
Automatic linearizability proofs of concurrent objects
with cooperating updates ?

Cezara Drăgoi, Ashutosh Gupta, and Thomas Henzinger

Institute of Science and Technology Austria, Klosterneuburg

Abstract. An execution containing operations performing queries or updating a
concurrent object is linearizable w.r.t an abstract implementation (called specifi-
cation) iff for each operation, one can associate a point in time, called lineariza-
tion point, such that the execution of the operations in the order of their lineariza-
tion points can be reproduced by the specification. Finding linearization points
is particularly difficult when they do not belong to the operations’s actions. This
paper addresses this challenge by introducing a new technique for rewriting the
implementation of the concurrent object and its specification such that the new
implementation preserves all executions of the original one, and its linearizabil-
ity (w.r.t. the new specification) implies the linearizability of the original imple-
mentation (w.r.t. the original specification). The rewriting introduces additional
combined methods to obtain a library with a simpler linearizability proof, i.e., a
library whose operations contain their linearization points. We have implemented
this technique in a prototype, which has been successfully applied to examples
beyond the reach of current techniques, e.g., Stack Elimination and Fetch&Add.

1 Introduction

Linearizability is a standard correctness criterion for concurrent objects, which demands
that all concurrent executions of the object operations are equivalent to sequential exe-
cutions of some abstract implementation of the same object, called specification. In this
paper, we address the problem of automatically proving linearizability for concurrent
objects which store values from unbounded domains (such as counters and stacks of
integers) and are accessed by an unbounded number of threads.

Concurrent objects (data structures) are implemented in wide audience libraries
such as java.util.concurrent and Intel Threading Building Blocks. The search for
new algorithms for concurrent data structures that maximize the degree of parallelism
between the operations is an active research area. The algorithms have become increas-
ingly complex, which makes proving their linearizability more difficult. Automatic ver-
ification techniques are expected not only to confirm the manual correctness proofs
provided with the definition of the algorithms, but also to verify the various implemen-
tations of these algorithms in different programming languages.

Proving linearizability is a difficult problem because the configurations of the con-
current object and number of threads that access it are in general unbounded. An execu-
tion is linearizable if there exists a permutation of its call and return actions, preserving

? This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous Systems
Engineering) and by the ERC Advanced Grant QUAREM (Quantitative Reactive Modeling).



the order between non-overlapping operations, which corresponds to a sequential exe-
cution allowed by the specification. This is equivalent to choosing for each operation
an action between its call and return, called linearization point, such that the sequential
composition of all operations, in the order in which the linearization points appear in
the execution, belongs to the specification.

The techniques introduced in the literature for proving linearizability differ in the
degree of automation and the class of libraries that they can handle. The works in [13,
15] present semi-automatic techniques, where human guidance is required either to in-
teract with the theorem prover [15] or to carry out mathematical reasoning. The work
presented in [5] defines a class of concurrent objects for which linearizability is de-
cidable if the object is accessed by a bounded number of threads. More related to the
present paper, [2, 3, 17] present fully automatic techniques for proving linearizability
based on abstract interpretation. Usually, automatic techniques prove linearizability us-
ing an abstract analysis of the concurrent implementation simultaneously with the se-
quential implementation of the abstract object. The analysis choses for each concurrent
operation a linearization point. When the abstract execution reaches the linearization
point of an operation, its sequential implementation is executed (with the same input as
the concurrent one) and later, the returned values of the two operations are compared.

The concurrent objects which have been proven automatically linearizable by pre-
vious techniques have only operations with internal linearization points, i.e., when the
linearization point of each operation is one of its actions, for all executions. A notable
exception is [17], which lifts this restriction for operations whose specification doesn’t
update the abstract object. In this paper, we extend the state of art by introducing a
technique to deal with concurrent objects whose updating operations have external lin-
earization points. Several classical libraries such as [8, 9, 12, 16] fall into this category.

When all operations have internal linearization points, there is a correspondence
between an operation and its potential linearization points, which can be defined using
assertions over variables of that operation and additional prophecy or ghost variables.

Defining such a correspondence for operations with external linearization points,
i.e., the linearization point is an action of another, concurrently executing operation, is
more difficult. In this case, for each action s one has to identify all possible concurrently
executing operations whose linearization point could be s. Consequently, one needs an
assertion language that allows relating the local variables of the operation executing s
with the local variables of the threads executing the operations that have s as a lineariza-
tion point, which is difficult to define and reason about.

This paper introduces a new technique for rewriting the implementation L of a con-
current object and its specification S into a new implementation Ln with a new specifi-
cation S n, such that Ln preserves all executions of L , and the linearizability of Ln w.r.t.
S n implies the linearizability of L w.r.t. S . The aim of the rewriting is that all operations
of the new implementation contain their linearization points. Let us consider two oper-
ations o and a in execution e of L , such that a contains the linearization point of o. The
execution corresponding to e, obtained by rewriting L , does not have o and a; instead it
contains an operation of a new method, denoted o+a, which has the combined behav-
ior of a and o, namely, o+a has all the actions of o and a, in the same order in which
they occur in the original execution. The rewriting consists in (1) adding new combined



methods, which are interleavings of methods that have external linearization points and
methods that contain these linearization points, and (2) removing code fragments from
methods in the original implementation whose behaviors are captured by the new, com-
bined methods. The second step is crucial in order to eliminate operations with external
linearization points. The specification of a combined method is the non-deterministic
sequential composition of the method specifications whose interleaving it represents.

We have observed that an operation with external linearization points in concurrent
object implementations such as [8, 9, 12, 16] is included in a dependency cycle that
witness the non-serializability of the execution in which it appears. Instead of searching
for operations with external linearization points, we define an algorithm to compute an
under-approximation of the set of dependency cycles and then, constructs combined
methods whose executions correspond to interleavings that contain such cycles.

