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Abstract. Unsatisfiability proofs find many applications in verification.
Today, many SAT solvers are capable of producing resolution proofs of
unsatisfiability. For efficiency smaller proofs are preferred over bigger
ones. The solvers apply proof reduction methods to remove redundant
parts of the proofs while and after generating the proofs. One method of
reducing resolution proofs is redundant resolution reduction, i.e., remov-
ing repeated pivots in the paths of resolution proofs (aka Pivot recycle).
The known single pass algorithm only tries to remove redundancies in
the parts of the proof that are trees. In this paper, we present three mod-
ifications to improve the algorithm such that the redundancies can be
found in the parts of the proofs that are DAGs. The first modified algo-
rithm covers greater number of redundancies as compared to the known
algorithm without incurring any additional cost. The second modified al-
gorithm covers even greater number of the redundancies but it may have
longer run times. Our third modified algorithm is parametrized and can
trade off between run times and the coverage of the redundancies. We
have implemented our algorithms in OPENSMT and applied them on
unsatisfiability proofs of 198 examples from plain MUS track of SAT11
competition. The first and second algorithm additionally remove 0.89%
and 10.57% of clauses respectively as compared to the original algorithm.
For certain value of the parameter, the third algorithm removes almost
as many clauses as the second algorithm but is significantly faster.

1 Introduction

An unsatisfiability proof is a series of applications of proof rules on an input for-
mula to deduce false. Unsatisfiability proofs for a Boolean formula can find many
applications in verification. For instance, one application is automatic learning
of abstractions for unbounded model checking by analyzing proofs of program
safety for bounded steps [14, 13,10]. We can also learn unsatisfiable cores from
unsatisfiability proofs, which are useful in locating errors in inconsistent spec-
ifications [22]. These proofs can be used by higher order theorem provers as
sub-proofs of another proof [4].

One of the most widely used proof rules for Boolean formulas is the resolution
rule, i.e., if aVb and —aVc holds then we can deduce bVc. In the application of the
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rule, a is known as pivot. A resolution proof is generated by applying resolution
rule on the clauses of an unsatisfiable Boolean formula to deduce false. Modern
SAT solvers (Boolean satisfiability checkers) implement some variation of DPLL
that is enhanced with conflict driven clause learning [20, 19]. Without incurring
large additional cost on the solvers, we can generate a resolution proof from a
run of the solvers on an unsatisfiable formula [23].

Due to the nature of the algorithms employed by SAT solvers, a generated
resolution proof may contain redundant parts and a strictly smaller resolution
proof can be obtained. Applications of the resolution proofs are sensitive to
the proof size. Since minimizing resolution proofs is a hard problem [17], there
has been significant interest in finding low complexity algorithms that partially
minimize the resolution proofs generated by SAT solvers.

In [3], two low complexity algorithms for optimizing the proofs are presented.
Our work is focused on one of the two, namely RECYCLE-P1vOTS. Lets consider
a resolution step that produces a clause using some pivot p. The resolution step
is called redundant if each deduction sequence from the clause to false contains
a resolution step with the pivot p. A redundant resolution can easily be removed
by local modifications in the proof structure. After removing the redundant
resolution step, a strictly smaller proof is obtained. Detecting and removing all
such redundancies is hard. RECYCLE-PIvOTSs is a single pass algorithm that
partially removes redundant resolutions. From each clause, the algorithm starts
from the clause and follows the deduction sequences to find equal pivots. The
algorithm stops looking for equal pivots if it reaches to a clause that is used to
deduce more than one clause.

In this paper, we present three algorithms that are improved versions of
REcYCLE-P1voTs. For the first algorithm, we observe that each literal from
a clause must appear as a pivot somewhere in all the deduction sequences from
the clause to false. Therefore, we can extend search of equal pivots among the
literals from the stopping clause without incurring additional cost. For the sec-
ond algorithm, we observe that the condition for the redundant resolutions can
be defined recursively over the resolution proof structure. This observation leads
to a single pass algorithm that covers even more redundancies but it requires an
expensive operation at each clause in a proof. Note that the second algorithm
does not remove all such redundancies because the removal of a redundancy may
lead to exposure of more. Our third algorithm is parametrized. This algorithm
applies the expensive second algorithm only for the clauses that are used to
derive a number of clauses smaller than the parameter. The other clauses are
handled as in the first algorithm. The parametrization reduces run time for the
third algorithm but also reduces the coverage of the redundancy detection.

