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Abstract—Dynamically allocated and manipulated data struc-
tures cannot be translated into hardware unless there is an upper
bound on the amount of memory the program uses during all
executions. This bound can depend on the generic parameters
to the program, i.e., program inputs that are instantiated at
synthesis time. We propose a constraint based method for the
discovery of memory usage bounds, which leads to the first-
known C-to-gates hardware synthesis supporting programs with
non-trivial use of dynamically allocated memory, e.g., linked lists
maintained with malloc and free. We illustrate the practicality
of our tool on a range of examples.

I. INTRODUCTION

C-to-gates synthesis promises to bring the power of hard-
ware based acceleration to mainstream programmers and to
radically increase the productivity of digital designers [17].
However, today’s C-to-gates synthesis tools do not support
one of the most powerful and widely used features of high-
level programming in C—dynamically allocated data struc-
tures. This leads to the use of arrays and significantly more
complicated code for modelling naturally dynamic data struc-
tures with static data structures, which in turns incurs extra
cost due to the extra complexity of design, verification, and
maintenance. The support for dynamic memory abstraction
remains an on-going research problem because of the need
to efficiently and accurately determine a bound on heap
consumption.

This paper advances the state-of-the-art in hardware syn-
thesis by providing support for programs that dynamically
allocate, deallocate, and manipulate heap-based data struc-
tures. Our technical contribution is a constraint-based method
for finding a symbolic bound on the maximum heap size at
compile time. This symbolic bound is expressed as a linear
function on the generic parameters to the circuit description.1

With our method for computing symbolic bounds we can
then automatically translate C programs with dynamic memory
usage into equivalent programs that operate over statically allo-
cated arrays. That is, when circuit descriptions are instantiated
in their surrounding designs, the symbolic bounds can be used
to compute concrete bounds for use during synthesis.

Our method significantly increases the expressive power
available to the users of synthesis systems. For example, with
our new C-to-gates synthesis flow, a designer can think in
terms of a tree-based data structure, yet generate hardware that
operates on a flat fixed sized array. Furthermore, off-the-shelf
libraries can now be used as subroutines by digital designers.

1The term generic parameter is used in hardware design languages to
describe variables whose values will be known at compile-time.

This leads to better re-use, as well as new avenues of adapting
software verification techniques for use in hardware systems.

Our experiments show that it is possible to produce viable
circuits from C programs that use dynamic data structures.
By viable we mean that the synthesized circuits have perfor-
mance that is good enough so that we see a possibility to
significantly improve it with future work. This claim needs
empirical justification by producing and analyzing the hand-
coded equivalents. However, the generated circuits have a size
and operating frequency which seems quite plausible in the
opinion of one of the authors, who has experience of producing
highly optimized FPGA designs.
Related work. C-to-gates synthesis is a maturing field with
notable systems—see [6], [7], [13], [18], [21], [26], [33], [34].
Some existing C-to-gates synthesis systems already support
pointers and pointer aliasing, see e.g. [32], but they do not
deal with dynamically allocated data structures.

Synthesis tools for other general purpose programming
languages also exist (e.g. tools supporting Scheme [30], or
Haskell [3]). In a few rare instances (e.g. [5]) tools have
been used not only to generate hardware but also the circuit’s
correctness proof as well. These tools usually require the user
to estimate the maximal amount of memory allocated by the
program and take this quantity as an input parameter to the
synthesis routine. Thus, the results of our work can perhaps
be used with these existing tools.

In the domain of pure functional programming languages,
the topic of heap-bounds analysis has been extensively inves-
tigated, see e.g. [19]. For imperative programs, [20] develops
a type system which tracks memory consumption. The Java
memory-bounds tool described in [1] uses a heap abstraction
and applies heuristics based on arithmetic simplification to
find a memory bound. In contrast, our method uses a more
precise numerical abstraction for dealing with heap, as we
keep track of the size of intermediate list segments identified
by the shape analysis when dissecting the heap, which was
crucial for dealing with our examples. Furthermore, instead of
using heuristics for finding the bound expression, we apply a
constraint based boundedness analysis which is complete for
linear bound expressions provable using linear invariants.

The semi-manual technique proposed in [4] uses the
Daikon [11] to collect likely program invariants—including
facts about memory consumption—and uses them to derive
an initial set of bound candidates.