We reduce the problem of eliminating operations with external linearization points
to the problem of eliminating non-serializable executions that contain dependency cy-
cles. Concretely, the rewriting removes code fragments from the original implementa-
tion whose executions are included in the invocations of the combined methods. This
step is reduced to checking some invariants over the executions of the original library,
which are proven using a technique based on abstract interpretation [6] and counter
abstraction [7]. Note that all these steps are automatic.

The linearizability of the original library is implied by a stronger version of lin-
earizability for the new library, which restricts the possible choices for linearization
points, to an interval strictly included in the time span of an operation, i.e., the interval
of time between its call and return actions. Our technique rewrites operations having
linearization points in other, concurrently-executing operations that form a dependency
cycle identified by our algorithm. In our examples it eliminates all method invocations
with external linearization points, and this allows us to use existing techniques [17,
3] to prove the linearizability of the new implementation. A theoretical limitation of
our approach is that it cannot deal with unbounded sets of operations that update the
concurrent object and have the same linearization point. The rewriting procedure was
implemented in a prototype, which has been successfully applied to examples beyond
the reach of current techniques, e.g., Stack Elimination [9] and Fetch&Add [16].

In the following, Sec. 2 presents a motivating example; Sec. 3 characterizes execu-
tions with external linearization points; Sec. 4 defines the rewriting algorithm; Sec. 5
gives the correctness theorem for the rewriting and connects the linearizability of the
new library with the linearizability of the original one.

2 Motivating example

Example description: Let Ls be the library given in Fig. 1. It contains two methods,
push and pop, which implement Treiber’s concurrent stack extended with an elimina-
tion mechanism similar to the one used in the Elimination stack [9]. Each method is
described by a control-flow graph (CFG, for short), whose nodes denote atomic blocks.
We assume that each thread executes at most one operation, i.e., method instance.

The stack is implemented by a singly-linked list and S is a global pointer that points
to the top of stack. In order to increase the degree of parallelism in Treiber’s stack, which
is limited by the sequential access to S, the elimination mechanism in [9] allows pairs



push(e)

if(∗)

b0: e->n := S

b1: [e->n= S]
S := e

[e->n! =S]

b: [g= W]
g := C
g2 := e

[g! =W]

return true

pop()

if(∗)

a0: l := S;
if(l!=NULL)
S := l->n

a1: [g= F]
g := W

a2: [g= C]
g := F
l := g2

[g!=F]
a3: [g!=C]

g := F

return l

(a)

pushabs(e){
e->n := S
S := e
return true
}

popabs(){
l := S;
if(l!=NULL) S := l->n
return l
}

(b)

Fig. 1: (a) Treiber’s stack with an elimination mechanism. The formulas in square brack-
ets are assumes. Some code blocks are labelled for easy reference. (b) The specification
is defined from the abstract implementations pushabs and popabs of push and pop.

of overlapping instances of pop and push to exchange their values without accessing
S. Each method invocation non-deterministically chooses either to try to modify the
stack or apply the elimination mechanism. The elimination mechanism is implemented
as follows. If the value of g is W(ating), then there is an invocation of pop ready to
exchange values and waiting for a push. If the value of g is C(ollided), then a pair of
push and pop invocations is ready to exchange the value stored in g2. The exchange is
complete when pop sets the value of g back to F(ree) so that another elimination can
take place. The elimination mechanism is an example of cooperative update.

We define specifications with respect to abstract implementations of methods. The
abstract implementations of push and pop are given in Fig. 1(b). For any method op,
the abstract implementation opabs has the same arguments and return values. The spec-
ification Ss of Ls is the set of all sequential executions of the abstract implementations.
Linearizability: A (concurrent) execution e of a library L is linearizable w.r.t a speci-
fication S iff there is an execution s in S such that (1) for each operation in e there is an
operation in s with the same interface (same invocation parameters and same responses)
and (2) s preserves the order between non overlapping operations. The execution s is
called the linearization of e. The library L is linearizable w.r.t S if all its executions
are linearizable w.r.t S . Fig. 2(a) shows an execution of Ls consisting of one instance
of pop and two instances of push. Vertical dashed lines represent the context switches.
Two possible linearizations of this execution are given in Fig. 2(b1) and (b2).
Linearization points: Linearizability is often proved using the notion of linearization
point [11]. An execution e of L is linearizable w.r.t. S iff for each operation op in e,
one can choose an action of e located between the call and the return action of op,
called linearization point, such that: the sequential composition of the abstract imple-
mentations corresponding to the operations in e, in the order defined by the linearization
points, defines a linearization for e. The actions pointed to by dotted arrows in Fig. 2(a)
are the linearization points that lead to the linearization in Fig. 2(b1) (resp., Fig. 2(b2)).
The linearization points in Fig. 2 are called internal because they are actions of the
operations whose linearization point they represent. A non-internal linearization point
is called external. Proving automatically the linearizability of libraries with external
linearization points is beyond the scope of all existing techniques we are aware of, ex-
cept the work of Vafeiadis [17], which handles external linearization points but only for
methods with specifications that do not modify, but only read, the global data structure.



(a)

push(1) b0
push(2) b0 b1 ret T

pop() a0 ret 2

b1 ret T

pushabs(1) ret T, pushabs(2) ret T, popabs() ret 2
pushabs(2) ret T, popabs() ret 2,pushabs(1) ret T

(b1) (b2)
Fig. 2: A concurrent execution and two possible linearizations.

Rewriting libraries for dealing with external linearization points: Let us consider
the execution in Fig. 3, which consists of three operations pop(), push(1), and push(4)
(a method name is written with typewriter font and its operations are written in ital-
ics). pop() and push(1) execute the elimination mechanism while push(4) accesses the
stack. Note that the linearization point of pop() is external and it must be an action of
push(1). If we choose a1 as a linearization point for pop(), then there exists no sequen-
tial execution of the abstract implementations which exposes the same interface for all
operations (intuitively, pop() would have to return Empty). The same holds for all the
other actions of pop(). A linearization for this execution is given in Fig. 3(a). If an op-
eration contains the linearization point of another operation, e.g. push(1) contains the
linearization point of pop(), we say that the two instances share linearization points.