We have implemented our algorithms in OPENSMT [5] and applied them on
unsatisfiable proofs of 198 examples from plain MUS track of SAT11 competition.
The original algorithm removes 11.97% of clauses in the proofs of the examples.
The first and the second algorithm remove 12.86% and 22.54% of the clauses
respectively. The third algorithm removes almost as many clauses as the second



algorithm in lesser time for the parameter value as low as 10. We also observe
similar pattern in reduction of the unsatisfiable cores of the examples.

Related work: Two kinds of methods have been proposed in the literature for
the resolution proof minimization. The first kind of methods interact with the
SAT solver for proof reduction. In [23], a reduced proof is obtained by iteratively
calling a SAT solver on the unsatisfiable core in the proof obtained from the last
iteration. These iterations run until a fixed point is reached. Subsequently, many
methods were developed to obtain minimal/minimum satisfiability core with the
help of a SAT solver [12,16,11,6,15,8,9]. Their objectives were not necessarily
to obtain a smaller proof but very often a consequence of a smaller unsatisfiable
core is a smaller proof. The second kind of methods operate independently from
the SAT solver and post-process the resolution proofs. The methods in [21,2]
analyzes conflict graphs in the SAT solver (without re-running the solver) to
find shared proof structures and attempts to obtain shared sub-proofs among
the resolution proofs of the learned clauses. In [1], a method is presented that
minimizes a resolution proof by heuristically reordering resolution steps using
‘linking graph’ between literals. In [18], the resolution proof rewriting rules [7]
are iteratively applied to reorder resolution steps locally ([1] does it in a global
context) and it is expected to expose some redundancies, which are removed by
applying RECYCLE-P1VOTS after each iteration. This paper only aims to find
algorithms that significantly minimize the proofs within low cost. Indeed, many
of the above methods achieve more minimization as compare to our algorithms
but with higher costs.

This paper is organized as follows. In section 2, we present our notation and
the earlier known algorithm. In sections 3, 4, and 5, we present our three algo-
rithms. In section 6, we discuss their complexities. We present our experimental
results in section 7 and conclude in section 8. In appendix A, we present the
proof of correctness of our algorithms.

2 Preliminaries

In this section, we will present our notation and one of the proof reduction
algorithms presented in [3].

Conjunctive normal form(CNF): In the following, we will use a,b,¢,... to
denote Boolean variables. A literal is a Boolean variable or its negation. We will
use p,q,T,s... to denote literals. Let s be a literal. If s = —a then let —s = a.
Let var(s) be the Boolean variable in s. A clause is a set of literals. A clause is
interpreted as disjunction of its literals. Naturally, empty clause denotes false.
We will use A, B, C, ... to denote clauses. Let C' and D be clauses. We assume
for each Boolean variable b, {b,—b} ¢ C. Let C'V D denote union of the clauses,
and let sV C denote {s} VC. A CNF formula is a set of clauses. A CNF formula
is interpreted as conjunction of its clauses. We will use P,Q, R, ... to denote
CNF formulas. Let P be a CNF formula. Let Atoms(P) be the set of Boolean



variables that appear in P. Let Lit(P) = {a, —ala € Atoms(P)}. P is satisfiable
if there exist a map f : Atoms(P) — {0,1} such that for each clause C' € P,
there is s € C for which if s = a then f(a) =1 and if s = —a then f(a) =0. P
is unsatisfiable if no such map exists.

Resolution proof: A resolution proof is obtained by applying the resolution
rule to an unsatisfiable CNF formula. The resolution rule states that clauses aVC
and —a V D imply clause C'V D. aV C' and —a V D are the antecedent clauses.
C'V D is the deduced clause and a is the pivot. Let CV D = Res(aV C,—aV D, a)
if for each Boolean variable b, {b,~b} ¢ C'V D. We say a is the resolving literal
between the clauses a V C and C'V D. Symmetrically, —a is the resolving literal
between —aV D and C'V D. Resolution is known to be sound and complete proof
system for CNF formulas. In particular, a CNF formula is unsatisfiable if and
only if we can deduce empty clause by applying a series of resolutions on the
clauses of the the formula. The following is a definition of a labelled DAG that
records the series of applications of the resolution rule.