In principle, the existing techniques for proving computa-
tional complexity, e.g. [14], can be used as a basis to design an
algorithm for discovery of memory usage bounds. However,
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void prio(int n,in signal i,out signal o) {
LINK ∗tmp,∗c,∗buffer;
assert( n>0 );
while (1) {

buffer = NULL;
// Build up an n−sized sorted buffer
for (int k=0;k<n;k++) {

buffer = sorted insert(input(i),buffer);
}

// Send the sorted list to the output and
// deallocate the buffer as we walk it
c=buffer;
while(c!=NULL) {

output(o,c−>data);
tmp = c;
c = c−>next;
free(tmp);

}
}

}

Fig. 1. Priority queue circuit specification in C, using off-the-shelf imple-
mentation of sorted_insert. The generic parameter n is assumed to be
specified at compile-time.

since we are only interested in bounds expressed over generic
parameters, a major challenge is to bias the bound discovery
method towards such well-formed bounds. Our constraint
based procedure solves this challenge.

Our approach for finding symbolic bounds uses several
known methods and tools as sub-procedures, such as shape
analysis (e.g. [10], [23], [25]) and abstraction methods based
on the introduction of new variables (e.g. [22], [24]). Our
new constraint-based method draws influence from previously
developed methods for invariant generation and rank function
synthesis (e.g. [9], [31]).

II. EXAMPLE

Imagine that we would like to build an n-size priority queue
circuit that reads integers from an input signal and returns
every n input integers on an output signal in sorted order. See
the function prio in Fig. 1 for an example of how we might
wish to write a specification of the desired hardware in C. Our
intention is that the variable n in Fig. 1 is a generic parameter,
whereas i and o should be thought of as signal names. Our
synthesis tool treats these in a special way as standard C, of
course, does not make this distinction. In this example we
assume that the circuit uses input() and output() as
primitives for I/O on the signal variables i and o. LINK is
a C struct used to represent singly-linked lists (with fields
data and next). We make use of an existing off-the-shelf
insertion-sort implementation, sorted_insert. See Fig. 2
for the source code of sorted_insert.

Note that in order to convert this program into hardware
we must first find an a priori bound on the amount of heap
during the execution of prio, for any input or parameter.
The problem is that sorted_insert does not guarantee
a concrete bound on the amount of heap allocated during its
execution, instead it preserves a bound – it takes a state where

LINK ∗ sorted insert(int data, LINK ∗l) {
LINK ∗ elem = l;
LINE ∗ prev = NULL;
LINK ∗ x = (LINK∗)malloc(sizeof(LINK));
assert(x!=NULL);
x−>data = data;
while (elem != NULL) {

if (elem−>data >= x−>data) {
x−>next = elem;
if (prev == NULL) { l = x; return l; }
prev−>next = x;
return l;

}
prev = elem;
elem = elem−>next;

}
x−>next = elem;
if (prev == NULL) { l = x; return l; }
prev−>next = x;
return l;

}

Fig. 2. Off-the-shelf implementation of incremental insertion sort procedure.

k heap cells have been allocated and returns a state in which
k+1 have been allocated. Thus we must hope to find a bound
on the amount of heap used by sorted_insert from states
limited to those reachable from prio.

If we can find this bound, then we can convert the program’s
operations on the heap into operations on statically-allocated
arrays, thus facilitating synthesis. We aim to find a bound that
holds across the entire program, but is expressed symbolically
using only the generic parameters to the top-level function (i.e.
the parameter n of the circuit prio). This allows us to pre-
allocate a shared array when creating instances of the circuit
prio.

The procedure given later in Section III is designed to find
a function f such that it is a program invariant that f(n) is
larger than the number of heap cells allocated at any given
time during its execution. In this case the procedure described
later will find the function f(n) = n ∗ 8, assuming that
sizeof(LINK) = 8 in the encoding.

With f we can now re-encode the program using a pre-
allocated array. In essence, when we know the valuations to
the input parameters we can then pre-allocate an array using f .
We then convert dereferences like *c into a[c]. Field offsets
are explicitly encoded: c->data is encoded as a[c+0], and
c->next is encoded as a[c+4].

From this program (and via a translation into VHDL) we
then used the Altera Quartus II 9.0 tools to construct an
implementation for the Stratix III FPGA architecture. Using
default synthesis and implementation options and with n = 10,
the generated circuit uses 5859 adaptive look-up tables, 4598
logic registers and 8192 block memory.