Our approach to proving linearizability of libraries with external linearization points
(e.g. Ls) is to rewrite the original library into a new library that has similar executions
but a simpler linearizability proof (if any) w.r.t. a new specification, obtained from the
specification of the original library.

If the new library is linearizable w.r.t the new specification, then
the original one is also linearizable w.r.t. its specification.

In the case of Ls, our rewriting will introduce a new method push+pop, that will re-
place the elimination mechanism in Ls. The execution of the new library corresponding
to the execution in Fig. 3(a) is given in Fig. 3(b). The operations pop() and push(1), that
exchange values via the elimination mechanism, have been rewritten into sub-sequences
of an instance of a new method push+pop(1). The time interval of push+pop(1) is the
union of the time intervals of pop() and push(1) and its interface is the union of the
interfaces of push(1) and pop(). The program instructions executed by push+pop(1)
are the same, and in the same order, as the ones in push(1) and pop(), except for call
and return instructions (the call and the return of push(1) have been replaced by
skip). The abstract implementation of push+pop corresponds to the sequential compo-
sition of pushabs and popabs. A linearization for the new execution is given in Fig. 3(b).
Notice that this linearization is defined using only internal linearization points.

The rewriting (1) adds new methods, called combined methods, that represent ex-
actly those interleavings between the operations with external linearization points and
the operations which contain these linearization points and (2) removes fragments of
code from the methods of the original library such that these interleavings are not pos-
sible anymore (they will be only instances of the combined methods). In the case of Ls,
to define the new library Ln

s , we create combined methods, called push+pop, whose in-
stances are interleavings of instances of pop and push that exchange values through the
elimination mechanism. Also, we modify the code of pop, respectively push, in order



(a)

pop() a1
push(1) b ret T

push(4) b0 b1 ret T

a2 ret 1

pushabs(1) ret T, popabs() ret 1, pushabs(4) ret T,

(b)

push+pop(1) a1 skip b skip
push(4) b0 b1 ret T

a2 ret 1

push+popabs(1) ret (T,1), pushabs(4) retT

Fig. 3: (a) An execution of Ls where pop has only external linearization points. (b) An
execution of Ln

s containing an invocation of the combined method push+pop.

to eliminate the instances executing the elimination mechanism. The specification of
the new library is defined as follows: (1) the abstract implementation of each combined
method is the non-deterministic sequential composition of the abstract implementations
of the methods whose interleavings it represents and (2) the abstract implementation of
the methods inherited from the original library remains the same. Fig. 5 shows one
combined method from Ln

s . Let S n
s denote the new specification of Ln

s .
In the case of Ls, the new library has no operations with external linearization points

and thus, its linearizability can be proved using the existing techniques.
Removing retry loops: The methods of a concurrent object often contain a retry loop,
i.e., a loop where each iteration tries to execute the effect of the operation and if it
fails it restarts forgetting any value computed in previous iterations. Given a library L
whose methods contain retry loops, one can define a new library L ′ by replacing every
retry loop while (Cond) {Loop body} with Loop body;assume false such that L is
linearizable iff L ′ is linearizable. In principle, one can use classical data flow analyses
in order to identify retry loops. In the following, we will consider concurrent objects
implementations without loops.

3 Executions with external linearization points

In this section, we present a connection between the existence of operations with only
external linearization points and serializability [14].

In an execution, a conflict is a pair of actions (program instructions) that access the
same shared memory location and at least one of them modifies its value (each double
arrow in Fig. 3 defines a conflict between its source and its destination). The dependency
graph of an execution, is an oriented graph whose nodes represent operations and whose
edges represent conflicts; the orientation is the order in which the actions in conflict ap-
pear in the execution. An execution is serializable (called also view-serializable) iff it
can be reordered into an execution that has an acyclic dependency graph 1, called seri-
alization, such that (1) the read actions read the same values as in the original execution
and (2) both executions have the same final state. The execution in Fig. 2(a) is serial-
izable but the execution in Fig. 3(a) is not serializable. A conflict between a read and a
write action such that the read follows the write in the execution is called a data-flow
dependency. A cycle in the dependency graph such that all of its edges define data-flow
dependencies is called a data-flow dependency cycle.

1 The classical definition requires that the execution be sequential (a sequential composition of
operations). However, any execution with an acyclic dependency graph can be reordered into a
sequential execution with the same final state and where the read actions read the same values.



We make the following empirical observation relating executions with external lin-
earization points and non-serializable executions:

If an execution contains two operations o and a s.t. the linearization point of
o can only be an action of a and the abstract implementation of o modifies the
logical state, then the execution is not serializable. Moreover, the two opera-
tions define a data-flow dependency cycle.

Intuitively, the dependency cycle between o and a arises because the two operations
communicate through global variables in both directions.
Communication from a to o: A linearization point can be thought of as the point
in time where the logical effect of the method takes place and consequently, the value
returned by a method should depend on the outcome of executing its linearization point.
The action of a, which is the linearization point of o, is usually a write on a shared
memory location, read later by o in order to determine its return value. In the execution
from Fig. 3(a), pop() returns the value written by push(1) in variable g2.
Communication from o to a: Since o has a specification that modifies the logical state,
o usually needs to communicate its intended modification to a via a shared memory
location. In our example, pop() assigns to g the value W in block a1 in order to announce
to push(1) that a pop is ready to exchange values.

In the following, we focus on data-flow dependency cycles s.t. any reordering of
their actions does not lead to an execution of the library where they are not present
anymore. These cycles were sufficient for all examples we have found in the literature.

