From Tests To Proofs

Ashutosh Gupth Rupak Majumdak, and Andrey Rybalchenko

1 Max Planck Institute for Software Systems
2 University of California, Los Angeles

Abstract. We describe the design and implementation of an automatic invariant
generator for imperative programs. While automatic invariant genertitrough
constraint solving has been extensively studied from a theoretical viatvas

a classical means of program verification, in practice existing tools deaai¢
even to moderately sized programs. This is because the constraintedobton

be solved even for small programs are already too difficult for thesyidg
(non-linear) constraint solving engines. To overcome this obstacl@ramse

to strengthen static constraint generation with information obtained from static
abstract interpretation and dynamic execution of the program. Theytesing
comes in the form of additional linear constraints that trigger a series of sim
plifications in the solver, and make solving more scalable. We demonstrte th
practical applicability of the approach by an experimental evaluation anl-a c
lection of challenging benchmark programs and comparisons with reiabés
based on abstract interpretation and software model checking.

1 Introduction

Programmers make mistakes, and much time and effort is spefitding and fixing
these mistakes. While it has long been known firagram invariantsare the key to
proving a program correct with respect to a safety propdry 17], their applicability
has been limited in practice since they often require eitfaitd expensive programmer
annotations. To circumvent this problem, there has beesigerable research effort
in program analysis foautomaticinference of program invariants [1, 2, 4, 16, 27]. In
these algorithms, a set of constraints is generated fromrdgram text whose solution
provides an inductive invariant proof of program corresgie

In the abstract interpretatiorbased approach [4, 7, 24] to inductive invariant infer-
ence, one computes the fixpoint of the program semantidsseta an abstract domain.
In case the abstract domain has infinite height (for exanthke,domain of polyhe-
dra), termination of the fixpoint computation is enforcedaoyidening operator. In the
counterexample-guided abstraction refinement (CEG#&pproach [1, 16], one starts
with a set of predicates, and uses spurious counterexamudaced by model check-
ing to dynamically discover new predicates that serve aslingi blocks for the proof
of program correctness. Finally, in thenstraint-based approadb, 14,27], a paramet-
ric representation of an invariant map serves a startingtpdhen, inductiveness and
safety conditions are encoded as constraints on the pazenéince these constraints
have been determined, any satisfying assignment is gea@no yield an inductive
invariant of the program. For example, an invariant tengplatlinear arithmetic will

File State-of-the-art techniques This paper
INTERPROC|BLAST|INVGEN|INVGEN+Z3
Seq X diverge 23s 1s 0.5s
Seg-z3 X divergg 23s 9s 0.5s
Seg-len X diverge T/O T/O 2.8s
nested X 12s| T/O T/O 2.3s
svd(light) X 50s T/IO T/IO 14.2s
heapsort X 34s | T/O T/O 13.3s
mergesort X 18s | T/O 52s 170s
SpamAssassin-loop* v 22s T/IO 5s 0.4s
apache-get-tag* X 5s 0.4s 10s 0.7s
sendmail-fromgp* X diverge 0.3s 5s 0.3s

Table 1. Comparison of invariant-based verification tools on benchmark prablem

specify for each program point an expression of the fagw- a2 +. .. + apz, <0,
wherex, ..., x, are program variables, ang, . . ., ,, are unknown parameters. The
control flow graph of the program will specify constraints the parameters at each
program point, such that a global solution for all thie produces an invariant.

While these techniques hold the potential for extremely stighted reasoning
about programs, each technique by itself often fails tofygniograms, since in prac-
tice reasoning about correctness often requires combthmgtrength of each individ-
ual approach. In this paper, we demonstrate the potentialici a combination. We
describe the design and implementation of a constrairgebas/ariant generator for
linear arithmetic invariants. In our implementation, we usformation from static ab-
stract interpretation-based techniques as well as fronamyntesting to aggressively
simplify constraints. Our experimental results demonetthat using these optimiza-
tions our invariant generator can automatically verify snproblems for which all the
existing approaches we tried are unsuccessful.

Itis important to mention that for each of our examples the(a theory) a polyhe-
dral abstract domain equipped with a suitable widening atperthat can successfully
prove the desired assertion. Our approach targets the fsehich theexistingab-
stract interpreters fail due to heuristic choices made @ithplementation that trade
off precision for speed. For example, Figure 1(a) shows grara from [13] for which
an abstract interpreter implementing the standard conuéhbhsed widening cannot
prove the assertion. In our experiments, the abstractpregtion tool NTERPROC
finds the invariantz = 10w andy < 100x at line 2 but not the cruciat > x. We ob-
served that our approach finds the missing fagt x which together with the invariants
found by INTERPROC, is sufficient to prove the assertion.

