
From Tests To Proofs

Ashutosh Gupta1, Rupak Majumdar2, and Andrey Rybalchenko1

1 Max Planck Institute for Software Systems
2 University of California, Los Angeles

Abstract. We describe the design and implementation of an automatic invariant
generator for imperative programs. While automatic invariant generation through
constraint solving has been extensively studied from a theoretical viewpoint as
a classical means of program verification, in practice existing tools do notscale
even to moderately sized programs. This is because the constraints that need to
be solved even for small programs are already too difficult for the underlying
(non-linear) constraint solving engines. To overcome this obstacle, wepropose
to strengthen static constraint generation with information obtained from static
abstract interpretation and dynamic execution of the program. The strengthening
comes in the form of additional linear constraints that trigger a series of sim-
plifications in the solver, and make solving more scalable. We demonstrate the
practical applicability of the approach by an experimental evaluation on a col-
lection of challenging benchmark programs and comparisons with relatedtools
based on abstract interpretation and software model checking.

1 Introduction

Programmers make mistakes, and much time and effort is spenton finding and fixing
these mistakes. While it has long been known thatprogram invariantsare the key to
proving a program correct with respect to a safety property [10, 17], their applicability
has been limited in practice since they often require explicit and expensive programmer
annotations. To circumvent this problem, there has been considerable research effort
in program analysis forautomaticinference of program invariants [1, 2, 4, 16, 27]. In
these algorithms, a set of constraints is generated from theprogram text whose solution
provides an inductive invariant proof of program correctness.

In theabstract interpretationbased approach [4, 7, 24] to inductive invariant infer-
ence, one computes the fixpoint of the program semantics relative to an abstract domain.
In case the abstract domain has infinite height (for example,the domain of polyhe-
dra), termination of the fixpoint computation is enforced bya widening operator. In the
counterexample-guided abstraction refinement (CEGAR)approach [1, 16], one starts
with a set of predicates, and uses spurious counterexamplesproduced by model check-
ing to dynamically discover new predicates that serve as building blocks for the proof
of program correctness. Finally, in theconstraint-based approach[5,14,27], a paramet-
ric representation of an invariant map serves a starting point. Then, inductiveness and
safety conditions are encoded as constraints on the parameters. Once these constraints
have been determined, any satisfying assignment is guaranteed to yield an inductive
invariant of the program. For example, an invariant template in linear arithmetic will

File State-of-the-art techniques This paper
INTERPROC BLAST INVGEN INVGEN+Z3

Seq × diverge 23s 1s 0.5s
Seq-z3 × diverge 23s 9s 0.5s
Seq-len × diverge T/O T/O 2.8s
nested × 1.2s T/O T/O 2.3s
svd(light) × 50s T/O T/O 14.2s
heapsort × 3.4s T/O T/O 13.3s
mergesort × 18s T/O 52s 170s
SpamAssassin-loop* X 22s T/O 5s 0.4s
apache-get-tag* × 5s 0.4s 10s 0.7s
sendmail-fromqp* × diverge 0.3s 5s 0.3s

Table 1.Comparison of invariant-based verification tools on benchmark problems.

specify for each program point an expression of the formα0 +α1x1 + . . .+αnxn ≤ 0,
wherex1, . . . , xn are program variables, andα0, . . . , αn are unknown parameters. The
control flow graph of the program will specify constraints onthe parameters at each
program point, such that a global solution for all theα’s produces an invariant.

While these techniques hold the potential for extremely sophisticated reasoning
about programs, each technique by itself often fails to verify programs, since in prac-
tice reasoning about correctness often requires combiningthe strength of each individ-
ual approach. In this paper, we demonstrate the potential ofsuch a combination. We
describe the design and implementation of a constraint-based invariant generator for
linear arithmetic invariants. In our implementation, we use information from static ab-
stract interpretation-based techniques as well as from dynamic testing to aggressively
simplify constraints. Our experimental results demonstrate that using these optimiza-
tions our invariant generator can automatically verify many problems for which all the
existing approaches we tried are unsuccessful.

It is important to mention that for each of our examples thereis (in theory) a polyhe-
dral abstract domain equipped with a suitable widening operator that can successfully
prove the desired assertion. Our approach targets the casesfor which theexistingab-
stract interpreters fail due to heuristic choices made in the implementation that trade
off precision for speed. For example, Figure 1(a) shows a program from [13] for which
an abstract interpreter implementing the standard convex hull-based widening cannot
prove the assertion. In our experiments, the abstract interpretation tool INTERPROC

finds the invariantsz = 10w andy ≤ 100x at line 2 but not the crucialy ≥ x. We ob-
served that our approach finds the missing facty ≥ x which together with the invariants
found by INTERPROC, is sufficient to prove the assertion.