4 Rewriting algorithm

In this section, we describe the algorithm we propose for rewriting implementations of
concurrent objects. The new implementations preserve all the behaviours of the origi-
nal ones but, their executions contain fewer data-flow dependency cycles. To describe
executions with data-flow dependency cycles we introduce a first order logic called CL.

Let L be a library and S its specification. Let [[L ]] denote the set of executions of L .
The rewriting algorithm computes a library Ln and a specification S n in several steps:

(1) Compute a set of formulas Λ[L ] in CL, where each formula in Λ[L ] has a model
in [[L ]] that has at least one data-flow dependency cycle (see Sec. 4.2).

(2) Ln is the union of L and a set of combined methods defined using the formulas in
Λ[L ]. Any execution that contains an instance of a combined method corresponds to an
execution in [[L ]], that satisfies some formula in Λ[L ]. The abstract implementation of
each combined method is the non-deterministic sequential composition of the abstract
implementations of the methods whose interleavings it represents (see Sec. 4.3).

(3) The methods of Ln, that are copied from L , are modified by removing CFG
paths that are executed only in operations whose behaviour is captured by one of the
combined methods. The goal of this step is to make the formulas in Λ[L ] unsatisfiable
over the executions of Ln (see Sec. 4.4).

Note that Λ[L ] captures a subset of the data-flow dependency cycles in [[L ]]. Indeed,
if more cycles are captured by Λ[L ], then our rewriting will be more effective. For
simplicity, the second and the third step of the algorithm are explained only for the
case when Λ[L ] is a singleton. Note that the rewriting detects and removes only sets of
data-flow dependency cycles of finite length.



4.1 Logical representations for data-flow dependencies

The number of data-flow dependency cycles occurring in the executions of a library is
potentially infinite. Therefore, we define a symbolic representation for sets of data-flow
dependencies by formulas in a logic called Conflict-cycles logic (CL, for short). This
logic is parametrized by a library L .

Formulas in CL define a partial order between pairs of conflicting actions and rela-
tions between the local states of the operations whose actions are in conflict. The vari-
ables of CL are interpreted over operations of L . A model of a formula is an execution
together with an interpretation of its variables to operations in this execution.

Let v, v1, . . ., vn denote variables of CL interpreted as operations. CL contains the
following predicates and formulas:

− v.a is a unary predicate, which holds iff in the considered execution, v interprets
into an operation that executes the statement at control location a;
− v1.a < v2.b is a binary predicate, which holds iff in the considered execution, the

operation denoted by v1 executes the statement at control location a before the operation
denoted by v2 executes the statement at control location b (we recall that, since we
consider only loop-free methods, a location is reached only once by an operation);

− v.a→ Bool Expr(v,v1, . . . ,vn,g), is true iff the state in which v reached the
control location a satisfies the boolean expression Bool Expr(v,v1, . . . ,vn,g), where
Bool Expr(v,v1, . . . ,vn,g) is build over the global variables g of L and the local vari-
ables of the threads executing v,v1, . . . ,vn.

CL formulas are conjunctions of the above predicates and formulas. For readability,
the suffix of a variable name is a method name. Such a variable is interpreted only as an
instance of that method, e.g., vpop is interpreted only as an instance of pop. The multiset
of methods in ϕ, denoted by Op(ϕ), consists of all methods whose instances are denoted
by variables of ϕ. An execution e satisfies ϕ iff there is a mapping from the variables
of ϕ to operations in e such that ϕ holds. L satisfies ϕ iff there is an execution of L
that satisfies ϕ. A formula ϕ containing the atoms v0.a0 < v1.a1,. . .,vn−1.an−1 < vn.an
describes a dependency cycle if v0 = vn and there is i ∈ 0..n s.t. vi 6= v0. A model of
such a formula ϕ has a data-flow dependency cycle if for each i ∈ 1..n the actions
corresponding to vi−1.ai−1 and vi.ai form a data flow dependency.

Example 1. The formula ϕL = vpop.a1 < upush.b < vpop.a2 describes a dependency
cycle. The execution in Fig. 3 is a model for ϕL where, vpop and upush are interpreted
into pop() and push(1) respectively. The model has a data-flow dependency cycle, since
(pop().a1, push(1).b) and (push(1).b, pop().a2) are data flow dependencies.

4.2 Under-approximation of data-flow dependency cycles

To populate Λ[L ], we search for executions containing finitely many concurrent op-
erations that form a data-flow dependency cycle such that if one of the operations is
removed from the interleaving, then the rest of them do not terminate.

We present an algorithm that given a library L , computes an under-approximation
of the data-flow dependency cycles exposed by executions of L . It is parametrized by
two sequential analyses: an abstract reachability analysis and a may-alias 2 analysis. To

2 An analysis that determines if two variables may point to the same memory location.



this, we define a recursive procedure get cycle(l,op,k) that receives as input a control
location l from some method op of L and an integer k and returns a CL formula that
represents data-flow dependency cycles of length at most k containing operations of op.
This procedure works as follows:

get cycle(ret,pop,2)
/*1*/ a2 is unreachable
/*2*/ Wr = {b : g :=C}
/*3*/ ϕ′ = get cycle(b,push,1)

/*1*/ b is unreachable
/*2*/ Wr = {a1 : g :=W}
/*3*/ ϕ′ = get cycle(a1,pop,0)

/*1*/ a1 is reachable
/*2*/ return true

/*4*/ found interleaving: pop.a1;push.b
/*5*/ return ϕ′∧ vpop.a1 < upush.b

/*3*/ Op(ϕ′) = {push,pop}
/*4*/ found interleaving:pop.a1;push.b;pop.a2
/*5*/ return vpop.a1 < upush.b < vpop.a2

Fig. 4: A run of get cycle for computing
data-flow dependency cycles in Ls

(1) If l is reachable under the sequen-
tial analysis, following any of the paths
in the CFG of op starting from the ini-
tial state of the library, denoted by S0, then
get cycle returns true.