Definition 1 (Resolution proof). A resolution proof P is a labeled DAG
(V, L, R, cl, piv,vg), where V is a set of nodes, L and R are maps from nodes to
their parent nodes, cl is a map from nodes to clauses, piv is a map from nodes to
pivot variables, and vg € V' is the sink node. P satisfies the following conditions:

(1) V is divided into leaf and internal nodes.

(2) A leaf node v has no parents, i.e., L(v) = R(v) = L and piv(v) = L.

(8) An internal node v has exactly a pair of parents L(v) and R(v) such that
c(v) = Res(cl(L(v)), cl(R(v)), piv(v)).

(4) vo is not a parent of any other node and cl(vg) = 0.

P is derived from unsatisfiable CNF formula P if for each leaf v € V, cl(v) €
P. Let Lit(P) = Lit({cl(v)|v € V}). Let children(v) = {v € Vv = L(v') Vv =
R(v')}. If v € children(v) then let rlit(v,v") be the resolving literal between v
and v/, i.e., if v = L(v") then rlit(v,v') = piv(v') else rlit(v,v") = —piv(v’).

Since we will be dealing with the algorithms that modify resolution proofs,
we may refer to a resolution proof that satisfies all the conditions except the
third. We will call such an object as proof DAG.

Proof reduction: The resolution proofs obtained from SAT solvers may have
redundant parts, which can be partially removed during the post-processing
using low complexity algorithms. We focus on such an algorithm introduced
in [3], namely RECYCLE-P1vOTs. The observation behind the algorithm is that
if there is a node v € V such that each path from v to vy contains a node v’
such that piv(v) = piv(v’) then the resolution at node v is redundant. v can
be removed using an inexpensive transformation of the resolution proof. The
transformed resolution proof is a strictly smaller than the original resolution
proof. We will call this minimization redundant pivot reduction.

In figure 1, we present an algorithm RMREDUNDANCIES, which is a repro-
duction of RECYCLE-PIVOTS from [3]. RMREDUNDANCIES takes a resolution



global variables

(V, L, R, cl, piv,vp) : resolution proof visited : V — B = \z.false
fun RMREDUNDANCIES(P) fun RESTORERESTREE(v: node)
begin begin
(V,L, R, cl,piv,vo) :== P 1 if visited(v) then return v
RMPIVOTS(v0, 0) 2 visited(v) := true
visited := A\z.false 3 if piv(v) = L then return v
vo := RESTORERESTREE(vp) 4 if L(v) = L then
end 5 v := RESTORERESTREE(R(v))
fun RMP1voTs(v: node, D: literals) s elsif R(v) = | then
begin 7 v’ := RESTORERESTREE(L(v))
1 if visited(v) then return s else
2 visited(v) := true o v := RESTORERESTREE(L(v))
s if piv(v) = L then return 10 vy := RESTORERESTREE(R(v))
4 if |children(v)| > 1 then D := () |11 match (piv(v) € cl(vi), ~piv(v) € cl(v.)) with
s if piv(v) € D then 12 | (true, true) ->v' := v
¢ R):=1 13 | (true, false) => v’ := v,
7 RMP1vors(L(v), D) 14 | (false,.) => o' ==
s elsif —piv(v) € D then 15if v = v’ then
o Lw):=1 16 cl(v) :== Res(v, vr, piv(v))
10 RMP1vors(R(v), D) 17 else
11 else 18 for each u:v = L(u) do L(u) := v’ done
12 RMP1vors(L(v), D U {piv(v)}) |10 for each u:v = R(u) do R(u) :=v" done
13 RMPIVOTS(R(v), DU{=piv(v)}) |20 return v’
end end

Fig. 1. RMREDUNDANCIES, a dual pass resolution proof reduction algorithm from [3].

proof P as input and only removes the redundancies in parts of P that are trees.
This algorithm traverses P twice using two algorithms, namely RMP1voTs and
RESTORERESTREE. RMPIvOTS detects and flags the redundant clauses in tree
like parts of resolution. RESTORERESTREE traverses the flagged resolution proof
and removes the redundant clauses using appropriate transformations.

