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Abstract. Continuous-time Markov chains (CTMC) with their rich the-
ory and efficient simulation algorithms have been successfully used in
modeling stochastic processes in diverse areas such as computer science,
physics, and biology. However, systems that comprise non-instantaneous
events cannot be accurately and efficiently modeled with CTMCs. In
this paper we define delayed CTMCs, an extension of CTMCs that al-
lows for the specification of a lower bound on the time interval between
an event’s initiation and its completion, and we propose an algorithm for
the computation of their behavior. Our algorithm effectively decomposes
the computation into two stages: a pure CTMC governs event initiations
while a deterministic process guarantees lower bounds on event comple-
tion times. Furthermore, from the nature of delayed CTMCs, we obtain
a parallelized version of our algorithm. We use our formalism to model
genetic regulatory circuits (biological systems where delayed events are
common) and report on the results of our numerical algorithm as run
on a cluster. We compare performance and accuracy of our results with
results obtained by using pure CTMCs.

1 Introduction

Due to the Brownian motion of molecules inside cells, biological systems are
inherently stochastic. The stochastic effects are negligible when all species are
present in large numbers, but can be significant when some of the species are
present only in low numbers. In particular, when modeling genetic regulatory
circuits (GRCs), where different molecules (such as DNA) are present in low
numbers, one needs to take stochasticity into account. Indeed, systems biology
has been shifting its focus from deterministic models that capture the mean
behavior of GRCs to stochastic models that capture their stochastic behavior [9].

One of the most general modes of gene regulation is self-regulation in the
form of a negative feedback loop [19], where a DNA molecule encodes a repressor
protein R with which it interacts according to the following reactions:

DNA - DNA+R, R— 0, DNA+R — DNAR, DNAR — DNA+R,
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Fig. 1. Probability distribution of the levels of repressor protein over time in three
different models of the negative feedback loop. (a) an overshoot is observed in the
delayed CTMC model; (b) steady state is reached rapidly in the immediate CTMC; (c)
the model is intractable in the cascade CTMC and thus we present only the distribution
up to time 7.2s.

that correspond to the production, degradation, binding, and unbinding of pro-
tein. Due to biological aspects, the production of proteins behaves as a process
with high latency and high throughput. Therefore, if at time ¢t = 0 the system
contains a single DNA molecule, the production of a large number of proteins
is initiated because, before the completion of any of the protein production pro-
cesses, nothing inhibits the production of proteins (Fig. 1(a)). Consequently, the
observed behavior of the system is crucially dependent on the presence of delays,
a well known phenomenon in biological systems [5,9, 11].

A classic modeling formalism for GRCs is offered by continuous-time Markov
chains (CTMCs) as proposed by Gillespie [7]. Under the assumptions that the
solution is well-stirred, at constant temperature and volume, and that reactions
happen instantaneously, the CTMC model considers (i) that the state of the sys-
tem is given by a population vector whose elements represent the copy number
for each molecule type, and (ii) that reactions are triggered at times that follow
an exponential distribution, with a rate that depends on the quantum mechan-
ical properties of molecules and on the likelihood of their collision. A popular
technique for analyzing this type of models is probability propagation [12], which
computes the transient probabilities of the Markov chain over time by pushing
probability distribution through the state space of the model.

In the classical CTMC model of the negative feedback system each state of
the model has three variables that denote the number of DNA (0 or 1), DNA.R
(0 or 1) and R (a natural number) molecules. Each state has up to four suc-
cessors, one for each of the enabled reactions (production, degradation, binding
and unbinding of repressor protein). Because reactions happen instantaneously,
without any latency, with some strictly positive probability proteins are available
at any t > 0, and thus can inhibit further production of proteins immediately.
The overshooting behavior that is normally present in the negative feedback
loop is thus not observed in this immediate CTMC model (Fig. 1(b)). In order
to overcome this problem, a pure CTMC model needs to use additional auxil-
iary variables that encode the age of a molecule, and thus produce a delay-like
behavior. This increase in the number of variables leads however to a state space
explosion that makes even simple models intractable (Fig. 1(c)). We call such a
CTMC, extended with auxiliary variables, a cascade CTMC.