(2) Otherwise, let a be the first con-
trol location of an assume statement (on
a path to l), which is infeasible. Using the
may-alias analysis, get cycle identifies a
set of assignments Wr (in op or in other
methods of L) that may modify the vari-
ables in the assume statement.

(3) Choose an assignment in Wr
at control location b of some method
op′ and, if k > 0 then recursively call
get cycle on b; otherwise return f alse. Let
ϕ′ be the formula returned by the recursive call.

(4) Search for an interleaving between (i) a path of op from its entry node to l,
containing the failing assume, (ii) an interleaving of methods in Op(ϕ′)∪{op′} s.t.

- the assignment of op′ appears immediately before the assume of op,
- the interleaving of methods in Op(ϕ′) satisfies the ordering constraints in ϕ′,
- the assume of op is reachable (from S0, under the considered reachability analysis).

If there is no such interleaving then, get cycle returns false. If op ∈ Op(ϕ′) then,
get cycle begins by searching for an interleaving that contains only the methods in
Op(ϕ′) and satisfies all these constraints (this corresponds to the fact that an instance
of op needed to make the assignment at b reachable is the same as the instance of op
for which we want to prove that l is reachable). This is needed in order to complete a
data-flow dependency cycle between the methods in Op(ϕ).

(5) If the control location l is reachable under the interleaving computed at (4)
then, get cycle returns ϕ′ ∧ (vop′.b < vop.a)∧ (vop′.b→ ψ), where ψ expresses the
aliasing relating the variable assigned at b and the variables of the assume statement at
a. Otherwise, it considers the next failing assume between a and l and goes to step 1.

Let Λ[L ] be the union of the formulas generated by calling get cycle(ret,op,k) for
each method op in L , where ret denotes the return control location of op. To increase the
precision, if Λ[L ] contains two formulas ϕ1(va,vc) and ϕ2(vb,vc) such that the actions
of the method c appearing in both formulas lie on a common path in the CFG of c,
we add ϕ(va,vb,vc) ::= ϕ1(va,vc)∧ϕ2(vb,vc) to Λ[L ] (va,vb,vc are operations of the
methods a, b, and c, respectively). This is necessary because the two formulas might
describe two data-flow dependency cycles that share a method instance. Any execution
satisfying a formula in Λ[L ] contains data flow dependency cycles of length at most k.
In Fig. 4, we present a run of get cycle that returns ϕL = vpop.a1< upush.b< vpop.a2.



push(e)

if(∗)

b0:e->n := S

b1:[e->n= S]
S := e

[e->n! =S]
[false]

[g! =W]
[false]

return true

pop()

if(∗)

a0: l := S;
if(l!=NULL)
S := l->n

a1: [g= F]
g := W

[g!=F]
[false]

[g!=C]
g := F
[false]

return l

push+pop(e) skip cpushpc

a1: [g= F]
g := W

b: [g= W]
g := C
g2 := e

skip

rpushpc

a2: [g= C]
g := F
l := g2

return l

Fig. 5: Methods from the library Ln
s obtained by rewriting the library Ls in Fig. 1

4.3 Adding combined methods

Let ϕ be a formula in Λ[L ] characterizing instances of a set of methods op1, ...,opn.
We add to the new library a set of combined methods, denoted Combined(ϕ), which
consists of all the interleavings between op1, ...,opn, that satisfy the ordering constraints
in ϕ, instrumented by a set of assume statements that impose the relations between local
variables expressed in ϕ. For each new method, all the call actions except for the first
one and all the return actions except for the last one are replaced by skip. Also, all
the accesses to the id of the thread that executes opi, i ∈ 1..n, are replaced by accesses
to a new local variable tidi added to the combined method, which is initialized with a
unique and random integer. The number of methods in Combined(ϕ) equals the number
of total orders over the statements in op1, ...,opn that access the global variables, which
are consistent with the partial order defined by ϕ.

The input (resp., output) parameters of all methods in Combined(ϕ) are the union
of the input (resp., output) parameters of op1, ...,opn. The abstract implementation of
each combined method is a non-deterministic choice between all orders in which one
can compose the abstract implementations of op1, ...,opn.
Example 2. In Fig. 5, we show the only method push+pop in Combined(ϕL), where
ϕL is given in Ex. 1; the atomic blocks accessing global variables are totally ordered.

4.4 Removing code fragments from the original methods

The library obtained by adding combined methods still has executions with data-flow
dependency cycles described by formulas in Λ[L ]. One needs to modify the code of the
methods copied from L s.t. they do not generate instances satisfying formulas in Λ[L ].

For simplicity, let us consider the case when Λ[L ] contains only a formula ϕ. For any
control location l in ϕ, Pref [ϕ, l](vop, I) denotes the formula that describes the prefix
of the interleavings characterized by ϕ, which end in l; vop denotes the free variable
of Pref [ϕ, l] that is interpreted as the instance reaching l and I denotes all the other
free variables. Pref [ϕ, l](vop, I) contains all the predicates that constrain (local states
at) control locations which are less than l in the partial order defined by the ordering
constraints in ϕ and the program order.
Example 3. Let us consider the formula ϕL computed in Fig. 4 and the action associated
with the atomic block b. Then, Pref [ϕL ,b](vpush,vpop) = vpop.a1 < vpush.b, where
vpush and vpop denote an instance of the push, respectively pop, method. Note that



pop() a1
push(1) b ret T

a2 ret 1
pop() a1

push(2) b

pop() a1
push(1) b ret T

a2 ret 1
push(2) b

(a) (b)

Fig. 6: (a) An execution of Ls. (b) An execution that contains actions from push and pop
but is not an execution of Ls. Both executions are models of Pref [ϕL ,b](vpush,vpop)
(double arrows emphasize the order relation between b and a1).

Pref [ϕL ,b](vpush,vpop) captures only one direction of the communication between
push and pop. Also, Pref [ϕL ,a2](vpush,vpop) = ϕL .