Table 1 shows the results of running a collection of state-of-the-art program verifi-
cation tools on a set of common benchmark programs for software verification, includ-
ing some challenge programs from [21], which are marked withthe star symbol “*”.
INTERPROC [22] is a tool based on abstract interpretation (we used the PPL library to-
gether with the octagon domain when applying INTERPROC). BLAST [16] is a software
model checker based on counterexample refinement. INVGEN is our previous imple-

mentation of constraint-based invariant generation usingconstraint logic programming
(CLP) as a constraint solver [2]. INVGEN+Z3 is the same constraint-based invariant
generator but using the Z3 decision procedure [8] as the constraint solver, which applies
the Boolean satisfiability-based encoding proposed in [14]. As is evident from Table 1,
the results we obtained for the existing tools on the benchmark examples are disap-
pointing. In Column 2, there is a “×” mark for each program for which INTERPROC

was too imprecise to verify the assertion. In Column 3, the counterexample refinement
procedure of Blast diverges on several examples. In Columns4 and 5, the invariant
generation procedures time out, denoted by “T/O”, on most examples as the constraints
become too hard to solve (both for CLP and for SAT). In contrast, our technique is able
to efficiently solve all the examples, as shown in the last column.

While our invariant generator can be used in isolation, we have also integrated it
with the Blast software model checker and have used it as the counterexample refine-
ment engine using path programs [3]. Invariants for path programs provide additional
predicates that refine the abstraction for the software model checker, and can produce
better refinement predicates than usually available with current techniques, e.g. [15].
Software model checkers with path program-based counterexample analysis are well-
suited for our techniques because they (automatically) generate small program units to
either test for bugs or provide invariants. Using this integration, we have applied our im-
plementation to verify a set of software verification benchmark programs [21] recently
introduced as a challenge to the community. The examples in the benchmark set are
extracted from common security-critical code, and containassertions related to buffer
bounds checking. Our implementation was able to verify all the (correct) programs in
the benchmark in about 10s of total time.

Related WorkOur work is influenced by recent advances in automatic staticinference of
inductive invariants using constraint solving [6,14,26] as well as by the use of dynamic
analysis to estimate and infer likely system properties [9].

Constraint-based invariant synthesis techniques using templates in linear [2, 5, 14]
and polynomial [20, 26] arithmetic have been extensively studied, but their application
has been limited by the cost of the constraint solving process. As we demonstrate in our
experiments, even on quite small examples the constraint solver is likely to time-out.
Our static and dynamic constraint simplification techniques limit the search space for
the constraint solvers. Our experiments demonstrate orders of magnitude improvements
over existing making it feasible to apply these techniques to larger programs.

Software model checking tools, e.g. [1, 16, 19], have previously used invariants
from abstract interpretation—most notably alias analysis,but also octagonal con-
straints [19]—to strengthen the transition relation of the program. The contribution of
this work to the research on software model checking is a powerful predicate inference
engine using invariant generation. We also perform detailed comparisons of the bene-
fits of combining invariant generation with abstract interpretation, as well as combining
invariant generation with CEGAR-based software verification.

Pure dynamic analysis has been used to identify likely, but not necessarily correct,
program invariants [9]. The technique uses program tests toevaluate candidate predi-
cates from some a priori fixed database. The predicates that evaluate to true on all test
runs are returned as likely invariants. The basic techniqueis not sound, as the test suite

1 int x=0; y=0; z=0 w=0;
2 while(*){
3 if(*){
4 x++; y+=100;
5 }else if(*){
6 if (x>=4){ x++; y++; }
7 }else if(y>10*w && z>=100*x){
8 y=-y;
9 }
10 w++; z+=10;
11 }
12 if(x>=4 && y <=2) error();

1 int i,j,k,n,m;
2
3 assume(n<=m);
4 for (i=0;i<n;i++)
5 for (j=0;j<n;j++)
6 for (k=j; k<n+m;k++)
7 assert(i+j<=n+k+m);

(a) (b)

Fig. 1. (a) Example from [13]. (b) Examplenested.c.

could be inadequate. Hence in a second step, the inferred invariants are provided to a
verification-condition based program verifier. If the verifier succeeds, the combination
of the dynamic step and the verification ensures program safety, while removing the
need for providing manual invariants. However, there are some shortcomings of this
technique. First, since the predicates are chosen from somefixed set (usually for effi-
ciency in evaluation), the required program invariants maynot fall into this fixed class.
Second, the generated invariants are not in general inductive, therefore if the verifier
fails, it is not evident if either a guessed invariant is wrong (that is, more tests should be
generated to remove it from the discovered set), or if the guessed invariant does repre-
sent all reachable states, but is too weak to allow the verifier to complete the proof.

2 Example

We illustrate our idea using the example programnested.c shown in Figure 1(b).
We want to construct an invariant that proves the assertion in line 7.

The core idea of our tool is to perform constraint-based invariant synthesis. Our al-
gorithm automatically discovers, through an iterative process, that we need an invariant
templates to be a conjunction of four inequalities for each loop head. The invariants
for intermediate locations (between loop heads) can be computed from assertions for
these locations by propagating strongest postconditions (or weakest preconditions). For
clarity of presentation, we shall only show details relevant to the first conjunct in each
template. We use the template mapη such that

η.4 = α + αii + αjj + αkk + αmm + αnn ≤ 0 ∧ . . . ∧ . . . ∧ . . . ,

η.5 = β + βii + βjj + βkk + βmm + βnn ≤ 0 ∧ . . . ∧ . . . ∧ . . . ,

η.6 = γ + γii + γjj + γkk + γmm + γnn ≤ 0 ∧ . . . ∧ . . . ∧

To obtain an invariant map from these templates, we need to instantiate the set of param-
eters{α, αi, αj, αk, αm, αn, β, βi, βj, βk, βm, βn, γ, γi, γj, γk, γm, γn } . We proceed by

constructing a system of constraints, sayΨ , over the set of template parameters that
imposes the invariant conditions on the template map, following a classical approach
from the literature [5, 28]. We omit the details for brevity.Unfortunately, even for this
small example, we obtain a system of non-linear arithmetic constraints which exceeds
the capacity of our constraint solver. Our idea is to scale the invariant generation engine
by using information obtained from abstract interpretation as well as from concrete and
symbolic runs of the program.