III. FROM HEAPS TO ARRAYS

In this section we describe an analysis that automatically
discovers symbolic bounds on the heap usage. We will assume
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that the size parameters passed to malloc are fixed constants.
Through the use of static analysis, we annotate each call to
free with the amount of memory the call is freeing. For
example, we would transform the call free(tmp) from
Fig. 1 to free(tmp,sizeof(LINK)). For simplicity of
presentation we will assume that programs allocate and free
heap cells of a single fixed size. We can support multiple size
allocations through the use of compile-time partial evaluation,
but at the cost of complexity in the notation in this section.
We currently do not support arbitrary DAGs or hash-tables,
due to the limitations of existing separation logic based shape
analysis tools [8], [10], [23], [25] of which we are dependent.

Our procedure is divided into the following steps.

a) Numerical heap abstraction: First, we augment the
program with a new variable h, which is used to track the
amount of heap that is currently allocated. The variable h is
incremented when malloc is called, and decremented when
free is called. For memory-safe programs such behavior of h is
correct. We use the shape analysis tool THOR [25] to determine
the shape of the data structures used during the program’s
execution, and to prove memory safety. Using techniques from
[24], THOR can be used to produce a new program without
heap that is a sound abstraction of the original program—
additional integer variables are added by THOR to summarize
the sizes of data-structures. Thus, bounds found on h in the
abstraction imply bounds in the original program. Note that
the new program variables range over integers of arbitrary size
(i.e. they cannot be represented in 32 or 64 bits).

The new abstract program is used for computing bounds on
heap consumption only, and does not play any role during the
hardware synthesis step.

b) Numerical bounds analysis: Next, we apply our
constraint-based boundedness analysis to the numeric program
to find a symbolic bound f on the maximum value of h.
For improved scalability we combine our constraint-based
synthesis approach with a counterexample-guided method of
checking and refining candidate bounds.

c) Array-based heap management and synthesis: Once
we have computed a symbolic bound (assuming that a bound
can be found) we throw away the abstraction and then convert
the original program into an array-based program operating
over a pre-allocated shared array and then apply off-the-shelf
synthesis tools to produce a gate-level design. Note that,
although we may sometimes compute a conservative over-
approximation for a bound on memory usage, it is often the
case that a downstream synthesis tool can perform further
pruning to yield a gate level implementation that does indeed
have a better (or even ideal) bound. A simple case of this
scenario is when a list is used to represent a bit-vector which
is used in arithmetic expressions with known range at synthesis
time allowing some of the upper bits to be pruned.

The following sections discuss the above procedures in more
detail.
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[n>0];
h=0; kb=0;

k=0;

[kc==0];

[k>=n];
kc=kb;

[k<n];
k++;
kb++;
h++;

[kc>0];
kc--;
h--;

Fig. 3. Numerical abstraction of procedure prio shown from Fig. 1.
Commands of the form [e]; denote assume statements.

IV. NUMERICAL HEAP ABSTRACTION

A shape analysis tool is designed to take a program and
compute an invariant for each program location describing the
shape of the heap. The invariant describes the data structures
stored in the heap during the program’s execution. Shape
analysis tools are based on symbolic simulation together with
abstraction techniques.

Using techniques described in [24], the shape analysis tool
THOR can be used to introduce new variables which soundly
track the sizes of data structure shapes inferred by the shape
analysis. In the example of the function prio, THOR would
introduce a variable kb recording the length of the linked list
starting from buffer. At the command buffer = NULL,
we initialize kb to zero. At the lines prev->next = x
within sorted_insert, the length of that linked list is
increased; therefore the abstraction will increment kb. Sim-
ilarly, THOR will introduce another variable kc recording
the length of the linked list from c. Corresponding to the
assignment c=buffer, the abstraction will set kc=kb, and at
the assignment c=c->next, the abstraction decrements kc.
Also, when we exit the while(c!=NULL) loop, we know
that c==0, and hence also kc=0.

Fig. 3 shows the control-flow graph (CFG) of the resulting
abstraction of prio. The CFG contains three nodes corre-
sponding to the three loops in the prio function. These
nodes are connected by the edges which are annotated with
the code occurring between the locations. The transitions
between locations come in two forms: assignments v=e; and
assumption checks [e];. The assumptions prune executions
in which the condition e does not hold.