Table 1 shows the results of running a collection of statéhiefart program verifi-
cation tools on a set of common benchmark programs for softwerification, includ-
ing some challenge programs from [21], which are marked thiéhstar symbol “*”.
INTERPROC[22] is a tool based on abstract interpretation (we used Bielirary to-
gether with the octagon domain when applying ERPROC). BLAST [16] is a software
model checker based on counterexample refinems&mGEN is our previous imple-

mentation of constraint-based invariant generation usamstraint logic programming
(CLP) as a constraint solver [2]NVYGEN+Z3 is the same constraint-based invariant
generator but using the Z3 decision procedure [8] as theli@nssolver, which applies
the Boolean satisfiability-based encoding proposed in [Ad]is evident from Table 1,
the results we obtained for the existing tools on the benckresamples are disap-
pointing. In Column 2, there is aX” mark for each program for whichNTERPROC
was too imprecise to verify the assertion. In Column 3, thenterexample refinement
procedure of Blast diverges on several examples. In Colunasd 5, the invariant
generation procedures time out, denoted by “T/O”, on moatgles as the constraints
become too hard to solve (both for CLP and for SAT). In contims technique is able
to efficiently solve all the examples, as shown in the lastiol.

While our invariant generator can be used in isolation, westaso integrated it
with the Blast software model checker and have used it asdteterexample refine-
ment engine using path programs [3]. Invariants for patlyr@ms provide additional
predicates that refine the abstraction for the software hreddeeker, and can produce
better refinement predicates than usually available witheot techniques, e.g. [15].
Software model checkers with path program-based courgengbe analysis are well-
suited for our techniques because they (automatically@igea small program units to
either test for bugs or provide invariants. Using this inédign, we have applied our im-
plementation to verify a set of software verification benahkprograms [21] recently
introduced as a challenge to the community. The exampleserbénchmark set are
extracted from common security-critical code, and congaisertions related to buffer
bounds checking. Our implementation was able to verifytel fcorrect) programs in
the benchmark in about 10s of total time.

Related WorkOur work is influenced by recent advances in automatic stdgcence of
inductive invariants using constraint solving [6, 14, 26eell as by the use of dynamic
analysis to estimate and infer likely system properties [9]

Constraint-based invariant synthesis techniques usimglgges in linear [2, 5, 14]
and polynomial [20, 26] arithmetic have been extensivalgigtd, but their application
has been limited by the cost of the constraint solving pre.cks we demonstrate in our
experiments, even on quite small examples the constralivérsis likely to time-out.
Our static and dynamic constraint simplification technilimit the search space for
the constraint solvers. Our experiments demonstrate ®od@nagnitude improvements
over existing making it feasible to apply these techniqodarger programs.

Software model checking tools, e.g. [1, 16, 19], have preslip used invariants
from abstract interpretation—most notably alias analybig, also octagonal con-
straints [19]—to strengthen the transition relation of thegoam. The contribution of
this work to the research on software model checking is a dfalyeredicate inference
engine using invariant generation. We also perform detaitamparisons of the bene-
fits of combining invariant generation with abstract intetption, as well as combining
invariant generation with CEGAR-based software verifaati

Pure dynamic analysis has been used to identify likely, bthecessarily correct,
program invariants [9]. The technique uses program testsdtuate candidate predi-
cates from some a priori fixed database. The predicatesvhhtate to true on all test
runs are returned as likely invariants. The basic technigjnet sound, as the test suite

1 int x=0; y=0; z=0 w=0;
2 while(*){
3 if(x){
4 X++; y+=100; 1 int i,j,k,nm
5 lelse if(*){ 2
6 if (x>=4){ x++; y++ } 3 assune(n<=nm;
7 lelse if(y>10xw && z>=100*x){ | 4 for (i=0;i<n;i++)
8 y=-Y; 5 for (j=0;j<n;j++)
9 } 6 for (k=j; k<n+n k++)
10 w+; z+=10; 7 assert (i +j <=n+k+m ;
11 }
12 if(x>=4 && y <=2) error();
() (b)

Fig. 1. (a) Example from [13]. (b) Exampleest ed. c.

could be inadequate. Hence in a second step, the inferradamts are provided to a
verification-condition based program verifier. If the venifsucceeds, the combination
of the dynamic step and the verification ensures prograntysafile removing the
need for providing manual invariants. However, there amesghortcomings of this
technique. First, since the predicates are chosen from §igatkeset (usually for effi-
ciency in evaluation), the required program invariants metyfall into this fixed class.
Second, the generated invariants are not in general inéydtierefore if the verifier
fails, it is not evident if either a guessed invariant is wgdthat is, more tests should be
generated to remove it from the discovered set), or if thesge invariant does repre-
sent all reachable states, but is too weak to allow the vetdieomplete the proof.

2 Example

We illustrate our idea using the example prograest ed. ¢ shown in Figure 1(b).
We want to construct an invariant that proves the assenti¢ine 7.

The core idea of our tool is to perform constraint-basedriaw synthesis. Our al-
gorithm automatically discovers, through an iterativegess, that we need an invariant
templates to be a conjunction of four inequalities for eambplhead. The invariants
for intermediate locations (between loop heads) can be ateddrom assertions for
these locations by propagating strongest postconditmnséakest preconditions). For
clarity of presentation, we shall only show details relévarthe first conjunct in each
template. We use the template mapuch that

n4 = at+aitoasjtrak+am+an<O0A...A.. AL,
N5 = B+6ii+ 05+ 0k+Lm+Ban<OA..ALALLL,
N6 = y+vi+vi+tnk+rmm+1mn<O0OA...ALALLL.