In this paper, we introduce delayed CTMCs, a formalism that we argue to be
more natural and more efficient than pure CTMCs when modeling systems that
comprise non-instantaneous reactions. In a delayed CTMC with delay A, each
species = has an associated age a(x) that specifies that (a(z) —1) - A time units
must pass between the moment when a reaction that produces z is triggered and
the moment when z is available as a reactant of a new reaction.

Natural. Delayed CTMCs naturally express non-instantaneous reactions be-
cause both the throughput and the latency of a reaction have direct correspon-
dents in the rate of the reaction and the delay of the reaction, respectively. Even
though one can try to model both the latency and throughput of reactions in a
pure CTMC by adding auxiliary reactions, the determination of the number and
parameters of such reactions involve the manipulation of complex functions. Fur-
thermore, one cannot simply approximate the computation of these parameters
because it is not clear how such approximations affect the qualitative behavior
of the model.

Efficient. Delayed CTMC have two important performance advantages with
respect to cascade CTMCs. First, by decoupling the waiting times of molecules
in the process of being produced from the dynamics of the currently available
molecules, we reduce the size of the state space on which to run a pure CTMC
computation. Second, since no probability can flow between states with differ-
ent number of waiting molecules (molecules that are not yet “mature”), our
probability transition matrix accepts a simple partitioning, which is efficiently
parallelizable.

The algorithm that we propose for the computation of the probability propa-
gation of the delayed CTMC consists of alternating rounds of pure CTMC com-
putation and aging steps. Each pure CTMC computation can be parallelized due
to the absence of interactions between subspaces of the model, and thus we are
able to solve delayed CTMC models that have large state spaces. For example,
we solve the negative feedback example for parameters that generate a state
space of up to 112 million states. The result of these experiments (see Figure 1)
show that the delayed CTMC model of the negative feedback system indeed
matches the experimental evidence of an initial overshoot in the production of
protein [9], while the pure CTMC models do not.

Reaction delays have already been embedded in stochastic simulation tools
for GRCs [18], but we are not aware of any work that embeds such delays in a
probability propagation algorithm. The probability propagation problem relates
to stochastic simulations as verification relates to testing. Due to the advantages
of probability propagation algorithms over simulation based approaches (when
computing the transient probabilities of a system) [3], it is valuable to provide
such algorithms. As probability propagation of stochastic systems is analogous
to solving reachability problems in the non-stochastic setting, we use techniques
such as discretization of a continuous domain and on-the-fly state space explo-
ration, which are standard techniques for verification problems.

Related work. There has been a wide interest in defining formalisms for ge-
netic regulatory circuits [2, 7, 15, 17]. In particular, using delays within stochastic



simulations has recently drawn interest (see [18] for a review of these models).
Delayed CTMCs differ from these models in that they discretize the delay time
as opposed to having continuous delays.

There has also been much work on the transient analysis of pure CTMCs
coming especially from the field of probabilistic verification [8,10,13,14], but
none of these methods consider reaction delays.

Recent efforts [1,20] have parallelized the transient analysis of CTMCs by
applying parallel algorithms for sparse matrix multiplication. Since the data de-
pendencies flow across the entire state space, they have achieved limited speed-
ups. Our work is orthogonal to these approaches. Due to the nature of delayed
CTMCs, the probability transition matrix of the model is amenable to being
partitioned into disconnected sub-matrices, and thus we obtain a highly paral-
lelizable algorithm. This can lead to large speed-ups (hundreds of times for our
examples). The techniques presented in these related works can be used for fur-
ther parallelization of our algorithm by using them in the computation of each
disconnected part of the matrix.

Delayed CTMCs are a subclass of generalized Markov processes (GMPs).
Our extension of CTMCs is limited as compared to GMPs, in that our single
extension is in capturing the property of latent reactions. However, we are able
to find efficient probability propagation algorithms for delayed CTMCs.

2 Delayed CTMC

For a set A, let f|4 denote the function obtained by restricting the domain of f
to AN Dom(f). Pow(A) denotes the powerset of A.

Continuous-time Markov chain (CTMC). A probability distribution p
over a countable set A is a mapping from A to [0, 1] such that > ., p(a) = 1.
The set of all probability distributions over A is denoted by P4. The support F,
of a probability distribution p over A is the subset of A containing exactly those
elements of A mapped to a non-zero value. Formally, F,, = {a € A|p(a) # 0}.

A CTMC M is a tuple (S, A), where S is the set of states, and A: Sx S +— R
is the transition rate matriz. We require that for all s,s’ € S, A(s,s’) > 0 iff
s# s, and ), g A(s,s") = 0.