RMPi1vOTs recursively traverses the proof DAG in depth first manner.
RMP1vOTS takes a node v as the first input argument. At line 1-2 using map
visited, it ensures that v is visited only once. At line 3, if v is a leaf then the
algorithm returns. The algorithm also takes a set of literals D as the second
input argument. D is a subset of the resolving literals that have appeared along
the path using which DFS has reached v via the recursive calls at lines 7, 10,
12, and 13. At line 4, D is assigned empty set if v has multiple children. Conse-
quently, D contains only the resolving literals that appeared after the last node
with multiple children was visited. At line 5 and 8, if piv(v) or —piv(v) is found
in D, then we have detected a redundant resolution step. The algorithm flags
the detected redundant clause by removing one of the parent relations at lines 6
or 9. This modification in parent relations violates the conditions of a resolution
proof.
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Fig. 2. Each node is labelled with a clause and assigned a number as a node id. The
left parent corresponds to L parent and the right parent corresponds to R parent. The
pivot used for producing a node can be inferred by looking at the clauses of the node
and its parents. (a) An example resolution proof with a redundant resolution at node
6. (b) A proof DAG obtained after running RMP1vVOTS. (c) A resolution proof obtained
after running RMREDUNDANCIES.

After running RMP1voTs, RMREDUNDANCIES calls RESTORERESTREE to
remove the flagged clauses. RESTORERESTREE traverses the proof DAG in the
order of parents first. RESTORERESTREE takes a node v as input and returns a
node v’ that has a valid sub-proof (line 15-16) and replaces v in the resolution
proof (line 17-20). If v is a flagged node then v’ is the node that also replaces
the remaining parent of v (line 4-6). If v was originally not flagged then it may
happen that one of its new parents v; and v, may not contain the literals corre-
sponding to piv(v) (line 9-12). In this case, v is treated as a flagged node(line
13-14). Please look in [3] for more detailed description of RESTORERESTREE.

Ezample 1. Consider the node 6 of the resolution proof presented in figure 2(a).
The resolution at node 6 is redundant because the path from 6 to sink node 1
contains node 2 and both nodes 6 and 2 have pivot a. RMP1vOTSs will reach to
node 6 with D = {a, b, c}. Therefore, R(6) will be assigned L. In figure 2(b), we
show a proof DAG obtained after running RMP1voTs. The subsequent run of
RESTORERESTREE produces a resolution proof shown in figure 2(c).

For efficiency, RMP1vVOTS not so eagerly flags clauses for removal. In the fol-
lowing three sections, we will present three new algorithms to replace RMP1voTs
that will detect more redundancies without adding much additional cost.
RESTORERESTREE is general enough such that in all the three following al-
gorithms it will be able to subsequently restore the resolution proof.

3 Using literals of clauses for redundancy detection

In this section, we will present our first modification in RMP1vOTs that leads to
detection of more redundant resolutions without additional cost.



For each node v € V, we observe that each literal in ¢l(v) has to act as a
resolving literal in some resolution step along each path to the sink vy because
cl(vp) is empty and a literal is removed in the descendants only by some resolu-
tion (Lemma 1 in appendix A). Now consider a run of RMP1vOTS that reaches to
a node v that has multiple children. At this point of execution, RMPIVOTS resets
parameter D to empty set. Due to the above observation, we are not required
to fully reset D and can safely reset D to cl(v).

In figure 3, we present our first algo-
rithm RMPIvoTs* which is a modified
version of RMPIvoTs. The only modifi- fun RMP1voTs*(v: node, D: literals)
cation is at line 4 that changes the reset begin

operation. This modification does not re- * if ?isz’t@d(v) then return
quire any changes in RESTORERESTREE, 2 Visited(v) .= true
3 if piv(v) = L then return
Example 2. Consider the resolution proof 4 if |children(v)| > 1 then D := cl(v)
presented in figure 4(a). The resolution at s if piv(v) € D then
node 7 is redundant but RMP1voTs will ¢ R(v):=1
fail to remove it because node 5 has mul- 7 RMPIVOTS*(L(v), D)
tiple descendants and the algorithm will ® elsif —piv(v) € D then
not look further. In RMPIvoTS*, the lit- ° L(v) =1 .
erals of cl(5) are added in D therefore our i) ef:zdPIVOTS (R(v), D)

modification enables it to detect the re- 12 RMPIvoTs*(L(v), D U {piv(v)})
dundancy and remove it. The minimized RMPIVOTS*(R(U)7 D U {—piv(v)})
proof is presented in figure 4(b). end

Fig. 3. RMP1vOTS*, our first improved
4 All path redundancy detectiomsion of RMPIVOTS.