We first observe that for this example, some components of therequired invariants
can be generated by techniques based on abstract interpretation, e.g., by using octagon
and polyhedral domains [7,24]. By running INTERPROC (using PPL) on this example,
we obtain the following invariant mapηα that annotates the loop locations with valid
assertions:

ηα.4 = n ≤ m ∧ i ≥ 0 , ηα.5 = n ≥ j ∧ n ≤ m ∧ i ≥ 0 ∧ j ≥ 0 ∧ n ≥ 1 ,

ηα.6 = n + m ≥ k ∧ n ≥ j + 1 ∧ n ≤ m ∧ k ≥ j ∧ i ≥ 0 ∧ j ≥ 0.

While theoretically the analysis could have found all polyhedral relationships, in prac-
tice tools like INTERPROC employ several heuristics that sacrifice precision for speed.
In this case, INTERPROC misses the inequalityn + m ≥ i valid at lines 5 and 6 and
crucial for proving the assertion. Our algorithm takes the output generated by the ab-
stract interpreter and uses it as an initial, static strengthening to support constraint based
invariant generation.

In the second step, our algorithm collects dynamic information by executing the
program. We first present a direct approach that uses programstates to compute addi-
tional constraints that support invariant generation. Then, we show an extension that
can handle unbounded collections of states. The extended method uses symbolic exe-
cution to collect such sets of states. We formalize these direct and symbolic approaches
in Section 4.

Direct approach Our direct approach starts with a collection of some reachable pro-
gram states, which can be obtained by applying test generation techniques. We only
track states at the head locations of the loops. Suppose we get the following set of states
{s1, . . . , s4} by running the program on test inputs:

s1 = (pc = 4, i = j = k = 0, m = n = 1), s2 = (pc = 4, j = 3, i = k = 0, m = n = 1),

s3 = (pc = 5, i = j = k = 0, m = n = 1), s4 = (pc = 6, i = j = k = 0, m = n = 1).

Here, the variablepc represents the control location. We shall use these states to sim-
plify the constraints for invariant generation.

We observe that since template expressions must be true for all reachable program
states, in particular, they must hold for the states collected by testing. That is, for each
reachable state we can substitute program variables appearing in the template by their
values determined by the states and use this information to strengthen the constraintΨ .

Thus, we can conjoin the following set of linear inequalities to the system of con-
straintsΨ , which determines the invariant map:

α + αm + αn ≤ 0 , from s1 α + 3αj + αm + αn ≤ 0 , from s2

β + βm + βn ≤ 0 , from s3 γ + γm + γn ≤ 0 , from s4

These additional constraints are linear. They can be applied by the solver to trigger
a series of simplification steps. After the solving succeeds, we obtain the following
invariant map:

η.4 = n ≤ m, i ≥ 0 , η.5 = n + m ≥ i, n ≤ m, i ≥ 0 ,

η.6 = n + m ≥ i, k ≥ j, n ≤ m, i ≥ 0 .

Symbolic approachWe observe that we can simulate the effect of dynamic simplifica-
tion using a large/unbounded set of reachable states. For this purpose we use symbolic
execution, which computes assertions representing sets ofreachable program states. We
assume the example discussed so far and three reachable symbolic states below:

ϕ1 = (pc = 4 ∧ i = 0 ∧ n ≤ m) ,

ϕ2 = (pc = 5 ∧ i = 0 ∧ j = 0 ∧ n ≥ 1 ∧ n ≤ m) ,

ϕ3 = (pc = 6 ∧ i = 0 ∧ j = 0 ∧ k = 0 ∧ n ≥ 1 ∧ n ≤ m) .

These symbolic states can be applied to derive additional linear constraints on the tem-
plate parameters. Due to the reachability ofϕ1, ϕ2, andϕ3 the implications

ϕ1 → η.4 , ϕ2 → η.5 , ϕ3 → η.6

hold for all valuations of program variables. The validity of these implications can be
translated into a linear constraint, sayΦ, over template parameters. (See Section 4 for
details.) We conjoin the constraintΦ with the constraintΨ that encodes the invariance
condition. As a result, the solver performs additional simplifications that lead to im-
proved running time.

Relevant strengtheningIn fact, after running our algorithm we can discover which
inequalities computed using abstract interpretation and added as strengthening to the
program were actually useful for finding the invariant that proves the assertion. This
information is crucial for keeping minimal the number of facts reported to the software
model checker as refinement predicates. For this purpose, weexamine the solutions that
the constraint solver assigned to the variables encoding the implication validity. For our
example, the following inequalities found by INTERPROC were useful:n ≤ m ∧ i ≥ 0
at line 4,n ≤ m ∧ i ≥ 0 at line 5, andk ≥ j ∧ n ≤ m ∧ i ≥ 0 at line 6.

