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Abstract. In this paper we present InvGen, an automatic linear arith-
metic invariant generator for imperative programs. InvGen’s unique fea-
ture is in its use of dynamic analysis to make invariant generation order
of magnitude more efficient.

1 Introduction

Program verification relies on invariants for reasoning about sets of reachable
states [3]. Synthesizing invariants that satisfy a given assertion is a difficult
task. The scalability of existing approaches to invariant generation is severely
limited due to the high computation cost of the underlying symbolic reasoning
techniques.

We present InvGen, an automatic tool for the generation of linear arithmetic
invariants for imperative programs. InvGen uses a constraint-based approach
to generate invariants [2]. InvGen combines it with static and dynamic analy-
sis techniques to solve constraints efficiently [4]. InvGen provides an order of
magnitude efficiency improvement wrt. the existing tools, see [5]. This improve-
ment enables InvGen’s application for automatic software verification, e.g., for
refinement of predicate abstraction by generating invariants for program frag-
ments determined by spurious counterexamples [1].

In this paper, we describe the design and implementation of InvGen and
present a collection of optimizations that were necessary to achieve the desired
scalability. We also describe our experience with applying InvGen on challenge
benchmarks [8] and micro-benchmarks, which containing code fragments that
are difficult to analyze automatically. The experimental results indicate that
InvGen is a practical tool for software verification.

2 Usage

InvGen takes as input a program over linear arithmetic expressions that is
given in C syntax or as a transition relation.1 InvGen uses a template based
technique to compute invariants, which requires that a set of templates is given
as input to the tool. A template is a Boolean combination of linear inequalities
over program variables with coefficients that are kept as parameters. As a result,
InvGen either returns an invariant that proves the non-reachability of the error
location or fails.
1 See [5] for the syntax of transition relations.
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InvGen offers a collection of heuristics to improve scalability of invariant
generation, and allows one to explore various combination of these heuristics.
Support of dynamic/static analysis can be disabled/enabled with some parame-
ters. Dynamic analysis can be performed using concrete or symbolic execution.
Other tools can be used to generate test executions for InvGen. InvGen can
run in the server mode, in which it communicates its input/output via standard
input and output streams. The full set of options is described online [5].

3 Tool

In this section we briefly present the algorithm used by InvGen and focus on
the tool design and implementation.

3.1 Algorithm

InvGen computes linear arithmetic invariants that prove the non-reachability
of the error location. We will call such invariants safe. InvGen applies the tem-
plate based approach [2] for the invariant generation, which assumes an invariant
template at each cut-point location in the program, i.e., at loop entry locations.
Each invariant template consists of parameterized linear inequalities over the
program variables. The specific goal of invariant generation is to find an instan-
tiation of the template parameters that yields a safe invariant. The invariant
templates at the start and error locations of the program are true and false,
respectively. A template instantiation yields an invariant if each program path
stmt1;...;stmtN; between each pair � and �′ of adjacent cut-points satisfies
the inductiveness condition: the instantiated invariant templates η(�) and η(�′)
at the respective cut-points together with the program path form a valid Hoare
triple {η(�)}stmt1;...;stmtN;{η(�′)}.2 We translate the inductiveness condi-
tion into an arithmetic constraint over the template parameters. Each solution
of this constraint yields a safe invariant.

1: x=0;

2: assume(n>0);

3: while(x<n){

4: x++;

5: }

6: assert(x==n);

Fig. 1. Example simple.c

1: x=0;

2: while(x<n){

3: x++;

4: }

5: if(n>0)

6: assert(x==n);

1: assume(p);

2: while(p){

3: ...

4: assume(q);

5: }

6: assert(q);

(a) (b)

Fig. 2. Examples requiring disjunctive invariants

2 {P}stmts{Q} is a valid Hoare triple if each computation that starts in a state
satisfying the assertion Q either terminates in a state satisfying Q or diverges [7]. In
our case, program paths are loop free and hence terminating.
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See Figure 1. The example program simple.c contains a statement assert(p),
which is a short form for if (!p) ERROR;. The entry location of the while loop
is a cut-point location �3. At this location we assume an invariant template αxx+
αnn ≤ α, where αx, αn, α are unknown parameters. The inductiveness condition
for the path from the start location to the loop entry requires the validity of the
triple {true}x = 0; assume(n > 0); {η(�3)}, the condition for the loop iteration
is {η(�3)}assume(x < n); x = x+1; {η(�3)}, and the path from the loop entry to
the error location produces {η(�3)}assume(x ≥ n); assume(x �= n); {false}. The
resulting arithmetic constraint has a following solution for template parameters:
αx = 1, αn = −1, and α = 0. Hence, x− n ≤ 0 is a safe invariant.

Arithmetic constraints that encode the inductiveness condition contain non-
linear arithmetic expressions and are difficult to solve. InvGen improves perfor-
mance of the constraint solving by adding information collected using dynamic
and static analysis techniques.