To obtain an invariant map from these templates, we needtantiate the set of param-
eterS{Oé, Ay, aj y Qey Ol Ol ﬁ7 ﬂia ﬁ_]) /Bka ﬂmv ﬁna Vs Vi ’YJ > Vs Ymy Tn } . We proceed by

constructing a system of constraints, sayover the set of template parameters that
imposes the invariant conditions on the template map,atlg a classical approach
from the literature [5, 28]. We omit the details for brevitynfortunately, even for this
small example, we obtain a system of non-linear arithmetditstraints which exceeds
the capacity of our constraint solver. Our idea is to scadértariant generation engine
by using information obtained from abstract interpretais well as from concrete and
symbolic runs of the program.

We first observe that for this example, some components akitpgired invariants
can be generated by techniques based on abstract intéigretag., by using octagon
and polyhedral domains [7, 24]. By runningTlERPROC (using PPL) on this example,
we obtain the following invariant magp, that annotates the loop locations with valid
assertions:

Ned=n<mAi>0, Ned= n>jAn<mAi>0Aj>0An>1,
Nab=n+m>kAn>j+1An<mAk>jAi>0Aj>0.

While theoretically the analysis could have found all polytta relationships, in prac-
tice tools like NTERPROC employ several heuristics that sacrifice precision for dpee
In this case, NTERPROC misses the inequality + m > i valid at lines 5 and 6 and
crucial for proving the assertion. Our algorithm takes tbhgat generated by the ab-
stract interpreter and uses it as an initial, static stteghg to support constraint based
invariant generation.

In the second step, our algorithm collects dynamic inforomaby executing the
program. We first present a direct approach that uses progtates to compute addi-
tional constraints that support invariant generation.rifivee show an extension that
can handle unbounded collections of states. The extenddtbtheses symbolic exe-
cution to collect such sets of states. We formalize thesztand symbolic approaches
in Section 4.

Direct approach Our direct approach starts with a collection of some realehpin-
gram states, which can be obtained by applying test genartgchniques. We only
track states at the head locations of the loops. Supposetlesgiellowing set of states
{s1,...,s4} by running the program on test inputs:

si=(pc=4,i=j=k=0m=n=1), so=(pc=4,j=3,i=k=0m=n=1),
s3=(pc=5,i=j=k=0m=n=1), sa=(pc=6,i=j=k=0m=n=1).

Here, the variablec represents the control location. We shall use these statmt
plify the constraints for invariant generation.

We observe that since template expressions must be trué feaehable program
states, in particular, they must hold for the states calktly testing. That is, for each
reachable state we can substitute program variables apgéarthe template by their
values determined by the states and use this informatioinengthen the constraiit.

Thus, we can conjoin the following set of linear inequatitte the system of con-
straints¥, which determines the invariant map:

a+ap+a, <0, froms; a+ 305+ an +an <0, froms;
B+ Ba+ (o <0, fromss Y+ Y+ 7 <0, fromsy

These additional constraints are linear. They can be applethe solver to trigger
a series of simplification steps. After the solving succe&ds obtain the following
invariant map:

nd=n<mi>0, no= n+m>i,n<mi>0,
n6=n+m>ik>jn<mi>0.

Symbolic approach/Ne observe that we can simulate the effect of dynamic siroplifi
tion using a large/unbounded set of reachable states. iBguuhpose we use symbolic
execution, which computes assertions representing setaciiable program states. We
assume the example discussed so far and three reachablelsystdites below:

pr=(pc=4ANi=0An<m),
po=(pc=5Ni=0Aj=0An>1An<m),
03=(pc=6Ni=0Aj=0Ak=0An>1An<m).

These symbolic states can be applied to derive additiomahficonstraints on the tem-
plate parameters. Due to the reachability-ef 5, andys the implications

p1—n4d, pa—nb5, p3—n.6

hold for all valuations of program variables. The validititbese implications can be
translated into a linear constraint, sdyover template parameters. (See Section 4 for
details.) We conjoin the constrai@twith the constraint? that encodes the invariance
condition. As a result, the solver performs additional difiqations that lead to im-
proved running time.

Relevant strengthenindn fact, after running our algorithm we can discover which
inequalities computed using abstract interpretation atukd as strengthening to the
program were actually useful for finding the invariant thedvyes the assertion. This
information is crucial for keeping minimal the number oftceported to the software
model checker as refinement predicates. For this purposexamine the solutions that
the constraint solver assigned to the variables encodmprtplication validity. For our
example, the following inequalities found bytERPROCwere usefuln <m A i >0
atlinedn<mAi>0atline5ank > jAn<mAi>0atline6.

3 Preliminaries

We start by describing the invariant-based approach fowvérdication of temporal
safety properties and illustrate constraint-based iav&igeneration.