3 Preliminaries

We start by describing the invariant-based approach for theverification of temporal
safety properties and illustrate constraint-based invariant generation.

Programs and invariants We assume an abstract representation of programs by tran-
sition systems [23]. AprogramP = (X,L, ℓI , T , ℓE) consists of a setX of variables, a
setL of control locations, an initial locationℓI ∈ L, a setT of transitions, and an error
locationℓE ∈ L. Each transitionτ ∈ T is a tuple(ℓ, ρ, ℓ′), whereℓ, ℓ′ ∈ L are con-
trol locations, andρ is a constraint over variables fromX ∪ X ′. The variables fromX

denote values at control locationℓ, and the variables fromX ′ denote the values of the
variables fromX at control locationℓ′. The error locationℓE is used to represent asser-
tion statements. Each failed assertion leads toℓE . We assume that the error locationℓE
does not have any outgoing transitions. The sets of locations and transitions naturally
define a directed graph, called thecontrol-flow graph(CFG) of the program, which puts
the transition constraints at the edges of the graph.

A stateof the programP is a valuation of the variablesX. The set of all states
is denoted byΣ. We shall represent sets and binary relations over states using con-
straints overX and X ′ in the standard way. Acomputationof P is a sequence of
location and state pairs〈ℓ0, s0〉, 〈ℓ1, s1〉, . . . such thatℓ0 is the initial location and for
each consecutive〈ℓi, si〉 and 〈ℓi+1, si+1〉 there is a transition(ℓi, ρ, ℓi+1) ∈ T such
that (si, si+1) |= ρ. A states is reachableat locationℓ if 〈ℓ, s〉 appears in some com-
putation. The program issafeif the error locationℓE does not appear in any computa-
tion. A path of the programP is a sequenceπ = (ℓ0, ρ0, ℓ1), (ℓ1, ρ1, ℓ2), . . . of tran-
sitions, whereℓ0 is the initial location. The pathπ is feasibleif there is a computation
〈ℓ0, s0〉, 〈ℓ1, s1〉, . . . such that each consecutive pair of states(si, si+1) is induced by
the corresponding transition, i.e.,(si, si+1) |= ρi. A path that ends at the error location
is called anerror path(or counterexample path).

An invariant of P at a locationℓ ∈ L is a super set of states that are reachable
at ℓ, which we represent by an assertion overX. An inductive invariant mapassigns an
invariant to each program location such that for each transition (ℓ, ρ, ℓ′) ∈ T the impli-
cationη.ℓ ∧ ρ → (η.ℓ′)′ is valid, where(η.ℓ′)′ is the assertion obtained by substituting
variablesX with the variablesX ′ in η.ℓ′. We observe that due to the invariance con-
dition we haveη.ℓI = true. An invariant map issafeif it assigns an empty set to the
error location, i.e.,η.ℓE = false.

A safe inductive invariant map serves as a proof that the error location cannot be
reached on any program execution, and hence that the programis safe. Theinvariant-
synthesisproblem is to construct such a map for a given program.

Constraint-based Invariant Generation In theconstraint-based approach[6, 20,25,
26, 27] to invariant generation, the computation of an invariant map is reduced to a
global constraint solving problem over the program locations. The approach consists of
three steps. First, atemplateassertion that represents an invariant for each location is
fixed in ana priori chosen language. A template assertion refers to the programvari-
ablesX as well as a set of parameters. A parameter valuation determines an invariant.
Second, a set ofconstraintsover these parameters is defined in such a way that the
constraints correspond to the definition of the invariant. This means that every solu-
tion to the constraint system yields a safe inductive invariant map. Third, a valuation of
parameters is obtained by solving the resulting constraintsystem.

The language of arithmetic has been widely used to specify invariant templates
[20,25,26]. Alinear inequalityover the variablesX = (x1, . . . , xn) is an expression of
the forma0+a1x1+. . .+anxn ≤ 0 if a0, . . . , an are rational numbers. The language of
linear arithmetic consists of conjunctions of linear inequalities. An invariant template in
linear arithmetic treatsα0, . . . , αn as unknown parameters. For example, the template
α + αxx + αyy + αzz ≤ 0 represents a linear inequality term over the variablesx, y,

andz. Here, the parameters areα, αx, αy, andαz. A possible template instantiation is
−4 + x + 2y − z ≤ 0.

An invariant template and its expressiveness are determined by the number of con-
juncts that appear in the template for each program location. Adding more conjuncts
increases the expressive power at the cost of a more expensive constraint solving task.
Usually, templates are constructed incrementally, by starting with the weakest template
that assigns a single conjunct to each program location and then refining it by adding
additional conjuncts if the constraint solving fails to instantiate the template.