The behavior of M = (S, A) is a mapping pjs from R to a probability distri-
bution over S satisfying the Kolmogorov differential equation

4 pu(t) =pm(t)- A

dt
If the value of pps(0) is known, the above differential equation has the unique

solution
At

pu(t) =pum(0)-e
In the case where |S| < oo, the series expansion for e/ yields Y 7 (At)!/i! for
which analytic solutions can be derived only for special cases. In general, finding
the probability distribution pys as a symbolic function of time (¢) is not possible.



We will let M(p,t), the behavior of M initiated at p, denote the value of
pum(t) with par(0) = p.

Aging boundary, configurations. An aging boundary is a pair (X, ),
where X is a finite set of variables, o : X — N is an age function. The ezpansion
of the aging boundary (X, «), is the set [X,a] = {(z,a) |z € X,0 < a < a(z)},
the elements of which are called aged variables. For an expansion [X, a], we define
the sets of immediate, new and waiting variables as [X,a]’ = Uzex{(7,0)},
[X,a]" = Upex{(z,a@))}, and [X,a]* = {(z,0)| € X,0 < a < a(z)},
respectively.

A configuration ¢ over an expansion [X, o] is a total function from [X, ] to
N. We will also write ((z,a),n) € ¢ whenever ¢(z,a) = n. A sub-configuration
cp of ¢ relative to F' C [X, ] is the restriction of ¢ to F'; formally, cp(x) is
defined to be equal to ¢(z) iff z € F. For any F C [X,a], CF' denotes the set
of all sub-configurations over F. For any configuration ¢ € CIX let ¢;, ¢, and
¢y denote the sub-configurations of ¢ relative to [X,al’, [X,a]" and [X,a]¥,
respectively. Intuitively, in the context of gene expression, an aged variable will
represent a molecule with a time stamp denoting the delay until the molecule is
produced, and configurations will represent a a collection of molecules with time
stamps. In what follows, we will be exclusively working on CTMCs having con-
figurations as states, and thus will use the two terms, states and configurations,
interchangeably.

Delayed CTMCs. Let (X,«) be an aging boundary. A CTMC M =
(CXal A) is a-safe, if A(c,c’) # 0 implies that ¢/, = ¢, and also, ¢/(z, a(x)) <
c(z,a(z)) implies a(z) = 0. Intuitively, a-safe means that the waiting variables
cannot change and only the value of immediate variables can decrease.

Definition 1 (Delayed CTMC). A delayed CTMC D is a tuple (X, o, A, A),
where (X, «) is an aging boundary, Mp = (C[X’O‘],A) is a-safe, and A € RT s
the delay.

A behavior of a delayed CTMC D = (X,«a,A,A) is a finite sequence
pop1p2 - - - p of probability distributions over X that satisfies

Pit1 = TiCk(MD(pi, A)) for0<i< N (1)
The definition of Tick is given as
., c(x,a+1) ,if 0 < a < a(z)
Tick(p)(c") = Z ple), cM(z,a) =< c(z,a+1)+c(x,a),ifa=0
ctl=¢! 0 ,if a = a(z)

Intuitively, a behavior of a delayed CTMC D is an alternating sequence of
running the CTMC Mp for A units of time, deterministically decrementing the
age of each variable in every configuration (i.e. propagating probability from ¢
to ct1), and computing the new probability distribution (Tick).

A continuous behavior of D = (X, a, A, A) is given as

de
bo(t) Y Mp(p,,2)

where t = ¢ - A+ z for some 0 < z < A, and py ... pq is a behavior of D.



3 Genetic Regulatory Circuits

In this section, we will first give a simple formalism for defining genetic regulatory
circuits. We will then provide three different semantics for genetic regulatory
circuits using delayed CTMCs.

3.1 Specifying Genetic Regulatory Circuits
A genetic regulatory circuit (GRC) G is a tuple (X, o, R), where

— (X, @) is an aging boundary,
— R is a set of reactions.