Programs and invariants We assume an abstract representation of programs by tran-
sition systems [23]. ArogramP = (X, £, ¢z, T, {s) consists of a seX of variables, a
setL of control locations, an initial locatiofiy € £, a set7 of transitions, and an error
location?s € L. Each transitionr € 7 is a tuple(¢, p,¢'), where, ¢’ € L are con-

trol locations, ang is a constraint over variables froM U X’. The variables from¥

denote values at control locatidnand the variables frorX’ denote the values of the
variables fromX at control locatior?’. The error locatior¢ is used to represent asser-
tion statements. Each failed assertion lead&tdVe assume that the error locatién
does not have any outgoing transitions. The sets of locatonl transitions naturally
define a directed graph, called tbentrol-flow graph(CFG) of the program, which puts
the transition constraints at the edges of the graph.

A stateof the programP is a valuation of the variableX . The set of all states
is denoted byY'. We shall represent sets and binary relations over stateg oen-
straints overX and X’ in the standard way. Aomputationof P is a sequence of
location and state pairy, so), (¢1, 1), . - . such that/, is the initial location and for
each consecutiv€/;, s;) and (¢;;1, s;+1) there is a transitiori?;, p, ¢;11) € 7 such
that(s;, s;+1) | p. A states is reachableat location/ if (¢, s) appears in some com-
putation. The program isafeif the error locatior/s does not appear in any computa-
tion. A path of the programP is a sequence = ({o, po, 1), (41, p1,¢2), ... of tran-
sitions, where, is the initial location. The path is feasibleif there is a computation
(Lo, s0), (¢1, s1), ... such that each consecutive pair of stat€ss; 1) is induced by
the corresponding transition, i.€s,, s;+1) = p:. A path that ends at the error location
is called arerror path (or counterexample pajh

An invariant of P at a location/ € L is a super set of states that are reachable
at¢, which we represent by an assertion oxerAn inductive invariant ma@ssigns an
invariant to each program location such that for each ttamsi/, p, ¢') € T the impli-
cationn.f A p — (n.£") is valid, where(n.¢")’ is the assertion obtained by substituting
variablesX with the variablesX”’ in n.¢/. We observe that due to the invariance con-
dition we haven.fz = true. An invariant map isafeif it assigns an empty set to the
error location, i.e.y.le = false.

A safe inductive invariant map serves as a proof that the éomation cannot be
reached on any program execution, and hence that the pragrseife. Thenvariant-
synthesigproblem is to construct such a map for a given program.

Constraint-based Invariant Generation In the constraint-based approads, 20, 25,

26, 27] to invariant generation, the computation of an irargrmap is reduced to a
global constraint solving problem over the program loaadiorhe approach consists of
three steps. First, emplateassertion that represents an invariant for each location is
fixed in ana priori chosen language. A template assertion refers to the progaam
ablesX as well as a set of parameters. A parameter valuation detesnain invariant.
Second, a set ofonstraintsover these parameters is defined in such a way that the
constraints correspond to the definition of the invariamtisTmeans that every solu-
tion to the constraint system yields a safe inductive imrgrimap. Third, a valuation of
parameters is obtained by solving the resulting constegisiem.

The language of arithmetic has been widely used to specifgriant templates
[20,25,26]. Alinear inequalityover the variableX = (z1,...,z,) is an expression of
the formag+aiz1+...+apx, < 0if ag, ..., a, are rational numbers. The language of
linear arithmetic consists of conjunctions of linear inelifies. An invariant template in
linear arithmetic treatsy, . . . , ,, as unknown parameters. For example, the template
o+ azx + ayy + oz < 0 represents a linear inequality term over the variables

andz. Here, the parameters atea,, o, anda.. A possible template instantiation is
-4+ z+2y—2z<0.

An invariant template and its expressiveness are detedfipehe number of con-
juncts that appear in the template for each program locafidding more conjuncts
increases the expressive power at the cost of a more expaswisgtraint solving task.
Usually, templates are constructed incrementally, bytiatawith the weakest template
that assigns a single conjunct to each program location tzer riefining it by adding
additional conjuncts if the constraint solving fails totestiate the template.

Given a template specification for an invariant map, we gaee set of constraints
that encode the inductiveness and safety conditions. Todenthe inductiveness con-
dition, we generate a constraipt A p — (n.£')’ for each transitiori¢, p, ¢'). Note that
this implication is implicitly universally quantified oveX and X’. Furthermore, the
conjunction of such implications for all transitions is gbentially quantified over the
template parameters. Using Farkas’ lemma [28], we elirinaiversal quantification.
The result is a set of existentially quantified non-linearstaaints over the template pa-
rameters as well as over the parameters introduced by Féekama (see [25] for the
technical details). Techniques involving @bner bases and real quantifier elimination
can be used similarly to generate and solve constraints &we m@eneral polynomial
constraints [20, 26], and for the combined theory of lingé&heetic and uninterpreted
functions [2].

We assume a functioinvGenSystem that computes constraints from programs and
templates. An application dfivGenSystem on a program and templates for each pro-
gram location produces a constraint over the template petexmithat encodes the in-
variant map conditions. For the implementation details[2¢4].