Given a template specification for an invariant map, we generate a set of constraints
that encode the inductiveness and safety conditions. To encode the inductiveness con-
dition, we generate a constraintη.ℓ∧ ρ → (η.ℓ′)′ for each transition(ℓ, ρ, ℓ′). Note that
this implication is implicitly universally quantified overX andX ′. Furthermore, the
conjunction of such implications for all transitions is existentially quantified over the
template parameters. Using Farkas’ lemma [28], we eliminate universal quantification.
The result is a set of existentially quantified non-linear constraints over the template pa-
rameters as well as over the parameters introduced by Farkas’ lemma (see [25] for the
technical details). Techniques involving Gröbner bases and real quantifier elimination
can be used similarly to generate and solve constraints for more general polynomial
constraints [20,26], and for the combined theory of linear arithmetic and uninterpreted
functions [2].

We assume a functionInvGenSystem that computes constraints from programs and
templates. An application ofInvGenSystem on a program and templates for each pro-
gram location produces a constraint over the template parameters that encodes the in-
variant map conditions. For the implementation details see[2,5].

We illustrateInvGenSystem using a single transition between locationℓ andℓ′ with
the transition relationx ≤ y ∧ x′ = x + 1 ∧ y′ = y. We assume a templateϕ =
(α+αxx+αyy ≤ 0 ∧ β +βxx+βyy ≤ 0) consisting of two conjuncts at the location
ℓ, and a singleton conjunctionψ = (γ + γxx+ γyy ≤ 0) at the locationℓ′. The starting
point is the implicationϕ ∧ ρ → ψ′. To simplify the exposition, we first eliminate the
primed program variables and obtainϕ ∧ x ≤ y → ψ[x + 1/x], which we present in
the matrix form below.

(

αx αy

βx βy

1 −1

)

(

x
y

)

≤
(

−α
−β
0

)

→
(

γx+1 γy

) (

x
y

)

≤ −γ

Now, we apply Farkas’ lemma to encode the validity of implication and obtain the
following constraint:

∃λ ≥ 0. λ

(

αx αy

βx βy

1 −1

)

=
(

γx+1 γy

)

∧ λ
(

−α
−β
0

)

≤ −γ

This constraint determines the values of template parameters and the additional param-
eterλ. It contains non-linear terms that result from the multiplication ofλ with (αx βx)
and(αy βy).

Constraint SolvingThe constraints generated above are non-linear, since theycontain
multiplication terms over the parameters from the invariant templates, as well as the

additional parameters introduced by Farkas’ lemma. The existing solving approaches
include symbolic techniques based on instantiations and case splitting, e.g. [5], and
using SAT solvers by applying an appropriate propositionalencoding, e.g. [14].

For the rest of the paper, we assume a functionSolve that takes as input a set of
non-linear constraints and returns either a satisfying assignment to the constraints, or
that the constraint set is unsatisfiable. Unfortunately, inall but the most basic programs,
constraint-based invariant synthesis using the above technique is too expensive. For
most realistic programs, the procedureSolve times out.

4 Constraint Simplification

We now describe how we can use additional static and dynamic information to restrict
the search space determined by the set of static constraints. Technically, we do this by
computing additional constraints on the program transition relation and on the template
parameters and conjoining them with the constraint system defining invariant map. Pro-
gram computations provide a source of such additional dynamic constraints.

I NVGEN+ABSI NT: Simplification from abstract interpretation Our first simplifi-
cation uses an abstract interpreter to compute program invariants, and uses the result of
the abstract interpretation algorithm to strengthen the program transition relation. That
is, suppose thatηα is an invariant map computed by an abstract interpretation algorithm.
In our constraint generation, we replace the constraintη.ℓ∧ ρ → (η.ℓ′)′ for a transition
(ℓ, ρ, ℓ′) with the constraintη.ℓ ∧ (ηα.ℓ ∧ ρ) → (η.ℓ′)′.

I NVGEN+TEST: Simplification from tests Individual program computations can be
used to simplify the constraints for invariant generation.The crux of the algorithm IN-
VGEN+TEST lies in the observation that an invariant template must holdwhen partially
evaluated on a reachable state of the program.

Let t(X) be a template over the program variablesX ands be a reachable program
state. We writet(s/X) to denote a template expression that is obtained fromt by substi-
tuting each variablex ∈ X with its values(x) in the states. Then, the constraintt[s/X]
imposes an additional constraint over the template parameters. Note that this constraint
is linear, i.e., its processing does not require application of expensive non-linear solving
techniques.

We show the algorithm INVGEN+TEST in Figure 2. The algorithm takes as input a
programP and an invariant template mapη with parametersP. It can return an invari-
ant map forP , output that no invariant map exists for the given invarianttemplates, or
find a counterexample to the program safety. There are three conceptual steps of the al-
gorithm. The first step (line 1) constructs a setΨ of constraints on the invariant template
parameters that encode the initiation, inductiveness, andsafety conditions. The second
step (lines 2–9) runs a set of tests and generates additionalconstraints on the parameters
based on the test executions. Finally, the third step (line 10) solves the conjunction of
the static constraints from line 1 and the additional constraints generated during testing.

The loop in lines 3–9 executes the program on a set of tests. Weinstrument the pro-
gram so that for each program locationℓ reached in the test, the concrete values of all

1
2
3
4
5
6
7
8
9
10
11
12
13

input
P : program;η: invariant template map with parametersP

vars
Ψ : static constraint;Φ : dynamic constraint

begin
Ψ := InvGenSystem(P, η)
Φ := true

repeat
s1, . . . , sn := GenerateAndRunTest(P)
if sn(pc) = ℓE then

return “counterexamples1, . . . , sn”
else

Φ := Φ ∧
V

n

i=1
(η.si(pc))[si/X]

until no more tests
if P

∗ := Solve(Ψ, Φ) succeedsthen
return “inductive invariant mapη[P∗/P]”

else
return “no invariant map for given template”

end.