The original methods in L are modified by removing statements located at con-
trol locations appearing in ϕ. We remove those statements that are executed only in
instances which can be generated by the combined methods. A control location l is re-
moved from the CFG of the method op if the CFG contains a unique path starting in
l and all the executions of L satisfy two invariants Inv1(l,ϕ) and Inv2(l,ϕ), defined in
the following. We begin by explaining them on our running example.

In the continuation of Ex. 2, suppose that we want to eliminate the control location b
from push. Intuitively, the invariant Inv1(b,ϕL) states that, an instance of push reaches
b iff there is an instance of pop that is ready to exchange values with the considered
instance of push. Formally, in any execution, for any instance of push that reaches b
there is a pop instance that reaches a1, which is expressed by the following formula:

∀vpush ∃vpop. vpush.b→ vpop.a1 < vpush.b (1)

Intuitively, Inv2(b,ϕL) states that a pop exchanges values with at most one push;
that is, in any execution, if there are two distinct instances of push that reach the atomic
block b, then there are two distinct instances of pop such that each of them sends its job
to a different push instance (when reaching a1). Formally, for any two distinct instances
of push, denoted by vpush, vpush′, there are two distinct instances of pop, denoted by
vpop, vpop′, such that Pref [ϕL ,b](vpush,vpop)∧Pref [ϕL ,b](vpush′,vpop′) holds:

∀vpush,vpush′ ∃vpop,vpop′.
(
vpush 6= vpush′∧ vpush.b∧ vpush′.b

)
→(

vpop 6= vpop′∧ vpop.a1 < vpush.b∧ vpop′.a1 < vpush′.b
)

Any execution that satisfies these two properties can be rewritten such that any pair
of instances of push and pop as above (reaching b and a1, respectively) becomes an
instance of some method push+pop. The execution in Fig. 6(a) satisfies both invariants
while the execution in Fig. 6(b) satisfies only the first one.

These two invariants, together with the ones describing the conditions under which
a2 can be eliminated, state that one instance of push exchanges values with exactly
one instance of pop. The code of push and pop in the new library is given in Fig. 5.
The methods have the same names, but the atomic blocks b and a2 have been removed.
Notice that, one cannot remove a1 because a1 has two successors. The algorithm has to
preserve those instances where a3 is reached from a1.

A control location l is removed from the CFG of a method op of L iff its CFG con-
tains a unique path starting in l and all executions of L satisfy the following invariants:



Inv1(l,ϕ): any instance of op ending in l is a sub-sequence of an instance of one
of the combined methods generated using ϕ. Since the combined methods are defined
from L and ϕ, this invariant over the executions of L can be expressed as follows:

∀vop ∃I. vop.l→ Pref [ϕ, l](vop, I)

i.e., for every instance vop of op there exist other method instances, denoted by I, such
that if vop reaches the control location l, then the interleaving between vop and I is a
prefix of one of the interleavings defined by ϕ;

Inv2(l,ϕ): in any execution, each instance of op ending in l is a sub-sequence of a
different instance of a combined method generated using ϕ:

∀vop,vop′ ∃I ∃I′.
(

vop 6= vop′ ∧
vop.l∧ vop′.l

)
→

(∧
x∈I,y∈I′ x 6= y ∧

Pref [ϕ, l](vop, I)∧Pref [ϕ, l](vop′, I′)

)
To understand this invariant, suppose that it is not true and there exists a method

instance that reaches l which is part of two distinct models of Pref [ϕ, l]. Note that it is
not possible to represent these two models by two instances of a combined method (this
holds because the instance that reaches l should be included in both).

Given a formula ϕ ∈ Λ[L ], if none of the control locations l that appear in ϕ were
removed from the code of the original methods, then all the methods in Combined(ϕ)
are removed from the new library.

4.5 Invariant checking

The invariants are proved automatically using a variation of the thread modular rely-
guarantee analysis [10] over the concurrent system defined by the most general client
of the library L . The rely-guarantee analysis selects a statement of an arbitrary thread
and executes it to generate environment transitions. The latter are obtained by exis-
tentially quantifying all local variables from the relation describing the effect of the
selected statement. The environment transitions are subsequently applied to discover
new transitions, until a fixed-point is reached.

For each invariant, our analysis needs to show that a given block of code executes
only in a certain concurrent context. To compute a precise-enough over-approximation
of the concurrent system, the analysis keeps a number of explicit copies of threads,
called reference threads. All the other threads are called environment threads. The local
states of the environment threads are described using a set of counters, each of them
associated with a predicate over the local variables of an environment thread and the
reference threads. These counters keep the number of environment threads that satisfy a
certain predicate (over their local/global variables). The environment transitions refer to
local variables of reference threads, global variables, and counters. Abstract states and
environment transitions are represented by elements of a product between the abstract
domains in [4] and a finite abstract domain {0,1,+∞} describing the counters values.

The number of reference threads depends on the invariant, i.e., it is equal to the num-
ber of universally quantified variables in the invariant. The predicates are also derived
from the invariant. For each invariant inv, we associate (1) a predicate PC=l, for each
control location l such that vop.l appears in inv and vop is existentially quantified, (this
predicate holds iff the thread is at l) and (2) a predicate P, for each v.a→ P an atomic



e1 ::= g′ = g∧ (ls(S,NULL)∗S′ 7→ S)∧ c′ = c
e2 ::= g′ = g∧ (ls(S′,NULL)∗S 7→ S′)∧ c′ = c
e3 ::= g= F∧g′ = W∧g2= g2′ = NULL∧Eq(S,S′)∧ c′ = c+1
e4 ::= g= C∧g′ = F∧g2 6= NULL∧g2′ = NULL∧

Eq(S,S′)∧ c > 0∧ c′ = c−1
e5 ::= g= W∧g′ = F∧Eq(S,S′)∧ c > 0∧ c′ = c−1
e6 ::= g= W∧g′ = C∧g2= NULL∧g2′ 6= NULL∧