We illustratelnvGenSystem using a single transition between locatiband¢’ with
the transition relatiomr < y A 2’ = 2 +1 A ¢y = y. We assume a template =
(a+azz+a,y <0A B+ 8z+ 8,y < 0) consisting of two conjuncts at the location
¢, and a singleton conjunctiaf = (v + v,z + v,y < 0) at the locatior?’. The starting
point is the implicationp A p — 4’. To simplify the exposition, we first eliminate the
primed program variables and obtain\ « < y — o[z + 1/z], which we present in
the matrix form below.

(55) 6= ()~ e () 2
Now, we apply Farkas’ lemma to encode the validity of imgiima and obtain the
following constraint:

—x

Qg Qy

This constraint determines the values of template paramateal the additional param-
eter). It contains non-linear terms that result from the multgation of A with («, 3.)

and(ay, 8y).

Constraint SolvingThe constraints generated above are non-linear, sincectivegin
multiplication terms over the parameters from the invartemplates, as well as the

additional parameters introduced by Farkas’ lemma. Thstieg solving approaches
include symbolic techniques based on instantiations asé eglitting, e.g. [5], and
using SAT solvers by applying an appropriate propositi@maioding, e.g. [14].

For the rest of the paper, we assume a funcfiolve that takes as input a set of
non-linear constraints and returns either a satisfyinggas®ent to the constraints, or
that the constraint set is unsatisfiable. Unfortunatelgllibut the most basic programs,
constraint-based invariant synthesis using the abovenigeé is too expensive. For
most realistic programs, the procedGrgve times out.

4 Constraint Simplification

We now describe how we can use additional static and dynarfacrnation to restrict
the search space determined by the set of static constragusnically, we do this by
computing additional constraints on the program transitedation and on the template
parameters and conjoining them with the constraint systfinidg invariant map. Pro-
gram computations provide a source of such additional dymaonstraints.

INVGEN+ABSINT: Simplification from abstract interpretation Our first simplifi-
cation uses an abstract interpreter to compute programiamig, and uses the result of
the abstract interpretation algorithm to strengthen tlogam transition relation. That
is, suppose that, is an invariant map computed by an abstract interpretatgorighm.

In our constraint generation, we replace the constraiht p — (1.£')’ for a transition
(¢, p, ¢') with the constraing.£ A (na.£ A p) — (n.0')'.

INVGEN+TEST: Simplification from tests Individual program computations can be
used to simplify the constraints for invariant generatibime crux of the algorithmn-
VGEN+TESTIlies in the observation that an invariant template must adidn partially
evaluated on a reachable state of the program.

Let¢(X) be a template over the program variah’¥snds be a reachable program
state. We write(s/X) to denote a template expression that is obtained frbynsubsti-
tuting each variable € X with its values(x) in the states. Then, the constrairtfs/X]
imposes an additional constraint over the template paemiédtiote that this constraint
islinear, i.e., its processing does not require application of egpemon-linear solving
techniques.

We show the algorithmNvGEN+TESTIin Figure 2. The algorithm takes as input a
programP and an invariant template mapwith parameter$. It can return an invari-
ant map forP, output that no invariant map exists for the given invarigmplates, or
find a counterexample to the program safety. There are tlomeeptual steps of the al-
gorithm. The first step (line 1) constructs a®atf constraints on the invariant template
parameters that encode the initiation, inductiveness safety conditions. The second
step (lines 2-9) runs a set of tests and generates additionsiraints on the parameters
based on the test executions. Finally, the third step (ID)esblves the conjunction of
the static constraints from line 1 and the additional caiists generated during testing.

The loop in lines 3-9 executes the program on a set of testm&tement the pro-
gram so that for each program locatibreached in the test, the concrete values of all

input
P: program;n: invariant template map with parameté?s

vars
¥ : static constraintp : dynamic constraint
begin
1 ¥ = InvGenSystem(P, 1)
2 @ = true
3 repeat
4 S1y- .., 8n ;= GenerateAndRunTest(P)
5 if sn(pc) = Le then
6 return “counterexamples, ..., s,”
7 else
8 @:=d AN, (n.5:(pc))[si/X)
9 until no more tests
10 if P* :=Solve(¥, ®) succeedshen
11 return “inductive invariant mapm[P* /P]"
12 else
13 return “no invariant map for given template”

end.

Fig. 2. Algorithm INVGEN+TEST for invariant generation supported by dynamic simplifica-
tion using program executiontavGenSystem creates a constraint over the template param-
eters that encodes invariant map conditions for the progfansee Section 3. The function
GenerateAndRunTest selects program computations.

the program variables that appear in the tempjat@re recorded. If a test hits the error
location, then of course, we have found a bug, and we retisretior (lines 5,6). Oth-
erwise, the recorded values provide an additional comstoai the template parameters.
For example, if the template for a locatiomis + Sy ++ < 0, and a dynamic execution
reaches this location with the concrete state 35,y = —9, we know that the param-
etersa, 3, andy must satisfy the constraiBba — 95 + v < 0. We call this adynamic
constrainton the parameters and add this constraint to the auxiliangtcaint®.