Fig. 2. Algorithm INVGEN+TEST for invariant generation supported by dynamic simplifica-
tion using program executions.InvGenSystem creates a constraint over the template param-
eters that encodes invariant map conditions for the programP , see Section 3. The function
GenerateAndRunTest selects program computations.

the program variables that appear in the templateη.ℓ are recorded. If a test hits the error
location, then of course, we have found a bug, and we return this error (lines 5,6). Oth-
erwise, the recorded values provide an additional constraint on the template parameters.
For example, if the template for a location isαx+βy+γ ≤ 0, and a dynamic execution
reaches this location with the concrete statex = 35, y = −9, we know that the param-
etersα, β, andγ must satisfy the constraint35α − 9β + γ ≤ 0. We call this adynamic
constrainton the parameters and add this constraint to the auxiliary constraintΦ.

The testing loop terminates due to an externally supplied coverage criterion. At this
point, the constraint solver is invoked to find a satisfying assignment for the parameters
in P that satisfy both the static constraints inΨ and the dynamic constraints inΦ. If
there is no such solution, the algorithm returns that there is no invariant map for the
program using the current template map. On the other hand, any satisfying assignment
provides an invariant map. Our algorithm maintains the invariant that at any point in
lines 3–13, a satisfying assignment to the constraintsΨ ∧ Φ is guaranteed to be a valid
invariant map.

I NVGEN+SYMB : Simplification from symbolic execution We observe that the basic
algorithm conjoins dynamic,linear constraints for each state that is reached by the test
generator. A large number of such constraints may overwhelmthe constraint solver,
despite their low processing cost. We improve the basic algorithm by taking into account
setsof reachable states using a single strengthening constraint.

3
4.1
4.2
5
6
7
8.1
8.2
9

repeat
π := GeneratePath(P)
(∗ πi = (ℓi, ρi, ℓi+1) for 1 ≤ i ≤ n ∗)
if ℓn+1 = ℓE andπ is feasiblethen

return “counterexampleπ”
else

ϕ := (∃X. ρ1 ◦ · · · ◦ ρn)[X/X ′]
Φ := Φ ∧ Encode(ϕ → η.ℓn+1)

until no more paths

Fig. 3. Algorithm INVGEN+SYMB . It can be obtained by replacing lines3–9 of the algorithm
INVGEN+TEST with the above statements. The functionGeneratePath selects program paths.
Encode createslinear constraints over template parameters that encode the validity of the given
implication.

We assume a templatet(X) and a set of reachable states represented by an asser-
tion ϕ(X). We can obtain such sets of states by performing symbolic execution along
a collection of program paths. Then, the implicationϕ(X) → t(X) must hold for all
valuations ofX since every state inϕ is reachable.

Following the method in Section 3, we encode the validity of the implication by a
constraint over the template parameters. In this case, the encoding yieldslinear con-
straints. In contrast to the cases when the left-hand side ofthe implication contains
template assertions, in the above implication program variables haveconstantcoeffi-
cients. Thus, when multiplying additional parameters (appearing due to the application
of Farkas’ lemma) with coefficients attached to the program variables we obtain linear
terms, which, in turn, result in linear constraints.

For example, we consider a templatet(x, y, z) that consists of two conjunctsα +
αxx + αyy + αzz ≤ 0 ∧ β + βxx + βyy + βzz ≤ 0 . We assume a set of states
ϕ = (−x ≤ 0 ∧ −y ≤ 0 ∧ x + y − z ≤ 0) reached by symbolic execution. The
encoding of the implicationϕ → t yields the constraint

∃Λ ≥ 0. Λ
(

−1 0 0
0 −1 0
1 1 −1

)

=
(αx αy αz

βx βy βz

)

∧ Λ
(

0
0
0

)

≤
(

−α
−β

)

,

which is clearly linear.
We assume a functionEncode that translates an implication between an assertion

representing a set of states and a template into a linear constraint over template param-
eters. Our extended algorithm INVGEN+SYMB appliesEncode on sets of reachable
states computed by symbolic execution of the program. The algorithm is presented in
Figure 3. Since it extends the basic algorithm INVGEN+TEST by adding the symbolic
treatment of reachable states, we only present the modified part.