Each reaction r € R is a tuple (i, 7,0,), where i, and o,, the reactant and
production list, respectively, are mappings from X to N, and 7, the reaction rate,
is a positive real-valued number. For reactions, we will use the more familiar
notation

a1+ ..+ anty, — bz, + ...+ by,

where a; = i,(j), and b; = o,(j). Intuitively, each reaction represents a chemical
reaction, and variables of X represent the molecular species that take part in
at least one reaction of the system. Each reaction defines the necessary number
of each molecular species that enables a chemical reaction, the base rate of
the reaction, and the number of produced molecular species as a result of this
chemical reaction.

Overall, a reaction can be seen as a difference vector r = [r1 ra ... ry),
where r; = o,(x;) — i,(x;) is the net change in the number of molecule z;. We
will assume that the difference vector of each r is unique. In writing down a
reaction, we will leave out the molecular species that are mapped to 0.

3.2 Dynamics in terms of Delayed CTMCs

In this section, we will give the semantics of a GRC G = (X, , R) in terms of
a delayed CTMC. A computation framework for G is parameterized over delay
values. For the following, we fix a delay value, A.

A reaction r € R is enabled in a configuration ¢, if for all z; € X,
¢(x4,0) > ir(z;) holds. In other words, reaction r is enabled in ¢ if the num-
ber of reactants that r requires is at most as high as the number of immediately
available reactants in c. Let En(c) C R denote the set of reactions enabled in c.

For configurations ¢, ¢, and reaction r € R, we say that ¢ can go to ¢’ by
firing r, written ¢ = ¢/, if 7 € En(c), and there exists a configuration ¢ such that

— ¢ and ¢ are the same except for all z; € X, ¢(x;,0) = ¢(x;,0) — i, (x;), and
— ¢ and ¢ are the same except for all x; € X, (2, a(x;)) = ¢z, a(z;)) +
or(2;).



Informally, to move from configuration ¢ to ¢ via reaction r, ¢ must have at
least as many ¢mmediate molecules as required by the reactant list of 7, and ¢
is obtained by removing all immediate molecules consumed by r and adding all
the new molecules produced by r.

Delayed semantics. For G = (X, «, R), we define the delayed CTMC D¢ =
(X, a, A, A). We only need to give the definition of A.

G induces the transition rate matrix A defined as A(c, ') = Fire(c,r) only
when ¢ 5 ¢ holds. Fire(c,r) is given as

Fire(e,r) = [] = (i‘%?)

r,€X

where (7) = n!/(n — r)! represents the choose operator. A(c, ') is well-defined

because there can be at most one reaction that can satisfy ¢ — ¢ since we
assumed that the difference vector of each reaction is unique. Observe also that
no changes to waiting variables can happen in any transition with non-zero rate,
and only the number of immediate variables can decrease. Hence, Mp,, as defined
is a-safe.

Immediate semantics. Given a GRC G = (X, o, R), we define the im-
mediate version of G, written G* as the GRC (X, o/, R), where o/ (x) = 0, for
all z € X. Intuitively, G¥ ignores all the delays, and treats the reactions as in-
stantaneously generating their products. Note that, a delayed CTMC with an
age function assigning 0 to all the variables is a pure CTMC. The immediate
semantics for G are given by the behavior of the (delayed) CTMC constructed
for G*.

Cascade semantics. Given a GRC G = (X, «a, R), we define the cascade
version of G, written as G*, as the GRC (X', o/, R'), where X' = [X, o], o/(z) =
0, for all z € X', and R’ = Ryyig U Ryge, where

— Ryrig is the set of reactions of R re-written in a way that all the reactants
have age 0, and all the products have their maximum age. Formally, for
each reaction r = ), a;x; N Y ;bizi € R, we define 7 = ) a;(z;,0) N
> bi(zi, a(z;)) and let Rypig = {7 |r € R}.

— Rgge is the representation of delays in terms of a sequence of fictitious events
intended to count down the necessary number of stages. Formally, Ry4e =

{(z,0) 25 (z,a— 1) |a >0, (z,0) € X'}

Cascade semantics for G are given by the behavior of the (delayed) CTMC
constructed for G*.

Remark. A protein generated by a GRC has two dynamic properties: the
rate of its production and the delay with which it is produced, both of which are
intuitively captured by delayed semantics. The immediate semantics keeps the
rate intact at the expense of the production delay which is reduced to 0. On the
other hand, the cascade semantics approximates the delay, by a chain of events
with average delay A, while increasing the overall variance of the production
time. In Section 4.1, we show that a close approximation of the mean and the



variance of a delayed CTMC by cascade semantics causes a blow-up of the state
space of the former by O(a(x)?7,), where r is a reaction producing protein z.