Eq(S,S′)∧ c′ = c
Env = {e1,e2,e3,e4,e5,e6}

g= F∧PCpush = init∧
c = 0∧S= NULL

g= F∧PCpush = init∧
c = 0∧ls(S,NULL)∧
S 6= NULL

{e1,e2}∗

g= W∧PCpush = init∧
c = 1∧ls(S,NULL)

e3 e5

g= C∧PCpush = init∧
c = 1∧ls(S,NULL)

e6

e4

g= C∧PCpush = b∧
c = 1∧ls(S,NULL) b

...(a) (b)

Fig. 7: (a) Abstraction of the concurrent system analyzed to prove inv1: e1 and e2 are
the actions corresponding to pushing and popping an element in a stack, respectively;
e3,e4,e5,e6 are the transitions over-approximating the elimination mechanism. (b) A
part of abstract reachability graph with a reference thread executing push.

formula in inv such that v is existentially quantified (the local variables of the universal
instance variables are substituted by the local variables of the reference threads).

Example 4. To prove Inv1(b,ϕL) in (1), we need to count how many threads are at
the control location reached after executing a1. Let c be a counter associated with the
predicate PC=a1. Fig. 7(a) presents the set of environment transitions Env computed
by our rely-guarantee analysis for Ls with counter c and one reference thread executing
push (they are represented by formulas in Separation Logic containing, as usual, primed
and unprimed variables). The predicate ls(S,NULL) denotes a singly linked list starting
at S and ending in NULL, S 7→ S′ states that the field next of S points to the memory cell
pointed to by S′; the macro Eq(S,S′) is used to say that the memory region reached from
S did not changed. In Fig. 7(b), we present a part of the reachability graph obtained by
executing Env in parallel with the reference thread executing push. On this reachability
graph, we check that whenever the atomic block b is executed by the reference thread,
the value of the counter c is greater or equal to one. Since c = 1, there is exactly one
thread that executed the atomic block a1 from pop, so Inv1(b,ϕL) holds.

5 Correctness of the rewriting algorithm

In this section, we show the relation between the linearizability of the original library
and the linearizability of the library obtained by applying the rewriting algorithm.

First, we show that the library Ln, obtained by applying the rewriting algorithm on
the library L , preserves the behaviors of the original library, and that the specification
S n contains only sequential executions that are allowed by S . That is, (i) every execution
e of L can be rewritten into an execution e′ of Ln s.t. interleavings of operations from e,
which define sets of data-flow dependency cycles, are transformed in e′ into instances
of combined methods and (ii) every s′ ∈ S n is the rewriting of exactly one s ∈ S .

Formally, an execution e∈ [[L ]] is similar to e′ ∈ [[Ln]], denoted by e∼ e′, iff there is
a function that transforms e into e′ s.t. (1) there is a total function π between the threads
of e′ and sets of threads of e, (2) for each state and thread t of e′, the set of thread-
local states in π(t) is aggregated into one thread-local state of t (the thread id’s of π(t)
become local variables in the new state) and (3) the transformation preserves all actions



of e, in the order they occur in e, except for some call and return actions, that are
associated to skip actions. The first item states that for any execution e of the original
library L there exists an execution e′ of the new library Ln s.t. e ∼ e′. This is denoted
by [[L ]] ⊆∼ [[Ln. The second item states that, for any s′ ∈ S n, there exists exactly one
s ∈ S s.t. s′ ∼−1 s, where ∼−1 is the inverse of ∼. This is denoted by S n ⊆!

∼−1 S .
Example 5. The execution e given in Fig. 3(a) is similar to the execution e′ given in
Fig. 3(b), i.e., e∼ e′. Also, the linearization s in Fig. 3(a) is similar to the linearization
s′ in Fig. 3(b), i.e., s′ ∼−1 s.

Theorem 1. Let Ln and S n be the output of the rewriting algorithm for the input library
L and its specification S . Then,

[[L ]]⊆∼ [[Ln]] and S n ⊆!
∼−1 S .

Theorem 1 follows from the following lemma, which states the necessary conditions
for removing statements from the CFG of a method in L .

Lemma 1. Let L be a library, ϕ a CL formula, and l a control location in a method
op of L such that there is a unique path in the CFG starting from l. If Inv1(l,ϕ) and
Inv2(l,ϕ) hold for all executions of the most general client of L , then any execution e
in [[L ]] is similar to an execution e′ in [[Ln]] such that all the operations from e reaching
l correspond in e′ to sub-sequences of instances of methods in Combined(ϕ).

We introduce a stronger version of linearizability, called R-linearizability, and show
that the R-linearizability of the new library Ln, generated by the rewriting algorithm,
w.r.t. S n implies the linearizability of the original library L w.r.t. S . One needs to prove
the R-linearizability of the new library, instead of classical linearizability, because the
induced rewriting on executions forgets ordering constraints between non-overlapping
operations, more precisely, between pairs of operations such that at least one of them is
rewritten (together with other operations) into a combined operation.

For example, let e′ be the execution from Fig. 3(b) of the concurrent stack Ln
s given

in Fig. 5. Because the instances of push+ pop and push are overlapping, e′ has two
correct linearizations w.r.t. S n

s , i.e.,
s′1 = push+ pop(1)ret(1) push(4) ret(T ) and s′2 = push(4) ret(T ) push+ pop(1)ret(1).

The only executions similar to s′1 and s′2 in the specification S (see Th. 1) are
s1 = push(1)ret(T )pop()ret(1)push(4) ret(T ), s2 = push(4) ret(T )push(1)ret(T )pop()ret(1),

respectively. We recall that the execution e in Fig. 3(a) is similar to e′. Notice that, the
classical linearizability of e′ is not sufficient to imply the linearizability of e, because
not every linearization of e′ leads to a linearization of e. For example, s2, which is
similar to s′2 is not a correct linearization of e because the two operations of push in e
are non-overlapping and the order between them is not respected by s2.