For brevity, calls to the function sorted_insert in
Fig. 3 have been summarized as the transition {kb++;h++;}
from location 7 to 7, but our technique is designed to work
for a fully expanded CFG of the code.

V. NUMERICAL BOUNDS ANALYSIS

Preliminaries. Our shape analysis procedure produces a pro-
gram P = (V, h, P,L, �init , T ) that consists of a set of
variables V , a heap consumption variable h ∈ P , a set of
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generic parameters P ⊆ V \ {h}, a set of locations L, an
initial location �init ∈ L and a set of abstract transitions T .
Each transition τ ∈ T is given by a tuple (�, ρ, �′) where
�, �′ ∈ L and ρ is a constraint over V ∪V ′, where the variables
in V ′ represent the values of variables V after the transition
is executed. Each transition relation preserves the values of
generic parameters, i.e., for each (�, ρ, �′) ∈ T we have

∀V ∀V ′ : ρ → P ′ = P .

A state s is a valuation of V . A computation is a sequence of
location and state pairs (�1, s1), (�2, s2), . . . such that �init is
the initial location, i.e., �1 = �init , and for each consecutive
pair (�i, si) and (�i+1, si+1) there is a transition (�i, ρ, �i+1) ∈
T such that (si, si+1) |= ρ. A state s is reachable at a location
� if the pair (�, s) appears in some computation.

An invariant at a location � ∈ L is a superset of all
reachable states at �. We represent invariants by formulas over
the variables V . An invariant map Inv assigns an invariant
to each location. In particular, we have Inv(�init ) = true,
i.e., every state is reachable at the initial location. We will
use primed notation Inv(�)′ for Inv(�)[V ′/V ]. An invariant
map Inv is parametric if it does not restrict the values of
program variables besides the generic parameters and the heap
consumption variable, i.e., for each � ∈ L we have

∀V : Inv(�) ↔ (∃V \ (P ∪ {h}) : Inv(�)) .

An invariant map Inv is inductive if for each program transi-
tion (�, ρ, �′) ∈ T we have

∀V ∀V ′ : (Inv(�) ∧ ρ) → Inv(�′)′ .

We are interested in a parametric invariant map Bnd that
bounds the heap consumption. Formally, we will search for
Bnd such that for each � ∈ L we have

∀P ∃c ∈ N ∀V \ P : Bnd(�) → h ≤ c .

Then, the maximal value of the constant c among all program
locations determines the maximal amount of memory that is
dynamically allocated during the program computation.

For proving that Bnd is valid we will need an inductive
invariant map Inv . Formally, we require that for each � ∈ L
holds

∀V : Inv(�) → Bnd(�) .

Bounds analysis algorithm. Fig. 4 presents our constraint-
based procedure BOUND for discovering heap consumption
bounds. The procedure takes as parameters a program P , an in-
variant template map Inv

T , and a bound template map Bnd
T .

It returns either a valid bound map or an exception if no such
map can be found.

The template maps used by BOUND are reminiscent of
those used in constraint-based invariant generation [9], [31]
and rank function synthesis [27]. A template map assigns an
assertion over program variables and template parameters to
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procedure BOUND

input
P = (V, h, P,L, �init , T ): program
Inv

T : invariant template map
Bnd

T : bound template map
var

Q: template parameters in Inv
T and Bnd

T

Ψ: auxiliary constraint over Q
begin

Ψ := true

foreach � ∈ L do
Ψ := Ψ ∧ ∀V : Inv

T (�) → Bnd
T (�)

foreach (�, ρ, �′) ∈ T do
Ψ := Ψ ∧ ∀V ∀V ′ : (Inv

T (�) ∧ ρ) → Inv
T (�′)′

Q := free variables in Ψ
if exists M such that Ψ(M) then

return Bnd
T [M/Q]

else
raise “no bound found”

end
Fig. 4. BOUND discovers bounds on the value of the variable h, which keeps
track of the amount of dynamically allocated memory.

each program location. The template map Inv
T may use a

template of the form

α1v1 + ... + αnvn ≤ α ∧ β1v1 + ... + βnvn ≤ β ,

which is a conjunction of two linear inequalities with the
template parameters α1, ..., αn, α, β1, ..., βn, β and program
variables V = {v1, . . . , vn}.