4 Comparison of Different Semantics for GRCs

In this section, we will do a comparative analysis of the delayed CTMC model.
First, we will derive the probability distribution expression for the three different
semantics we have given in the previous section. We will show that delayed
CTMCs are more succinct than cascade CTMCs. We will then give two examples
which demonstrate the qualitative differences between the immediate, cascade
and delayed semantics for the same GRC.

4.1 Probability Distributions for Delayed Reactions

Let G = (X,a,R) be a GRC, and let x € X be such that a(z) = k, for
some k > 0. We would like to analyze the probability distribution of the time
of producing z due to a reaction r € R with o,(x) > 0 in the three different
semantics we have given in the previous section. We use Pr(t,(z) < T') to denote
the probability of producing x at most T time units after the reaction r took
place.

For immediate semantics, the cumulative distribution is simply a step func-
tion, switching from 0 to 1 at time 0 since the initiation and completion
times of a reaction in immediate semantics are equal. In other words, we have
Pr(t,(z) <T) =1, forall T > 0.

For cascade semantics, we have k intermediate reactions, each with an iden-
tical exponential distribution. This means that the probability density function
for producing x at exactly ¢ units of time is given by the (k — 1) convolution
of the individual probability density functions. This is known as the Erlang dis-
tribution, and has the closed form fi A(t) = ﬁe‘t/ A, The mean and the
variance of this distribution are given as kA and kA?, respectively. This implies
that as k increases, both the mean and the variance of the distribution increase,
a fact which we show has an important consequence in terms of model size.

For delayed semantics, we know that for x at time nA to have, for the first
time, age 0 which makes it immediate (and produced), the reaction r producing x
must have occurred during the (half-open) interval ((n—k)A, (n—k+1)A]. Since
this means that the production time of & cannot be greater than kA and cannot
be less than (k — 1)A, the probability density function of the production time
of x due to r is non-zero only in the interval [(k — 1)A, kA). Let us denote this
interval with p*(z, 7). Let § range over the real numbers in the interval p™*(z, ).
Then, the probability of x being produced by r in (k — 1)A 4 § units of time
is equal to the probability of r taking place at A — § units of time given that r
takes place in the interval (0, A]. As the calculation of the transition rate matrix
A has shown, the probability of reaction r firing depends on configurations; the
base rate 7, defines a lower bound on the actual rate of r. Since the lower the



actual rate the higher the variation is, we are going to compute the distribution
for the base rate. Then, the probability expression for p*(z,r) becomes

1— e—‘rT(A—é)

Pr(ty() < (k= 1)A+06) =1 - ———

, 0€10,4]

This expression shows that with increasing values of reaction rate 7,., the prob-
ability of the production of x taking time close to a(z) also increases. This is
expected since as the rate of the reaction r producing = gets higher, the proba-
bility of r taking place close to the beginning of the interval in which it is known
to happen also gets higher. In other words, it is possible to generate a probability
distribution for the production time of x such that

Pria(z) =6 <ty,(z) <alz)=1-c¢

for arbitrary § and e, which we consider further in the rest of this subsection.

Quasi-periodicity of delayed CTMCs. Previously, we have given three
alternative semantics for GRCs. In giving cascade semantics, the intuition was to
replace each deterministic aging step of the delayed CTMC with an intermediate
fictitious aging reaction. For each intermediate reaction, we have chosen the rates
to be the inverse of A so that the collective cascading behavior has a mean delay
equal to the age of the produced element. As we shall see in the next section,
this conversion leads to different qualitative behaviors.

We will now compare delayed CTMC to what we call cascade CTMCs, a
generalization of the cascade semantics, and show that preserving a property
called quasi-periodicity requires a blow-up in the state space while converting a
delayed CTMC into a cascade CTMC.