The algorithm INVGEN+SYMB interleaves symbolic execution and collection of
constraints. It relies on an external functionGeneratePath that selects paths through
the control-flow graph of the program, see line4.1. For a given path, we compute
an assertion representing states that are reachable by executing its transitions, see
line 8.1. We use the relational composition operator◦, which is defined byρ ◦ ρ′ =

File INTERPROC INVGEN INVGEN+Z3 INVGEN + INVGEN+Z3 + INVGEN +
INTERPROC INTERPROC + INTERPROC +

SYMB SYMB

Seq × 23.0s 1s 0.5s 6s 0.5s
Seq-z3 × 23.0s 9s 0.5s 6s 0.5s
Seq-len × T/O T/O T/O 4s 2.8s
nested × T/O T/O 17.0s 3s 2.3s
svd(light) × T/O T/O 10.6s T/O 14.2s
heapsort × T/O T/O 19.2s 48s 13.3s
mergesort × T/O 52s 142s T/O 170s
SpamAssassin-loop X T/O 5s 0.28s 1s 0.4s
apache-get-tag × 0.4s 10s 0.6s 3s 0.7s
sendmail-fromqp × 0.3s 5s 0.3s 5s 0.3s
Example1(b) × T/O T/O 0.4s 1s 0.35s

Table 2.Comparison of variations of invariant verification techniques and INTERPROC on addi-
tional benchmark problems inspired by [21]. “X” and “×” indicate whether the invariant com-
puted by INTERPROC proves the assertions, and “T/O” stands for time out.

∃X ′′. ρ[X ′′/X ′] ∧ ρ′[X ′′/X] , to compute the transition relation of the whole path.
The existential quantification in line8.1 projects this relation to the successor states
ϕ, i.e., it computes the range of the relation. We use variablerenaming to keep the re-
sulting assertion consistent with the templates over program variables. We conjoin the
constraint resulting from the translation of the implication between the reachable states
ϕ and the corresponding templateη.ℓn+1 to the dynamic constraintΦ before proceeding
with the next path. We assume an external procedure that selects a finite set of paths. In
our implementation, we apply directed symbolic execution that attempts to unroll loops
at least one time.

The following theorem states that our optimizations are sound (and relatively com-
plete).

Theorem 1. [Correctness] If AlgorithmINVGEN+ABSINT, INVGEN+TEST, or IN-
VGEN+SYMB on input programP and invariant template mapη returns (a) “coun-
terexamples1, . . . , sn,” then there is an execution of the program that reaches the error
location; (b) “inductive invariant mapη∗,” then η∗ is an invariant map forP , and the
programP is safe; (c) “no invariants with templateη,” then there is no invariant map
for P with the given invariant template mapη.

5 Experiences

ImplementationWe implemented the algorithms INVGEN+TESTand INVGEN+SYMB

using SICStus Prolog [29], the linear arithmetic solver clp(q,r) [18] and the Z3
solver [8] as the backend to solve non-linear constraints. When describing the appli-
cation of INVGEN together with Z3, we shall write INVGEN+Z3. We apply the IN-
TERPROC [22] tool for abstract interpretation over numeric domains, and use the PPL

backend for polyhedra, mainly due to its source code availability. In principle, a variety
of other tools could be used instead, e.g., the ASPIC tool implementing the looka-
head widening and acceleration techniques [11,12]. INVGEN provides a frontend for C
programs, which relies on CIL infrastructure for C program analysis and transforma-
tion and abstracts from non-arithmetic operations appearing in the input program. We
implement the following additional variable elimination optimization. The additional
constraints obtained from dynamic and static strengthening are linear. In particular, the
additional variables that encode implication between symbolic states and templates,Λ
in the previous section, can be eliminated. We perform this simplification step before ap-
plying the (expensive) techniques for solving non-linear constraints. For our constraint
logic programming-based implementation, this results in areduction of the number of
calls to the linear arithmetic solver. When using the SAT approach, it allows us to avoid
applying the propositional search to constraints that can be solved symbolically.

In our experimental evaluation, we observed that INVGEN+TEST and IN-
VGEN+SYMB offer similar efficiency improvement, with a few exceptionswhen IN-
VGEN+SYMB was significantly better. To keep the tables with experimental data com-
pact, we only describe evaluation of the strengthening thatuses symbolic execution
INVGEN+SYMB .

Software Verification Challenge BenchmarksWe applied INVGEN on a suite of soft-
ware verification challenge programs described in [21]. Theexamples in this benchmark
are extracted from large applications by mining a security vulnerability database for
buffer overflow problems. We use the corrected versions of these programs, using the
buffer access checks as assertions. The suite consists of 12programs.3 Using polyhedral
abstract domain, INTERPROC computes invariants that are strong enough to prove the
assertion for half of them. The constraint based invariant generation together with the
SAT-based encoding, i.e., INVGEN+Z3, generates invariants for all programs within
36.5 seconds of total time. Using the CLP backend, INVGEN handles 11 examples
within 6.3 seconds, and times out on one program, which is handled by INVGEN+Z3 in
5 seconds. Using the static and dynamic strengthening described in this paper, we ob-
tain the following running times. The combination INVGEN+Z3+INTERPROC+SYMB

solves all examples in29.5 seconds, while INVGEN+INTERPROC+SYMB handles all
examples within9.6 seconds. These experiments demonstrate that the various optimiza-
tions can have an effect on verification, but the running times were too short to draw
meaningful conclusions.

Impact of Dynamic StrengtheningThe collection from [21] did not allow us to perform
a detailed benchmarking of our algorithm, since the runningtimes on these examples
were too short. We obtained a set of more difficult benchmarksinspired by [21] by
adding additional loops and branching statements, and provide a detailed comparison
that describes the impact of static and dynamic strengthening in isolation in Table 2.
INTERPROC computes 50 inequalities for each loop head, which results in a significant
increase in the number of variables in the constraint system. While being an obstacle for

3 Due to short running times, we present the aggregated data and do not provide any table con-
taining entries for individual programs.

the propositional search procedure in Z3, the increased number of variables does not
significantly affect the CLP-based backend since the additional variables appear in lin-
ear terms. In summary, the performance of INVGEN+Z3 decreases and the performance
of INVGEN goes up by adding facts from INTERPROC.