The bound template map Bnd
T given to BOUND as input

assigns to each program location a bound template of the form

h ≤ δ1p1 + · · · + δmpm + δ ,

where δ1, . . . , δm, δ are template parameters and P =
{p1, . . . , pm} are generic parameters. Since Bnd

T only refers
to P and h, it guarantees to yield parametric bound invariants
only.

BOUND collects a conjunction of constraints Ψ over tem-
plate parameters for both template maps in lines 1–5. These
constraints encode the condition that the computed bounds
must be valid. Lines 2–3 state that the bounds hold for
all reachable states, which are represented by an invariant
map induced by the invariant template map Inv

T . Lines 4–5
encode the condition that Inv

T in fact represents all reachable
program states.

We collect all template parameters in line 6. If our constraint
solving procedure can find a satisfying assignment to Ψ, then
this assignment defines a bound map in line 8. Otherwise,
BOUND raises an exception.

The transition relations in the program P produced during
the shape analysis phase are conjunctions of linear inequalities
over V and V ′. For our templates consisting of linear inequali-
ties, we eliminate the universally quantification over V and V ′

in lines 3 and 5 of BOUND by applying a standard technique,
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see e.g. [9], based on Farkas’ lemma [12]. The resulting
constraint Ψ is a conjunction of non-linear inequalities and can
be efficiently solved using the existing tools, e.g. [15], [16]. We
implemented our algorithm in the ARMC model checker [28].

The soundness and completeness of BOUND is formalized
in the following theorem.

Theorem 1. The procedure BOUND is complete for bound
expressions in linear arithmetic provable using linear arith-
metic invariants, i.e., in this case it computes a bound map.
The procedure BOUND is also sound, i.e., it computes a bound
map that represents an upper bound on the memory usage.

Proof: (Sketch) We rely on the soundenes and com-
pleteness of the translation of the bounds synthesis problem
to constraint solving. The translation follows the classical
scheme applied for the synthesis of inductive invariants using
constraint solving.

Example. Consider the program in Fig. 3 over the variables n,
h, k, kb, and kc. The only generic parameter is the variable n.

We consider a template map Inv
T that assigns to each

program location a conjunction of two linear inequalities. For
example, for the location �7 we have

Inv
T (�7) : αnn + αhh + αkk + αkb

kb + αkc
kc ≤ α ∧

βnn + βhh + βkk + βkb
kb + βkc

kc ≤ β ∧

γnn + γhh + γkk + γkbkb + γkckc ≤ γ

The bound template at this location is

Bnd
T (�7) : h ≤ δnn + δ .

Next, BOUND creates a conjunction of constraints Ψ over
the template parameters from all program locations. We only
present two constraints from Ψ that are created at lines 3 and
5 for the location �7 and the loop transition at the location �7

respectively. The first constraint is the implication

∀n ∀h ∀k ∀kb ∀kc : Inv
T (�7) → Bnd

T (�7) .

The second constraint involves the transition relation of the
loop:

∀n ∀h ∀k ∀kb ∀kc ∀n′ ∀h′ ∀k′ ∀k′
b
∀k′

c
:

(Inv
T (�7) ∧

k < n ∧ n
′ = n ∧ h′ = h + 1 ∧ k

′ = k + 1 ∧

k
′
b

= kb + 1 ∧ k
′
c

= kc) →

Inv
T (�7)

′

We solve Ψ and obtain δn = 1 and δ = 0 for the bound
template parameters occurring in the location �7, i.e., we have

Bnd
T (�7) = (h ≤ n) .

The corresponding invariant map assigns h ≤ kb∧kb ≤ k∧h ≤
n to the location �7. In our example, the bound occurs in
the corresponding inductive invariant; in general, however, this
need not be the case.
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procedure INCBOUND

input
P = (V, h, P,L, �init , T ): program
Inv

T : invariant template map
Bnd

T : bound template map
var

Bnd : bound map
�err : distinguished error location
TE : transitions for bound assertion checking

function PATHPROGRAM

input
π : sequence of transitions

begin
return (V, h, P,L, �init ,

{τ | τ = (�, ρ, �′) occurs in π and �′ �= �err})
end;
begin

Bnd := λ� ∈ L.h ≤ 0
repeat
TE := {(�,¬Bnd(�) ∧ V ′ = V, �err) | � ∈ L}
if exists π ∈ (T ∪ TE)∗ from �init to �err

