 0),

which we were aiming to prove.

7. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) ∧(
∃j ∈ 1..m :

sym(f(t1, . . . , tn)) * outsym(oj) ∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
sym(f(t1, . . . , tn)) ⊆ outsym(oj

′
) ∧

sym(f(s1, . . . , sn)) ⊆ outsym(oj
′
)

)
:

Cr+1 = true

Dr+1 =
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j}
Cl

r+1 =
∧n

i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cj
r+1 =

∧n
i=1(pji + p

j′
i ≤ 0)

Dj
r+1 =

∧n
i=1(−pji − p

j′
i ≤ 0)

pj = f(s1 + pj1, . . . , sn + pjn)− f(s1, . . . , sn)

(7) is trivially true. For (8), we only need to prove the instance of implications in

which, Dj
r+1 is equal to

∧n
i=1(−pji − p

j′
i ≤ 0). Lets consider left hand side of (8),

which is

(
∧

l∈1..m\{j} C
l
r+1) ∧Dr+1 ∧

n∧
i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

After placing values of Cl
r+1 and Dr+1,

n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)
.

After adding all inequalities above, we obtain
∧n

i=1

(
−pji − p

j′
i ≤ 0

)
, which is right

hand side of (8).

32

In the right hand side of (9), p−p1−· · ·−pm = f(t1, . . . , tn)−f(s1+pj1, . . . , sn+pjn).
So, we only need to prove that left hand side of (9) implies

∧n
i=1 ti = si + pji . By

placing values of Cl
r+1 and Dr+1, the left hand side implies

∧n
i=1(pji + p

j′
i ≤ 0) ∧

n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)

by taking linear combination of above equations,

n∧
i=1

(
ti − si − p

j′
i ≤ 0∧

si − ti − pji ≤ 0

)
∧

n∧
i=1

(
ti − si − pji ≤ 0∧
si − ti − p

j′
i ≤ 0

)

Therefore,
∧n

i=1 ti = si + pji , which we were aiming to prove.

8. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) ∧(
∃j ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj) ∧
sym(f(s1, . . . , sn)) * outsym(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
sym(f(t1, . . . , tn)) ⊆ outsym(oj

′
) ∧

sym(f(s1, . . . , sn)) ⊆ outsym(oj
′
)

)
A similar argument as in previous case.

9. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) ∧(
∃j1 ∈ 1..m :

sym(f(t1, . . . , tn)) ⊆ outsym(oj
1

) ∧
sym(f(s1, . . . , sn)) * outsym(oj

1

)

)
∧(

∃j2 ∈ 1..m :
sym(f(t1, . . . , tn)) * outsym(oj

2

) ∧
sym(f(s1, . . . , sn)) ⊆ outsym(oj

2

)

)
∧(

∀j′ ∈ 1..m \ {j1, j2} :
sym(f(t1, . . . , tn)) ⊆ outsym(oj

′
) ∧

sym(f(s1, . . . , sn)) ⊆ outsym(oj
′
)

)

Cr+1 = true

Dr+1 =
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j1, j2}
Cl

r+1 =
∧n

i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cj1

r+1 =
∧n

i=1(pj
1

i + p
j1′
i ≤ 0)

Dj1

r+1 =
∧n

i=1(−pj
1

i − p
j1′
i ≤ 0)

pj
1

= f(s1 + pj
1

1 , . . . , sn + pj
1

n)− f(s1, . . . , sn)

Cj2

r+1 =
∧n

i=1(pj
2

i + p
j2′
i ≤ 0)

Dj2

r+1 =
∧n

i=1(−pj
2

i − p
j2′
i ≤ 0)

pj
2

= f(t1, . . . , tn)− f(t1 + p
j2′
1 , . . . , tn + p

j2′
n)

(7) is trivially true. In (8), there are two non trivial implications, when j = j1 and
j = j2. For j = j1, the left hand side of implication is