In the dynamic analysis phase, we execute the program according to a cov-
erage criterion and collect the reached states. By definition, each reached state
must satisfy program invariants. For each reached state, we substitute the pro-
gram variables occurring in the invariant template at the corresponding control
location by their values in the state. Thus, we obtain linear constraints over
template parameters. For simple.c, assume a reached state at the loop entry
such that (x = 0, n = 1). After substituting program variable by their values in
the above template for the location �3 we obtain the constraint over template
parameters αx0 + αn1 ≤ α. Such linear constraints improve the efficiency of
constraint solving [4].

In the static analysis phase, we first apply abstract interpretation in a eager
fashion to compute a collection of invariants – which are not necessarily strong
enough to prove the non-reachability of the error location – that holds for the
program, and then annotate the program with these invariants. The invariants
obtain using abstract interpretation allow InvGen to focus on the synthesis miss-
ing, complex invariants in a goal directed way. Such invariants may be missed by
the abstract interpreter due to the necessary precision loss of join and widening
operators and the limited precision of efficient abstract domains.

3.2 Design

Static Analysis Dynamic Analysis

Constraint solver

Invariants

Constraint Generator

Failed

Failure

TemplateProgram

Success

Fig. 3. InvGen design

We present the design of InvGen in
Figure 3. The input program is passed to
the dynamic and static analyzers. The re-
sults of each analysis together with the pro-
gram and the templates are passed to the
constraint generator. The generated con-
straints are solved by a constraint solver.
If the solver succeeds then InvGen returns
a safe invariants.
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3.3 Implementation
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Fig. 4. InvGen implementation

Figure 4 outlines the implementation of In-
vGen. It is divided into two executables,
frontend and InvGen.

The frontend executable contains a
CIL [10] based interface to C and an ab-
stract interpreter InterProc [9]. The fron-
tend takes a program procedure written
in C language as an input, and applies
InterProc on the program three times us-
ing the interval, octagon, and polyhedral
abstract domains. Then, the frontend out-
puts the transition relation of the program
that is a annotated with the results com-
puted by InterProc. Se [5] for the output
format.

Next, we describe the components of In-
vGen, following Figure 4.

Program minimizer. InvGen minimizes the transition relation of the pro-
gram to reduce the complexity of constraint solving. InvGen computes a mini-
mal set of cut-point locations, and replaces each cut-point free path by a single,
compound program transition. The unsatisfiable and redundant transitions are
eliminated. At this phase, the invariants obtained from InterProc can lead to
the elimination of additional transitions.

Dynamic analysis. InvGen collects dynamic information for the minimized
program using either concrete and symbolic execution. In case of concrete exe-
cution, InvGen collects a finite set of reachable states by using a guided testing
technique. Otherwise, InvGen performs a bounded, exhaustive symbolic execu-
tion of the program. By default, the bound is set to the number of cut-points in
the program. The user can limit the maximum number of visits for each cut-point
during the symbolic execution.

Simplifier. InvGen simplifies all arithmetic constraints locally at each step of
the algorithm.

Consider the phase when the dynamic analysis using symbolic execution pro-
duces additional linear constraints over template parameters. These constraints
contain existentially quantified variables, and the scope of the quantifier is rather
limited. For simple.c, assume that a symbolic state x = 0 ∧ n ≥ 0 is reached
at the loop entry location. For any template evaluation, the symbolic state is
subsumed by the invariant, hence (x = 0 ∧ n ≥ 0) → (αxx + αnn ≤ α).
After the elimination of program variables InvGen obtains the constraints
λ ≥ 0 ∧ −λ = αn ∧ α ≥ 0, where λ is an existentially quantified variable.
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λ does not appear anywhere in the constraint and can be eliminated locally. As
a result, we obtain αn ≤ 0 ∧ α ≥ 0.

InvGen also simplifies constraints obtained by the concrete execution and
abstract interpretation.

Constraint solver. The inductiveness conditions result in non-linear arith-
metic constraints. For simple.c, the inductiveness condition for the error path
{η}assume(x > n); {false} translates to the implication αxx + αnn ≤ α ∧ x >
n → 1 ≤ 0 with universal quantification over the program variables. After the
elimination of the program variables, InvGen obtains the non-linear constraint
λ ≥ 0 ∧ δ ≥ 0 ∧ λαx = δ ∧ λαn + δ = 0 ∧ λα + 1 ≤ δ, where λ and δ are exis-
tentially quantified, non-negative variables that encode the implication validity.
In practice, such existentially quantified variables range over a small domain,
typically they are either 0 or 1.

InvGen leverages this observation in order to solve the constraints by per-
forming a case analysis on the variables with small domain. Each instance of
case analysis results in a linear constraint over template parameters, which can
be solved using a linear constraint solver. This approach is incomplete, since
InvGen does not take all possible values during the case analysis, however it is
effective in practice.