such that ρπ �= ∅ then
Pπ := PATHPROGRAM(π)
try

Bndπ := BOUND(Pπ, Inv
T , Bnd

T )
catch

return “unbounded consumption path π”
Bnd := λ� ∈ L.Bnd(�) ∨ Bndπ(�)

else
return “bound assertion map Bnd”

done
end

Fig. 5. INCBOUND performs an incremental boundedness analysis using
guidance from spurious counterexamples.

Incremental bounds analysis. The constraint-based proce-
dure BOUND performs an expensive computation—non-linear
constraint solving—and does not scale beyond medium-sized
programs. We improve the scalability of BOUND by per-
forming the boundedness analysis in an incremental fashion
using the idea of path invariants [2]. We apply the expensive,
constraint-based procedure only to certain program fragments,
which are determined automatically.

Fig. 5 presents our BOUND-based procedure INCBOUND

for an incremental discovery of heap consumption bounds
for the full program from its fragments. Initially, the bound
map states that no heap consumption takes place, see line 3.
Then, this claim is verified in lines 6–7 using a verification
tool for proving program safety. Such a tool is applied on
an augmented program that is obtained from P by adding a
distinguished error location �err that is reachable if the heap
bound claimed by Bnd is not valid. In the case of a false
bound, the algorithm will return a counterexample in the form
of a sequence of transitions π that leads to heap consumption
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beyond the claimed bound.
In case a counterexample π is found, we identify a fragment

of P that is traversed by the transitions occurring in π. This
code fragment is defined by a path program Pπ for π [2],
see lines 1–2. In particular, the path program Pπ traverses the
same loops of P that are visited by π.

We compute an adjustment Bndπ for the bound map by
applying the procedure BOUND on the path program, see
line 10. The adjustment is used to weaken the claimed bound,
see line 13.

This sequence of incremental adjustments continues until
either the full program P satisfies the claimed bound map or
a path that for which no heap consumption bound can be found
is discovered.

The soundness and completeness properties of INCBOUND

are inherited from the procedure BOUND and the notion of
path invariants.

Theorem 2. The procedure INCBOUND is complete for bound
expressions in linear arithmetic provable using linear arith-
metic invariants, i.e., in this case it computes a bound map
and terminates. The procedure INCBOUND is also sound, i.e.,
it computes a bound map that represents an upper bound on
the memory usage.

Proof: (Sketch) We rely on the fact that the computed
path programs grow by at least one transition at each iteration.
Once all program transitions appear in the path program,
Theorem 1 applies.

Example. Consider finding a bound for h in the program from
Fig. 3. In the algorithm from Fig. 5 we start with a candidate
bound h ≤ 0 at each location. We can then attempt to prove
that h ≤ 0 at every location using a symbolic model checker
(this corresponds to lines 5-7 of Fig. 5. In this case h ≤ 0 is
not necessarily true at location 7 in Fig. 3, in which case the
symbolic model checker will return a witness counterexample
path. Imagine that we get the path π = 4 → 7. In this case
PATHPROGRAM(π) will return a sub-program of Fig. 3, as
found in Fig. 6. We can then find a bound on this sub-program,
resulting in h ≤ n. Thus, we refine the candidate whole-
program bound to be h ≤ 0 ∨ h ≤ n. Repeating the steps
from lines 5-7 allows us to prove that h ≤ 0 ∨ h ≤ n is a
valid bound for the whole program. After simplification, we
return h ≤ n.

VI. ARRAY-BASED HEAP MANAGEMENT

Numerical boundedness analysis computes a bound on the
maximal amount of memory that is dynamically allocated
during program computation, and represents this bound as a
function of generic parameters. When synthesizing a hardware
implementation, the generic parameters are instantiated. Hence
we obtain a concrete bound, say N .

Next, we replace all heap operations in the program P by
operations on a statically allocated array a of size N . Each
pointer to the heap becomes an array index. Field accesses
are converted into arithmetic operations over array indices. For
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[n>0];
h=0; kb=0;

k=0;

[k>=n];
kc=kb;

[k<n];
k++;
kb++;
h++;

Fig. 6. Path program for the program from Fig. 3 and a path consisting of
transitions between the locations (�init , �4), (�4, �7), (�7, �7), and (�7, �13).