To overcome this problem, the rewriting distinguishes for each combined method
op two control locations: coppc is the skip statement replacing the last call action
and roppc is the skip statement replacing the first return action in the interleaving
represented by op (Fig. 5 distinguishes the control locations coppc and roppc for the
method push+ pop). For the methods inherited from the original library, coppc and
roppc are the locations of their call and return actions. Then, instead of showing the
linearizability of Ln w.r.t. S n, we show that for any execution e′ in [[Ln]] there exists a



sequential execution s′ in S n s.t. 1) for each operation in e′ there is an operation in s′ with
the same interface and (2) s′ preserves the order between non overlapping sequences of
actions of the same method starting at coppc and ending at roppc.

Formally, let L be a library and Rcp a mapping that associates to each method op of
L two distinguished statements which are not on a loop, denoted coppc and roppc. An
execution e of L is R-linearizable w.r.t. S and Rcp iff e is linearizable w.r.t S and for
each invocation op of op in e, one can choose a linearization point located between the
execution of the actions associated with coppc and roppc. The sequential execution in S
corresponding to this sequence of linearization points is called the R-linearization of e.
When Rcp contains only the call and return actions of each method, R-linearizability
coincides with the classical definition of linearizability. The rewriting algorithm iden-
tifies a mapping Rcp for the new library such that for any execution e of L , if the
execution e′ in [[Ln]] to which it is similar, i.e., e∼ e′, is R-linearizable, i.e. there exists
s′ an R-linearization of e′, then any s ∈ S such that s∼ s′ is a correct linearization of e.

For example, the R-linearization of the execution e′ in Fig. 3(b) w.r.t. the mapping
Rcp defined as above is s′1. Thus, s1 is a linearization of the execution e in Fig. 3(a).

Theorem 2. Let Ln and S n be the library, resp. the specification, obtained by rewriting
a library L and its specification S . The R-linearizability of Ln w.r.t. S n and the mapping
Rcp defined by the rewriting algorithm implies the linearizability of L w.r.t. S .

6 Experimental results
The crucial steps of the rewriting, generating the set of formulas Λ[L ] representing
dependency cycles and checking the invariants in Sec. 4.4, are implemented into a pro-
totype tool, which is based on the abstract domain in [1]. Table 1 presents a summary
of the obtained results 3. For each of the considered libraries, #opL , resp. #opLn , is the
number of methods in the original library, resp. the new library, #cycles is the number
of cycles discovered by get cycle, #pcycles is the number of cycles, among the ones
discovered by get cycle, for which the abstract concurrent analysis proved the required
invariants, and #pc is the number of control points removed from the original methods.

The implementation of Fetch&Add allows an unbounded number of operations to
have the same linearization point. We have analyzed a modified version of this im-
plementation, that introduces a bound on the number of operations whose task can be
performed by the same concurrently executing operation. Similarly, the implementa-
tions based on “flat combining” [8] are tractable by our method if we bound the number
of threads that make public the signature of their updates in a given time interval. This
restriction is natural when implementing concurrent objects in a real programing lan-
guage because otherwise, the library has runs without progress on the data structure.

All the libraries we obtained after the rewriting are R-linearizable. Furthermore,
all their methods have internal linearization points (e.g., the action associated with
b is the linearization point of push+pop in Fig. 5), which allows us to prove their
R-linearizability using existing techniques, e.g., [3, 17]. The only exception is Queue
Elimination [12] which is not R-linearizable. However, the library obtained by rewriting
Queue Elimination is linearizable and this implies the linearizability of the original
library because of some closure properties of the queue specification.

3 More details are available at http://pub.ist.ac.at/˜cezarad/lin2lin.html



Table 1: Experimental results on an Intel Core i3 2.4 GHz with 2GB of memory.

library size of L get cycle inv check size of Ln

L #op k #cycles time(sec) #pcycles time(sec) #pc #op
Simple Stack Elim. 2 2 1 <1 1 <1 2 3

Stack Elim. 1 2 2 <3 2 <3 6 8
Modified Stack Elim. 2 2 2 <3 2 <3 6 9

Fetch&Add 1 3 4 <3 4 <4 3 8

References

1. CINV. http://www.liafa.univ-paris-diderot.fr/cinv/.
2. Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Comparison

under abstraction for verifying linearizability. In Proc. of CAV, volume 4590 of LNCS, pages
477–490, 2007.

3. Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv. Thread
quantification for concurrent shape analysis. In Proc. of CAV, volume 5123 of LNCS, pages
399–413, 2008.

4. Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. On inter-
procedural analysis of programs with lists and data. In Proc. of PLDI, pages 578–589, 2011.

5. Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur.
Model checking of linearizability of concurrent list implementations. In Proc. of CAV, vol-
ume 6174 of LNCS, pages 465–479, 2010.

6. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. of POPL, pages
238–252, 1977.

7. Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

8. Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proc. of SPAA, pages 355–364, 2010.

9. Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
Proc. of SPAA, pages 206–215, 2004.

10. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-modular
abstraction refinement. In Proc. of CAV, pages 262–274, 2003.

11. Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

12. Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination to implement
scalable and lock-free fifo queues. In Proc. of SPAA, pages 253–262, 2005.

13. Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. Verify-
ing linearizability with hindsight. In Proc. of PODC, pages 85–94, 2010.

14. Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, 1979.

15. Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to prove algorithms linearis-
able. In Proc. of CAV, volume 7358 of LNCS, pages 243–259, 2012.

16. Nir Shavit and Asaph Zemach. Combining funnels: A dynamic approach to software com-
bining. J. Parallel Distrib. Comput., 60(11), 2000.

17. Viktor Vafeiadis. Automatically proving linearizability. In Proc. of CAV, volume 6174 of
LNCS, pages 450–464, 2010.