Multiple paths to error location. A program may have multiple cut-point free
paths that lead to the error location, which we refer to as error paths. InvGen
deals with multiple error paths in an incremental fashion for efficiency reasons.
Instead taking inductiveness conditions for all error paths into account, InvGen
computes a safe invariant for one error path at a time. Already computed invari-
ants are used as strengthening when dealing with the remaining error paths.

4 Discussion

We highlight several important aspects of InvGen in detail.

Abstract interpretation. The template instantiation computed by InvGen
may rely on the invariants discovered during the abstract interpretation phase.
InvGen keeps track of such invariants and reports them to the user.

Template generation. The applicability of InvGen depends on the choice
of invariant templates. If the template is too expressive, e.g., if it admits a
number of conjuncts that is larger than required, then the efficiency of InvGen
is decreasing due to the increased difficulty of constraint solving. A template
that is not expressive enough cannot yield a desired invariant.

In our experience, the majority of invariants require a template that is a con-
junction of two linear inequalities. This surprisingly small number of conjuncts
is due to the strengthening using invariants obtained during the abstraction in-
terpretation phase—InvGen focuses on the missing invariants. By default, for
each cut-point location InvGen assumes a conjunction of two parametric linear
inequalities as a template.
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Table 1. Performance of InvGen on bench-
mark inspired by [8]. InvGen* does not apply
dynamic analysis. InvGen** applies neither
static nor dynamic analysis. “T/O” means
time out after 10 minutes.

File InvGen** InvGen* InvGen

Seq 23.0s 0.5s 0.5s

Seq-z3 23.0s 0.5s 0.5s

Seq-len T/O T/O 2.8s

nested T/O 17.0s 2.3s

svd(light) T/O 10.6s 14.2s

heapsort T/O 19.2s 13.3s

mergesort T/O 142s 170s

Spam-loop T/O 0.28s 0.4s

apache-tag 0.4s 0.6s 0.7s

sendmail-qp 0.3s 0.3s 0.3s

Table 2. Application of InvGen for
the predicate discovery in Blast us-
ing path invariants. We show the num-
ber of refinement steps required to
prove the property.

File Blast Blast +
InvGen

Seq diverge 8

Seq-len diverge 9

fregtest diverge 3

sendmail-qp diverge 10

svd(light) 144 43

Spam-loop 51 24

apache-escape 26 20

apache-tag 23 15

sendmail-angle 19 15

sendmail-7to8 16 13

Disjunction. The user can provide disjunctive templates to InvGen, which
yields disjunctive invariants. Currently, InvGen is not practical for disjunctive
invariants.

Nevertheless, programs that require disjunctive invariants appear often in
practice, as illustrated in Figure 2. Example 2(a) relies on a disjunctive loop
invariant n ≥ x ∨ n < 0 to prove the assertion. Similarly, Example 2(b) requires
a disjunctive loop invariant p ∨ q.

Avoiding such program patterns improves the effectiveness of InvGen. For
example, adding a commonly used assumption n ≥ 0 at the start location of the
program in Figure 2(a) eliminates the need for disjunctive invariants.

Concrete vs. symbolic dynamic analysis. In our evaluation, dynamic anal-
ysis using symbolic execution performs better than with the concrete execution.
Symbolic execution produces a smaller set of constraints and leads to the im-
provement of the constraint solving efficiency that is never worse the one achieved
by the concrete execution.

5 Experiences

Verification benchmarks. We applied InvGen on a collection of programs
that are difficult for state-of-the-art software verification tools [8]. The collection
consists of 12 programs. Due to short running times, we present the aggregated
data and do not provide information for each program individually. Using the
polyhedral abstract domain, InterProc computes invariants that are strong
enough to prove the assertion for six programs in the collection. InvGen handles
11 examples in 6.3 seconds, and times out on one program.
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Effect of static and dynamic analysis. The collection [8] does not allow us
to perform a thorough experimental evaluation of InvGen, since the running
times on these examples are too short. We constructed a set of more interesting
programs that is inspired by [8] by extending the programs from this collection
with additional loops and branching statements. Table 1 shows the effect of static
and dynamic analysis when dealing with the constructed examples.

Random input. We developed a tool for the generation of random program.
We try these random programs with InvGen without testing then with testing
feature. We generated 17 programs with three cut-point and one error location
in each of them, see [5]. We observed that for these programs, dynamic analysis
either improves or at least does not decrease the efficiency of invariant generation.
In four cases, the efficiency of InvGen increased by two orders of magnitude.

Integration with Blast. We have modified the abstraction refinement proce-
dure of the Blast software model checker [6] by adding predicate discovery using
path invariants [1]. Table 2 indicates that constraint based invariant generation
can be an effective tool for refining predicate abstraction. For several examples,
Blast diverged due to the disability to find the right set of predicates. In these
cases, InvGen enabled the successful termination of the verification attempt,
while for other cases it reduced the number of the number of refinement iterations
by 25–400%.
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