1 32 4 5 6 7 8 9
10 153 0 9... ... ... ...

ml

a
1 3 6 7 9
10 0 ... ... ...3

8
15 127

2 54

xelemprev

ml

a

Fig. 7. Creation of a new LINK structure in the array-based heap imple-
mentation.

example, the statement c = c->next; from the program in
Fig. 1 becomes c = a[c+4];, where the offset 4 is due to
the four byte size of an array cell.

We use a list of array indices that is embedded into the
array a to keep track of free array cells. Each list element is
an index of a free cell. We introduce a global variable m that
stores the head of the list, and hence the cell at index m is
free. Then, the value of a[m] is the next list element, which
is the index of the second free cell stored in the list. We obtain
the third element by accessing a[a[m]] and so on. Initially
m = 0 and the array a is initialized in the following way:

∀0 ≤ i < N : a[i] = i + 1 .

A call to malloc() consumes the head of the list. That
is, x = malloc() is implemented by the sequence of in-
structions x = m; m = a[m];, where the first assignment
delivers the free cell and the second assignment ensures that
the subsequent call to malloc will return the next free cell in
the list. We do not need to check whether the free list empty
because the boundedness analysis guarantees that it will never
happen, i.e., we have m ≤ N .

Fig. 7 illustrates the array-based treatment of malloc.
We assume that the heap stores data structure LINK, whose
size is two integers, and that each array cell is of size one
integer. The array on the left is free starting at the index 7,
as represented by the valuation m = 7, a[7] = 9, etc. After
executing x = malloc(2);, assigning x->data = 12;,
the cell at index 7 is no longer free. It stores the data value 12.
The next free cell becomes the first one available, i.e., we
have m = 9. After identifying the predecessor and successor
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of x, i.e., inserting x into the sorted heap, we obtain the array
show on the right in Fig. 7.

A call to free(x) pushes x onto the free list. That is, this
call translates to a pair of statements a[x] = m; m = x;.
The last freed cell will be the first free cell in the list of free
cells, i.e., the subsequent call to malloc will return the last
freed cell.

VII. EXPERIMENTAL RESULTS

In this section we discuss the results of our
experiments with the proposed synthesis procedure on
a number of real-world examples. The original input
C programs and the resulting outputs are available at
http://www.cs.cmu.edu/∼jsimsa/c2vhdl.tar. Before discussing
the outputs of our tool, we first describe the problems solved
by the C-based software models.

Priority queue – This is our running example from Figure 1.
The design has one input signal and one output signal. The
implementation repeatedly inputs n elements, sorts them, and
outputs them in a sorted order. For the sake of experimental
evaluation we chose n = 10.

Merge sort – This example implements a merger of two
sorted sequences. The design has two input signals and one
output signal. The implementation repeatedly receives n1

sorted elements through the first input signal and n2 sorted
elements through the second input signal. Using the merge
sort it combines the two sequences into one sorted sequence,
which is then output. For the sake of experimental evaluation
we chose n1 = 10 and n2 = 10.

Packet sorting – This example implements a simple network
element. The design has two input signals and one output
signal. The implementation repeatedly inputs packet data
through the first input signal and packet identifier through
the second input signal. It inserts these packets into a buffer
while ignoring duplicate identifiers, until it fills a buffer with
n packets. It then sorts the received packets by their identifier
and outputs them. For the sake of experimental evaluation we
chose n = 10.

Binary search tree dictionary – This example implements
a data structure for storing a set of elements with a test for
membership. The design has two input signals and one output
signal. The implementation repeatedly inputs n1 elements
through the first input signal and builds a binary search tree
out of them. This is followed by receiving n2 queries through
the second input signal and producing the correct response
through the output signal. For the sake of experimental
evaluation we chose n1 = 10 and n2 = 10.

Each of these models was succesfully run through the
sequence of procedures described in this paper: shape analysis,
bounds analysis, and array transformation.

Program Bound C LOC VHDL LOC Bound
synthesis time

merge 8 ∗ n1 + 8 ∗ n2 80 1927 600m
prio 8 ∗ n 56 1475 4s
packet 12 ∗ n + 8 95 2430 6s
bst dict 24 ∗ n1 142 2703 80s

TABLE I
COMPUTED BOUNDS AND LINES OF CODE.