The testing loop terminates due to an externally supplie@mme criterion. At this
point, the constraint solver is invoked to find a satisfyisgignment for the parameters
in P that satisfy both the static constraintsémand the dynamic constraints i If
there is no such solution, the algorithm returns that theneoi invariant map for the
program using the current template map. On the other haydsatisfying assignment
provides an invariant map. Our algorithm maintains theriawd that at any point in
lines 3—-13, a satisfying assignment to the constraints® is guaranteed to be a valid
invariant map.

INVGEN+SYMB : Simplification from symbolic execution We observe that the basic
algorithm conjoins dynamidinear constraints for each state that is reached by the test
generator. A large number of such constraints may overwtlaéconstraint solver,
despite their low processing cost. We improve the basiailgo by taking into account
setsof reachable states using a single strengthening conistrain

3 repeat

4.1 7 := GeneratePath(P)

4.2 (* Wi:(&;,pi,fprl) fOI’lSiSn*)
5 if ¢,4+1 = £g andr is feasiblethen

6 return “counterexampler”

7 else

8.1 @ =(3X. pro--0p,)[X/X']
8.2 ®:=® A Encode(p — n.lnt1)

9 until no more paths

Fig. 3. Algorithm INVGEN+SYMB. It can be obtained by replacing lin8s9 of the algorithm
INVGEN+TEST with the above statements. The functi@aneratePath selects program paths.
Encode createdinear constraints over template parameters that encode the validity of the given
implication.

We assume a templatéX) and a set of reachable states represented by an asser-
tion p(X). We can obtain such sets of states by performing symbolicugie along
a collection of program paths. Then, the implicatiofiX) — ¢(X) must hold for all
valuations ofX since every state ip is reachable.

Following the method in Section 3, we encode the validityhaf implication by a
constraint over the template parameters. In this case,rtbedang yieldslinear con-
straints. In contrast to the cases when the left-hand sidaeofmplication contains
template assertions, in the above implication programatégs haveonstantcoeffi-
cients. Thus, when multiplying additional parameters égpmg due to the application
of Farkas’ lemma) with coefficients attached to the programeables we obtain linear
terms, which, in turn, result in linear constraints.

For example, we consider a template, y, z) that consists of two conjuncts +
0T + ayy +a.z < 0 A B+ Bex+ Byy + B.2 < 0. We assume a set of states
p=(—2<0A-y<0Az+y— 2z <0)reached by symbolic execution. The
encoding of the implicatiop — ¢ yields the constraint

az0.A (0 o) =(ERE) Aa(f) < ().

which is clearly linear.

We assume a functioBncode that translates an implication between an assertion
representing a set of states and a template into a lineatraoriver template param-
eters. Our extended algorithmiWvGEN+SymB appliesEncode on sets of reachable
states computed by symbolic execution of the program. Therighm is presented in
Figure 3. Since it extends the basic algoritmy GEN+TEST by adding the symbolic
treatment of reachable states, we only present the modidigd p

The algorithm NVGEN+SYMB interleaves symbolic execution and collection of
constraints. It relies on an external functiGaneratePath that selects paths through
the control-flow graph of the program, see litd. For a given path, we compute
an assertion representing states that are reachable bytiexpits transitions, see
line 8.1. We use the relational composition operatpwhich is defined by o p/ =

File INTERPROC|INVGEN|INVGEN+Z3| INVGEN + [INVGEN+Z3 +| INVGEN +
INTERPROC| INTERPROC + [INTERPROC +
SymB SymB
Seq X 23.0s 1s 0.5s 6s 0.5s
Seq-z3 X 23.0s 9s 0.5s 6s 0.5s
Seqg-len X T/IO T/O T/O 4s 2.8s
nested X T/O T/O 17.0s 3s 2.3s
svd(light) X T/O T/O 10.6s T/O 14.2s
heapsort X T/IO T/O 19.2s 48s 13.3s
mergesort X T/O 52s 142s T/O 170s
SpamAssassin-logp vV T/IO 5s 0.28s 1s 0.4s
apache-get-tag X 0.4s 10s 0.6s 3s 0.7s
sendmail-fromgp X 0.3s 5s 0.3s 5s 0.3s
Examplel(b) X T/O T/O 0.4s 1s 0.35s

Table 2. Comparison of variations of invariant verification techniques asm=RPRoOC on addi-
tional benchmark problems inspired by [21}/* and “x” indicate whether the invariant com-
puted by NTERPROC proves the assertions, and “T/O” stands for time out.

X", pX"/X'] A p'[X"/X], to compute the transition relation of the whole path.
The existential quantification in ling.1 projects this relation to the successor states
v, i.e., it computes the range of the relation. We use varigdniaming to keep the re-
sulting assertion consistent with the templates over prograriables. We conjoin the
constraint resulting from the translation of the implicatbetween the reachable states
 and the corresponding templaté,, ., to the dynamic constraidt before proceeding
with the next path. We assume an external procedure thatseldinite set of paths. In
our implementation, we apply directed symbolic executhat attempts to unroll loops
at least one time.