Integration with BLAST We have modified the abstraction refinement proce-
dure of the BLAST software model checker [15] by adding predicate dis-
covery using path invariants [3]. Table 3 shows how constraint based in-
variant generation can be effective for refining abstractions. The number
of counterexample refinement iterations required is reduced in all examples.

File BLAST BLAST + INVGEN +
INTERPROC + SYMB

Seq diverge 8
Seq-len diverge 9
fregtest diverge 3
sendmail-fromqp diverge 10
svd(light) 144 43
Spamassassin-loop 51 24
apache-escape 26 20
apache-get-tag 23 15
sendmail-close-angle 19 15
sendmail-7to8 16 13

Table 3. INVGEN + INTERPROC+ SYMB for
predicate discovery in BLAST. We show the
number of refinement steps required to prove
the property.

For several examples we achieved ter-
mination of previously diverging ab-
straction refinement, and for others the
reduction ranges between25 and 400
percent.

SummaryOur experimental evaluation
leads to the following observations:

– For complex constraint solving
problems, the additional strength-
ening facilitates significant im-
provement. It ranges from reduc-
ing the running time by two orders
of magnitude to making timing out
examples solvable within seconds.

– If the constraint solving is al-
ready fast in the purely static case,
then the strengthening does not
cause any significant running time
penalty.

Acknowledgments. The second author was sponsored in part by the NSF grants CCF-
0546170 and CNS-0720881. The third author was supported in part by Microsoft Re-
search through the European Fellowship Programme.

References

1. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static anal-
ysis. InProc. POPL, pages 1–3. ACM, 2002.

2. D. Beyer, T. Henzinger, R. Majumdar, and A.Rybalchenko. Invariant synthesis for combined
theories. InProc. VMCAI, LNCS 4349, pages 378–394. Springer, 2007.

3. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants. InProc.
PLDI, pages 300–309. ACM Press, 2007.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. InProc. PLDI, pages 196–207.
ACM, 2003.

5. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using non-linear
constraint solving. InProc. CAV, LNCS 2725, pages 420–432. Springer, 2003.

6. P. Cousot. Proving program invariance and termination by parametricabstraction, lagrangian
relaxation and semidefinite programming. InProc. VMCAI, pages 1–24. Springer, 2005.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraintsamong variables of a
program. InPOPL’78, pages 84–96. ACM Press, 1978.

8. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. InProc. TACAS, LNCS 4963,
pages 337–340. Springer, 2008.

9. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution.IEEE Trans. Software Eng., 27(2):1–25,
2001.

10. R. W. Floyd. Assigning meanings to programs. InMathematical Aspects of Computer
Science, pages 19–32. AMS, 1967.

11. L. Gonnord and N. Halbwachs. Combining widening and accelerationin Linear Relation
Analysis. InProc. SAS, LNCS 4134, pages 144–160. Springer, 2006.

12. D. Gopan and T. Reps. Lookahead widening. InProc. CAV, LNCS 4144, pages 452–466.
Springer, 2006.

13. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically refining
abstract interpretations. InProc. TACAS, LNCS 4963, pages 443–458. Springer, 2008.

14. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint solving. In
PLDI, pages 281–292. ACM, 2008.

15. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractionsfrom proofs. InPOPL
04: Principles of Programming Languages, pages 232–244. ACM, 2004.

16. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc. POPL, pages
58–70. ACM, 2002.

17. C. A. R. Hoare. An axiomatic basis for computer programming.Commun. ACM, 12:576–
580, 1969.

18. C. Holzbaur.OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for Artificial
Intelligence, Vienna, 1995. TR-95-09.

19. H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed in-
variants inside the predicate abstraction and refinement loop. InCAV, LNCS 4144, pages
137–151. Springer, 2006.

20. D. Kapur. Automatically generating loop invariants using quantifier elimination. Technical
Report 05431 (Deduction and Applications), IBFI Schloss Dagstuhl, 2006.

21. K. Ku, T. Hart, M. Chechik, and D. Lie. A buffer overflow benchmark for software model
checkers. InProc. ASE, 2007.

22. G. Lalire, M. Argoud, and B. Jeannet. The interproc analyzer.
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet
-forge/interproc/index.html.

23. Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems: Safety. Springer, 1995.
24. A. Miné. The octagon abstract domain.Higher-Order and Symb. Comp., 19:31–100, 2006.
25. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations analysis.

In Proc. SAS, LNCS 3148, pages 53–68. Springer, 2004.
26. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loopinvariant generation using

Gröbner bases. InProc. POPL, pages 318–329. ACM, 2004.
27. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems using

mathematical programming. InProc. VMCAI, LNCS 3385, pages 25–41. Springer, 2005.
28. A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1986.
29. The Intelligent Systems Laboratory.SICStus Prolog User’s Manual. Swedish Institute of

Computer Science, 2001. Release 3.8.7.