Program ALUTs Registers Block Mem Blocks Speed
merge 5,157 4,694 8,192 2 90MHz
prio 5,859 4,598 4,096 1 83MHz
packet 9,413 9,158 8,192 2 76MHz
bst dict 5,786 5,660 8,192 2 125MHz

TABLE II
SYNTHESIS AND IMPLEMENTATION RESULTS.

Table I lists the symbolic bounds for our examples in
bytes.2 These symbolic bounds were then concretized using
the aforementioned values and run through our translation tool
which inputs a C program and a concrete bound and generates
a functionally equivalent VHDL program. Table I also lists
lines of code (LOC) for both the hand-written C models and
their automatically generated VHDL counterparts. The running
time ranges from minutes to hours depending on the example.

Our VHDL generation step is carefully crafted to work
well with FPGA synthesis tools. The generated VHDL files
were synthesized using the Altera Quartus II 9.0 tools (build
184 04/29/2009 SP1 SJ Web Edition) targeting Stratix III
FPGAs. The results are shown in Table II. The ALUT (Altera’s
adaptive look-up tables) column gives an indication of the
size of the combinational elements in the generated design.
The registers column indicates how many flip-flops in the
logic fabric were used for registers. The block mem column
indicates how many memory bits in the generated design
were implemented using embedded memory blocks and the
following column shows how many independent memories
were synthesized. The last column shows the maximum
speed. In all cases the tools automatically picked the smallest
EP3SL50F484C2 FPGA and package and the timing results
are given for this part.

Most of the synthesized circuits occupy only a small portion
of the smallest Stratix-III FPGA. The largest design is packet
which utilizes 25% of the combinational ALUTs but less than
1% of the available block memory and only 24% of the
available logic registers. The smallest design is prio which
occupies 15% of the available combinational ALUTs, 12% of
the available logic registers and less than 1% of the available
block memory. The operating frequency of these circuits is in a
range which is typical for FPGA circuits used as co-processing
circuits. We have tested several of our examples running on
a Cyclone II FPGA on the Altera DE2 board. For example,
the priority encoder circuit was synthesized, implemented
and run on the Altera Cyclone II EP2C35F672C6 FPGA

2The size of data types and structure alignment of a 32-bit architecture (e.g.
4-byte pointers) is assumed.
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(supporting 33,216 logic elements) and we have observed the
correct behavior on actual hardware using the SignalTap logic
analyzer. Our conclusion from these preliminary results is that
we have identified a viable approach for translating heap-based
C programs into VHDL designs which have acceptable area
utilization and performance.

Our bounds computation algorithm was able to compute
useful bounds. However, at the moment we do not have enough
experimental data to provide an thorough estimate for the
quality of bounds computation.

Examples of failure. Our approach for symbolic bounds
synthesis can fail in various ways. For example, the input
program might operate over DAGs (e.g. BDDs) or hash tables;
in which case, we would currently fail to produce an arithmetic
abstraction. Note that—even in the case of programs with
simple linked data structures—improving the scalability and
accuracy of shape analysis is an area of active research.
When we successfully generate arithmetic abstractions, our
constraint-based synthesis algorithm can also fail. The abstrac-
tion may be too coarse, or the problem may be too complex
(e.g. highly non-linear). Consider the case of a “watcher list”
for a literal � in a SAT solver, which tracks the clauses in the
clause database in which � appears. A bound on the size of
this list certainly exists, but our tool cannot work out what
this bound is.

VIII. CONCLUSION

C-to-gates synthesis aims to bring together the agility of
software development with the speed of raw gates. Until now,
C-to-gates synthesis systems were lacking support for non-
trivial dynamic allocation and deallocation on the heap, thus
limiting the wider applicability of these tools. This paper
has introduced a new method that synthesizes symbolic heap
bounds expressed on generic parameters. The method uses
computed shape invariants and abstractions together with a
constraint solving based approach to find a symbolic expres-
sion representing the bound. Our system facilitates the use
of common software abstractions and libraries (potentially
with no memory bounds) within C-to-gates synthesis systems.
Thus, designers can potentially use high-level abstractions (e.g.
dynamically allocated trees and lists) when designing circuits.
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