The following theorem states that our optimizations arensland relatively com-
plete).

Theorem 1. [Correctness] If AlgorithmINvVGEN+ABSINT, INVGEN+TEST, or IN-
VGEN+SYMB on input programP and invariant template map returns (a) “coun-
terexamplesy, .. ., s, then there is an execution of the program that reaches thare
location; (b) “inductive invariant map;*,” then n* is an invariant map forP, and the
program P is safe; (c) “no invariants with templatg,” then there is no invariant map
for P with the given invariant template map

5 Experiences

ImplementationWe implemented the algorithmsVGEN+TESTand INVGEN+SYMB
using SICStus Prolog [29], the linear arithmetic solver(gJp [18] and the Z3
solver [8] as the backend to solve non-linear constraintseMtescribing the appli-
cation of INVGEN together with Z3, we shall writeNvGEN+Z3. We apply the Ni-
TERPROC [22] tool for abstract interpretation over numeric domakgasd use the PPL

backend for polyhedra, mainly due to its source code aviéithalin principle, a variety
of other tools could be used instead, e.g., the ASPIC tooleémpnting the looka-
head widening and acceleration techniques [11, N} GEN provides a frontend for C
programs, which relies on CIL infrastructure for C programalgsis and transforma-
tion and abstracts from non-arithmetic operations appgan the input program. We
implement the following additional variable eliminatioptonization. The additional
constraints obtained from dynamic and static strengtlgeaie linear. In particular, the
additional variables that encode implication between sylinlstates and templated,
in the previous section, can be eliminated. We perform thipkfication step before ap-
plying the (expensive) techniques for solving non-lineamstraints. For our constraint
logic programming-based implementation, this results iaduction of the number of
calls to the linear arithmetic solver. When using the SAT apph, it allows us to avoid
applying the propositional search to constraints that @asdived symbolically.

In our experimental evaluation, we observed thatvGEN+TEST and IN-
VGEN+SymB offer similar efficiency improvement, with a few exceptiomben IN-
vGEN+SYMB was significantly better. To keep the tables with experimletdta com-
pact, we only describe evaluation of the strengthening tisas symbolic execution
INVGEN+SYMB.

Software Verification Challenge Benchmarkée applied NVGEN on a suite of soft-
ware verification challenge programs described in [21]. &@mples in this benchmark
are extracted from large applications by mining a securitinerability database for
buffer overflow problems. We use the corrected versions eégdlprograms, using the
buffer access checks as assertions. The suite consistgpaddams’ Using polyhedral
abstract domain,NTERPROC computes invariants that are strong enough to prove the
assertion for half of them. The constraint based invariamegation together with the
SAT-based encoding, i.e.NVGEN+Z3, generates invariants for all programs within
36.5 seconds of total time. Using the CLP backendy GEN handles 11 examples
within 6.3 seconds, and times out on one program, which is handledW@EN+Z3 in

5 seconds. Using the static and dynamic strengthening thestim this paper, we ob-
tain the following running times. The combinationMGEN+Z3+INTERPROC+SYMB
solves all examples i89.5 seconds, whileNvGEN+INTERPROC+SYMB handles all
examples withird.6 seconds. These experiments demonstrate that the variboszzp
tions can have an effect on verification, but the running simvere too short to draw
meaningful conclusions.

Impact of Dynamic Strengtheninghe collection from [21] did not allow us to perform
a detailed benchmarking of our algorithm, since the runiiimgs on these examples
were too short. We obtained a set of more difficult benchmargpired by [21] by
adding additional loops and branching statements, andd@@v detailed comparison
that describes the impact of static and dynamic strengtlgeini isolation in Table 2.
INTERPROC computes 50 inequalities for each loop head, which resulissignificant
increase in the number of variables in the constraint systénile being an obstacle for

% Due to short running times, we present the aggregated data and dmwiokepany table con-
taining entries for individual programs.

the propositional search procedure in Z3, the increasedeuwf variables does not
significantly affect the CLP-based backend since the auiditivariables appear in lin-
ear terms. In summary, the performancenf GEN+Z3 decreases and the performance
of INVGEN goes up by adding facts frootERPROC.

Integration with BLAST We have modified the abstraction refinement proce-
dure of the BRAST software model checker [15] by adding predicate dis-
covery using path invariants [3]. Table 3 shows how constrabased in-
variant generation can be effective for refining abstrastio The number
of counterexample refinement iterations required is redluge all examples.
For several examples we achieved ter-

mination of previously diverging ab-

straction refinement, and for others the

reduction ranges betwee&y and 400 |File BLAST|BLAST + INVGEN +
percent. INTERPROC + SYmB
Seq diverge 8
SummaryOur experimental evaluation Seg-len diverge 9
leads to the following observations: |fregtest diverge 3
sendmail-fromgp ||diverge 10
— For complex constraint solving[svd(light) 144 43
problems, the additional strengthfSpamassassin-lood| 51 24
ening facilitates significant im-|apache-escape 26 20
provement. It ranges from reducrapache-get-tag 23 15
ing the running time by two orders/sendmail-close-angle 19 15
of magnitude to making timing out|sendmail-7to8 || 16 13

examples solvable within seconds.