(
∧

l∈1..m\{j1} C
l
r+1) ∧Dr+1 ∧

n∧
i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

After placing values of Cl
r+1 other than l = j2, we obtain

Cj2

r+1 ∧Dr+1 ∧
n∧

i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

33

After placing values of Cj2

r+1 and Dr+1, we obtain

∧n
i=1(pj

2

i + p
j2′
i ≤ 0) ∧

∧n
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

∧n
i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

By taking linear combinations, we obtain

n∧
i=1

(
−pj

1

i − p
j1′
i ≤ 0

)
,

which is the right hand side. A similar argument proves j = j2 instantiation of (8).
The left hand side of (9) is

(
∧

l∈1..m\{j1,j2} C
l
r+1) ∧ Cj1

r+1 ∧ C
j2

r+1 ∧Dr+1∧∧n
i=1

(
pi − p1i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By placing values of Cj
r+1 for j ∈ 1..m \ {j1, j2}, we obtain

Cj1

r+1 ∧ C
j2

r+1 ∧Dr+1 ∧
n∧

i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

After placing value of Dr+1, we obtain

Cj1

r+1 ∧ C
j2

r+1 ∧
n∧

i=1

(
ti − si − pj

1

i − p
j2

i ≤ 0∧
si − ti − p

j1′
i − p

j2′
i ≤ 0

)
.

After placing values of Cj1

r+1 and Cj2

r+1, we obtain

n∧
i=1

(
pj

1

i + p
j1′
i ≤ 0

pj
2

i + p
j2′
i ≤ 0

)
∧

n∧
i=1

(
ti − si − pj

1

i − p
j2

i ≤ 0∧
si − ti − p

j1′
i − p

j2′
i ≤ 0

)
.

By taking linear combinations of above inequalities, we obtain

n∧
i=1

 ti − si + p
j1′
i − p

j2

i ≤ 0∧
si − ti − p

j1′
i + pj

2

i ≤ 0

 .

Therefore,
n∧

i=1

(
ti + p

j1′
i = si + pj

2

i

)
Therefore,

f(t1 + p
j2′
1 , . . . , tn + p

j2′
n)− f(s1 + pj

1

1 , . . . , sn + pj
1

n) ≤ 0,

which is right hand side of (9).

34

10. sym(f(t1, . . . , tn)) * outsym(o) ∧ sym(f(s1, . . . , sn)) * outsym(o) ∧(
∃j ∈ 1..m :

sym(f(t1, . . . , tn)) * outsym(oj) ∧
sym(f(s1, . . . , sn)) * outsym(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
sym(f(t1, . . . , tn)) ⊆ outsym(oj

′
) ∧

sym(f(s1, . . . , sn)) ⊆ outsym(oj
′
)

)
:

Cr+1 = true

Dr+1 =
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j}
Cl

r+1 =
∧n

i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cj
r+1 = true

Dj1

r+1 =
∧n

i=1(ti − si − pji ≤ 0 ∧ si − ti − p
j′
i ≤ 0)

pj
1

= f(t1, . . . , tn)− f(s1, . . . , sn)

(7) and (9) are trivially true. For (8), we only need to prove the instance of impli-

cations in which, Dj
r+1 is equal to

∧n
i=1(ti − si − pji ≤ 0 ∧ si − ti − p

j′
i ≤ 0). Lets

consider left hand side of (8), which implies

n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)
.

By taking linear combinations, we obtain

n∧
i=1

(
ti − si − pji ≤ 0∧
si − ti − p

j′
i ≤ 0

)
,

which is the right hand side.

(AI-4): Let o = false. The node false is root of the resolution tree there-
fore sym(f(t1, . . . , tn)) * outsym(o) and sym(f(s1, . . . , sn)) * outsym(o). Therefore,
Cr+1 = true and Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0). Since, for each

i ∈ 1..n, pi = ti − si and p′i = si − ti, Dr+1 = true. Hence, (AI-4) w.r.t. Π(o) holds.

Proof (Proof for Theorem 4). The annotation of the rules are computed in linear pass
by depth first traversal of a proof-tree. At each node or the proof tree, the nodes of
resolution tree are traversed.

35