Let b be a continuous behavior of a delayed CTMC D. Recall that b is
a mapping from R, representing time, to a probability distribution over some
CcXel We will call b quasi-periodic with (e,6,p,1) at configuration c if for all
t <1, b(t)(c) > 1 — ¢ implies that there exists a number k£ € N such that
t € [kp,kp+9], and if t ¢ [kp, kp+ ¢] for any k < [, then b(t)(c) < e. Intuitively,
if the behavior b is quasi-periodic with (¢,4,p,1) at ¢, then the probability of
visiting ¢ is almost 1 (e is the error margin) only at multiples of the period p
within 0 time units. In all other times, the probability of being in c¢ is almost
0 (less than £). The parameter [ gives the period of valid behavior; nothing
is required of b for times exceeding [. Typically, we will want to maximize [,
the length of the behavior displaying the desired behavior, and minimize £ and
6§, the uncertainty in periodic behavior. Because periodicity is crucial during
biological processes such as embryo development [16] or circadian clocks [5],
quasi-periodicity defines an important subclass of behaviors.

For a set S, totally ordered by <, and elements s,s’ € S, let s/ = s+ 1 hold
only when s is the least element greater than s in S according to <. Let Spin
denote the minimal element in the totally ordered set S. If S is finite, then for
the maximal element $,,q; of S, we let Syin = Smaz + 1.

A CTMC M = (S, A) is called a cascade CTMC if S is totally ordered, and
A(s,s') > 0iff s = s+ 1. A cascade CTMC is A-homogenenous if A(s,s’) > 0 iff
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Fig. 2. Behaviors of the GRC ConvDiv. Due to intractability of the immediate and cas-
cade models, (b) depicts the probability distribution up to time 0.3s and (c) represents
the probability distribution up to time 6s.

A(s,s') = X or s = $pin. In other words, a cascade CTMC is A\-homogeneous if
all the state transitions have the same rate A with the possible exception of the
transition out of the minimal state.

Theorem 1. There exists a class of delayed CTMCs M; that are quasi-periodic
such that there is no corresponding class of A-homogeneous cascade CTMCs M]
with | M| = O(M;)).

4.2 Examples Demonstrating Qualitatively Different Behavior

The first example GRC, ConvDiv, is given as

ALBrc Bro™oB+C BLO
a: A—0,B—1,C—2

The symbols I, h, vh, represent low, high and very high rates, respectively. At
t = 0 the model contains a single molecule, of type A. After the first reaction
produces one B and one C', observe that the number of B molecules will increase
only if the second reaction fires, which requires for both B and C' to be present
in the system. In immediate semantics, the expected behavior is divergence: the
number of B molecules should increase without bound. However, when the delay
values are taken into account, we see that B and C molecules with different ages
are unlikely to be present in the system simultaneously. Thus, a stable behavior
should be observed for delayed semantics. Since cascade semantics still allow for
non-zero probability of producing B and C, albeit at a lower probability, diver-
gence should also be observed for cascade semantics. The computed behaviors
given in Figure 2 are in accordance with our explanations.
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The second example GRC, Periodic, is given as

AL BraA By 3B o oy
a: A—0,B—1,C~0

We observe that the production rate of B from the first reaction is slower than
the degradation rate of B, which means that in immediate semantics, it is very
unlikely to have 3 B’s at any time, which in turn implies that C' is not likely
to be produced at all. However, in delayed semantics, A will keep producing B
during A time units, which are likely to be more than 3 in the beginning of the
next step. This increases the probability of producing C' considerably. In fact, C
must be exhibiting quasi-periodic behavior. The computed behaviors are given
in Figure 3. As expected from the arguments of the previous section, cascade
semantics, even though does not stabilize at C' = 0 like the immediate semantics,
still can not exhibit a discernible separation between the times where C' = 0 and
the times where C' > 0.

Remark. The examples of this section illustrate the impact of incorporating
delay into models. As for representing a given biological system in a GRC, some
of the encoding issues pertain to a natural extension of the syntax. For instance,
having different production delays for the same molecular species in different
reactions or allowing more than one reaction with the same difference vector are
simple extensions to our formalism. Another issue is that the (delayed) molecular
species are produced at exact multiples of A; this can be modified by using

additional reactions. For instance, a reaction A %, B with a(B) = 1 can be

replaced with two reactions A %, ZB and ZB % B with a(ZB) =1, a(B) =0,
and where ZB is a fictitious molecular species. Then, adjusting the value of k,
will define a distribution for the production of the molecule B.



function COMPUTEBEHAVIOR function WORKER
input input (local)