— If the constraint solving is al-
. . + +
eady st i the prey st casel 0 2 S L WIETROCs Srue
then the strengthening does no‘? y '

S .. number of refinement steps required to prove
cause any significant running t|m<%he ropert
penalty. property.

Acknowledgments. The second author was sponsored in part by the NSF grants CCF-
0546170 and CNS-0720881. The third author was supportedrirby Microsoft Re-
search through the European Fellowship Programme.

References

1. T. Balland S. K. Rajamani. TheL&M project: Debugging system software via static anal-
ysis. InProc. POPL, pages 1-3. ACM, 2002.

2. D. Beyer, T. Henzinger, R. Majumdar, and A.Rybalchenko. Hiava synthesis for combined
theories. InProc. VMCA| LNCS 4349, pages 378-394. Springer, 2007.

3. D. Beyer, T. A. Henzinger, R. Majumdar, and A. RybalchenkothRavariants. InProc.
PLDI, pages 300-309. ACM Press, 2007.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, AéMin Monniaux, and
X. Rival. A static analyzer for large safety-critical software.Proc. PLDI, pages 196-207.
ACM, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.
29.

M. Colbn, S. Sankaranarayanan, and H. Sipma. Linear invariant gemeuaiiogy non-linear
constraint solving. IfProc. CAV LNCS 2725, pages 420—-432. Springer, 2003.

. P. Cousot. Proving program invariance and termination by parambéstraction, lagrangian

relaxation and semidefinite programming.Rroc. VMCAI| pages 1-24. Springer, 2005.

. P. Cousot and N. Halbwachs. Automatic discovery of linear restramtsg variables of a

program. INPOPL'78 pages 84-96. ACM Press, 1978.

. L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver.Rroc. TACASLNCS 4963,

pages 337-340. Springer, 2008.

. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamicallyodigering likely

program invariants to support program evolutidEEE Trans. Software Eng27(2):1-25,
2001.

R. W. Floyd. Assighing meanings to programs. Mathematical Aspects of Computer
Sciencepages 19-32. AMS, 1967.

L. Gonnord and N. Halbwachs. Combining widening and acceleratibimear Relation
Analysis. InProc. SASLNCS 4134, pages 144-160. Springer, 2006.

D. Gopan and T. Reps. Lookahead wideningPtac. CAV LNCS 4144, pages 452—-466.
Springer, 2006.

B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani.tofatically refining
abstract interpretations. Proc. TACASLNCS 4963, pages 443—-458. Springer, 2008.

S. Gulwani, S. Srivastava, and R. Venkatesan. Program @aly/sonstraint solving. In
PLDI, pages 281-292. ACM, 2008.

T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractioms proofs. InPOPL
04: Principles of Programming Languaggsages 232-244. ACM, 2004.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy alisina¢n Proc. POPL, pages
58-70. ACM, 2002.

C. A. R. Hoare. An axiomatic basis for computer programmi@gmmun. ACM12:576—
580, 1969.

C. HolzbaurOFAI clp(g,r) Manual, Edition 1.3.3Austrian Research Institute for Artificial
Intelligence, Vienna, 1995. TR-95-09.

H. Jain, F. lvancic, A. Gupta, |. Shlyakhter, and C. Wang. Ustatjcally computed in-
variants inside the predicate abstraction and refinement loofCAW) LNCS 4144, pages
137-151. Springer, 2006.

D. Kapur. Automatically generating loop invariants using quantifier eéition. Technical
Report 05431 Peduction and ApplicationsIBFI Schloss Dagstuhl, 2006.

K. Ku, T. Hart, M. Chechik, and D. Lie. A buffer overflow bencrk for software model
checkers. IrProc. ASE 2007.

G. Lalire, M. Argoud, and B. Jeannet. The interproc analyzer.
http://pop-art.inrial pes.fr/peopl e/ bj eannet/ bj eannet
-forge/interproc/index. htm .

Z. Manna and A. Pnuellfemporal Verification of Reactive Systems: Saf8fyringer, 1995.
A. Miné. The octagon abstract domakiigher-Order and Symb. Comp.9:31-100, 2006.
S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraegd-basar-relations analysis.
In Proc. SASLNCS 3148, pages 53—-68. Springer, 2004.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-lineaireagant generation using
Grobner bases. IRroc. POPL pages 318-329. ACM, 2004.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalableiard@ljisear systems using
mathematical programming. Proc. VMCA| LNCS 3385, pages 25-41. Springer, 2005.
A. Schrijver.Theory of Linear and Integer Programmin@iley, 1986.

The Intelligent Systems Laborator§lCStus Prolog User's ManualSwedish Institute of
Computer Science, 2001. Release 3.8.7.