D= (X,a,A,A) : delayed CTMC i : worker index

po : initial probability distribution locals

n : time count k,j:N

W : number of workers p : probability distribution

ch,...,cW c X begin
assume k:=0

Cly -y W =Xl while k < n do
Ve, € 13 (¢ = ¢y = {c, '} C O p := RUNCTMC(p}, Mp, A)
output for each ¢ € Dom(p) do
P1,--.,pPn : probability distributions j such that ¢t € CY
begin atomic{

for each i € 1. do p£+1(c+l) = piﬂ(cﬂ) + p(c)

Po = polci

done done

LAUNCHANDWAIT(WORKER, W) SYNCWORKERS()

for each k € 1.n do k=k+1

pe =prU---Upl done

done TERMINATIONSIGNAL()

end end

Fig. 4. A parallel algorithm for computing the behavior of a delayed CTMC. The call
of LAUNCHANDWAIT starts W processes each running the function WORKER and waits
for the execution of TERMINATIONSIGNAL call in all worker processes. SYNCWORKERS
synchronizes all worker processes. We assume that all variables are global (including
the input parameters of COMPUTEBEHAVIOR) except for the explicitly declared locals.

5 Behavior Computation of Delayed CTMC

In this section we present an algorithm for computing the behavior of a delayed
CTMC given an initial state of the model. Since this behavior cannot be com-
puted analytically, we propagate the probability distribution over time using
Equation (1).

The configuration space of the delayed CTMC can be divided into subspaces
such that, between two consecutive tick instants, probability is not propagated
from one subspace to another. Let ¢ and ¢’ be two configurations with different
values of their waiting variables, i.e. ¢, # c,,. Due to the a-safe property of the
delayed CTMC, there can be no propagation of probability from c to ¢’ between
two consecutive tick instants. Therefore, the behaviors corresponding to each
subspace can be computed independently for this time period, which has length
A. For this computation we can use any pure CTMC behavior computation
algorithm. Furthermore, these independent computations can be executed in
parallel. In the case of pure CTMC, a similar parallelization is not possible
because the behavior dependencies flow through the full configuration space.

In Figure 4 we illustrate our parallel algorithm COMPUTEBEHAVIOR that
computes the behavior of a delayed CTMC D = (X, a, A, A) starting from initial



function SPACEID(s)
begin
i:=1,idz:=0
for each (z,a) € Dom(cw) do  // (z,a) with larger a is chosen first
idr = idr + 4%s,((2,a))
1 =141
done
return ((%W) + 1
end

Fig. 5. In our implementation, SPACEID is used to divide the state space in partitions
for the worker processes.

distribution pg. The algorithm computes the behavior of D until n time steps, i.e.,
Pls- -+ Pn. COMPUTEBEHAVIOR uses W number of worker processes to compute
the probability distributions. Each of the W works is assigned a subspace of
clXool as decided by the input partitions C,...,C"W. These partitions must
ensure that if two configurations have equal values of waiting variables then
both configurations are assigned to the same worker.

CoMPUTEBEHAVIOR divides pg into the sub-distributions pd, . .., plY accord-
ing to the input partitions. Then, it launches W number of workers who oper-
ate using these initial sub-distributions. Workers operate in synchronized rounds
from 0 to n—1. At the k-th round, they compute the probability sub-distributions
of the k + 1-th time step pj,,,...pp ;- The i-th worker first runs a standard
CTMC behavior computation algorithm RUNCTMC on pj, that propagates the
probability distribution until A time and the final result of the propagation is
stored in p. Then, the inner loop of the worker applies Tick operation on p. For
each configuration ¢ in Dom(p), Tick adds p(c) to the probability of ¢! in the
appropriate sub-distribution decided by the configuration space partitions. Note
that a configuration ¢ may be the successor of many configurations, i.e., there
may exist two configurations ¢; and co such that cfl = cgl = c¢. and multiple
workers may access pi 41(¢), where j is such that c € CY. Therefore, we require
this update operation to be atomic. After the Tick operation, workers move to
next round synchronously. After all workers terminate their jobs, COMPUTEBE-
HAVIOR aggregates the sub-distributions into full distributions for each time step
and produces the final result.

6 Implementation and Results

Implementation. We extended the SABRE-toolkit [4], a tool for probability
propagation of pure CTMCs, to solve delayed CTMCs. We implemented COM-
PUTEBEHAVIOR as a multi-process system with an inter-process communica-
tion implemented using MPI [6]. We use an implementation of the fast adap-
tive uniformization method [13] for RUNCTMC. Furthermore, we use func-
tion SPACEID, shown in the Figure 5, to define the partitions on the space:



Semantics [Example|Figure| Time |Run Time Avg. | Qualitative
Horizon Space | Behavior
ConvDiv 2(a) 10s 23s 695| converge
Delayed |Periodic | 3(a) 10s <1s 13| periodic
CTMC |Feedback | 1(a) 7.2s 23m| 9 x 10°] overshoot
Feedback | 1(a) 100s| 7.65hx200%| 3.2 x 10”| overshoot
ConvDiv 2(c) 6s 311lm| 119344 diverge
Cascade — -
CTMC Periodic | 3(c) 10s 3s 351|  uniform
Feedback | 1(c) 7.2s 21h[5.00 x 10°| intractable
. ConvDiv | 2(b) 0.3s 40m 4007|  diverge
Immediate —
CTMC Periodic | 3(b) 10s 1s 26 decay
Feedback | 1(b) 100s 9s 96| fast stable

Fig. 6. Performance results for computing the behaviors corresponding to the exam-
ples presented earlier in this paper. We computed the behaviors until the time horizons
within the run times. The avg. space column shows the configuration space with signif-
icant probabilities during the computation. In the Feedback example we use the follow-
ing reaction rates: production = 1, binding = 1, unbinding=0.1, degradation=0.2. We
assume that R remains latent 9 seconds after its production. We use multiple workers
only for the Feedback example (*run time x number of workers). The last column
provides an intuitive description of the observed qualitative behavior.

O = {c € cXelispAcEID(c) = i}. In our examples, this policy leads to fairly
balanced partitions of configurations among processes.

Experiments. In Figure 6 we present performance results for the behav-
ior computation of the three discussed examples under the three semantics that
we have introduced. We observe that delayed CTMCs offer an efficient model-
ing framework of interesting behaviors such as overshooting, convergence and
periodicity.

We applied our implementation of COMPUTEBEHAVIOR on Feedback with
delayed CTMC semantics using 200 workers. We were able to compute the
behaviour until 100 seconds in 7.65 hours. COMPUTEBEHAVIOR with a single
worker was able to compute the behaviour of Feedback until 7.2 seconds in 23
minutes, and for the same time horizon the behavior computation of Feedback
under cascade semantics using sequential RUNCTMC took 21 hours to com-
plete. Since the cascade CTMCs cannot be similarly parallelized, they suffer
from a state space blowup and the negative impact on the performance can-
not be avoided. In the case of immediate CTMC semantics, even if computing
the behavior is relatively faster (except for ConvDiv, which has diverging be-
havior under the immediate CTMC semantics) the observed behavior does not
correspond to the expectations of the model.

We also ran COMPUTEBEHAVIOR on Feedback for different values of A. Since
the reaction rates in the real time remain the same, a(R) changes with varying A.
In Figure 7(a), we plot expected values of R at different times for three values of
a(R). We observe that with increasing precision, i.e. smaller A and higher «(R),
the computed behaviors are converging to a limit behavior, but the running
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Fig. 7. (a) Expected numbers of molecules of protein R with varying a(R) in Feedback.
We show the run time for computing each behavior in the legends. (b) Speed up vs.
number of workers (negative feedback with a(R) = 5).

time of the computation increases rapidly, which is due to the the increase in
number of aged variables causing an exponential blowup in configuration space.
In Figure 7(b), we show the speed of computing the behaviour of Feedback with
a(R) = 5 for different number of workers. We observe that up to 100 workers
the performance improves linearly, and there is no significant speedup after 100
workers. This is because each worker, when there are many of them, may not have
significant computations per round, and communication and synchronization
costs become the dominating factor.

7 Conclusion

Much like the introduction of time by time automata into a frame which was
capable of representing ordering patterns without the ability to quantify these
orderings more directly and accurately, we extended the widely used CTMC
formalism by augmenting it with a time component in order to capture the be-
havior of biological systems containing reactions of relatively different durations,
e.g. DNA transcription versus molecule bindings. We argue that our formalism
achieves a more natural way to model such systems than CTMC (possibly ex-
tended with auxiliary reactions). We show that our approach also provides an
efficient way of parallelizing the behaviour computation of the model.

As a continuation of this work, we are currently developing synthetic biology
experiments meant to validate our predictions for the behavior of the Periodic
example introduced in this paper.
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