In this section, we present our second modification in function RMP1voTs that
considers all paths from a node to the sink to find the redundancies. This mod-
ification leads to even greater coverage in a single pass of a resolution proof but
it may lead to a longer run time.
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e
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Fig.4. (a) An example of resolution proof on which RMPIvOTS fails to detect the
redundancy at node 7. (b) Minimized form of the example.




In the second modification, we additionally compute a set of literals, which
we call the expansion set, for each node to guide the removal of redundant
resolutions. For a node v € V, the expansion set p(v) is the largest set of literals
such that if some proof transformation among ancestors of v leads to appearance
of literals from p(v) in cl(v) then the resolution proof remains valid. Due to the
definition, p(v) is a subset of the resolving literals that appear in all the paths
from v to vy. We cannot add all the resolving literals that appear in the paths
in p(v) because of the following reason. In a path from v to vy, if literals s and
—s both appear as resolving literals then only the one that appears nearest to
v can be added to p(v). Otherwise, an expansion allowed by p(v) may lead to
the internal clauses that have both s and —s. If there are two paths in which s
and —s occur in opposite orders then none of them can be added to p(v). The
following equation recursively defines the expansion set for each node.

0 if v =1

p(v) = ﬂ p(v") U {rlit(v,v")} \ {-rlit(v,v")} otherwise. (1)
v’ €children(v)

To understand the above equation, for each v' € children(v) lets assume we have
the expansion set p(v’). All the paths from v to vy that goes via v’ must have
seen resolving literals p(v') U {rlit(v,v")}. If —rlit(v,v") appears in p(v’) then we
need to remove it as noted earlier. Therefore, p(v) is the intersection of these
resolving literal sets corresponding to the children of v. If piv(v) or —piv(v) is
in p(v) then p(v) allows removal of the resolution step at v.

In figure 5, we present the second modified algorithm ALL-RMPI1vOTS that
implements the above computation of p and flags the resolution steps accord-
ingly. The algorithm can replace RMP1voTs without any changes in RESTOR-
ERESTREE. In this presentation of the algorithm, we assume that initially all
nodes of V are reachable from vg. Initially, the global variable p maps vy to
() and rest of the nodes to all literals appear in P. We initialize p in this way
because if a node that eventually becomes unreachable from vy and has parents
that are reachable from vy then we can consistently compute p for the parents.
ALL-RMP1vOTS takes a node v as input and decides to visit the node now or
not. The condition at line 1 ensures that each node is visited only if it is an
internal node, only once, and if its parents are already visited. ALL-RMPI1vOTS
traverses P in the reverse topological order. During the visit of v, the loop at
line 6 computes p(v) slightly differently from the recursive equation (1). Subse-
quently at lines 11-12, the algorithm drops the parent relations if p(v) contains
piv(v) or —piv(v). The algorithm does not remove —rlit(v,v’) from p(v') at line
7 as per the equation (1) because p(v’) cannot contain —rlit(v,v"). That is the
case because, during the earlier visit to v/, if p(v’) contained —rlit(v,v") then
the edge between v’ and v must have been removed. At lines 13-14, a recursive
call even for an ex-parent is made because if there were other children of the
ex-parent and all of whom have been visited earlier then the ex-parent must
be waiting to be visited. Due to the initialization of p, if children(v) is empty
then both the if-conditions at lines 11-12 are true and both the parent relations



global variables

p: V — literal set := (Az.Lit(P))[vo — 0] k : integer (parameter)
fun ALL-RMP1vOTS(v: node) fun k-RMP1vOTS(v: node)
begin begin
1 if visited(v) V piv(v) = LV 1 if visited(v) V piv(v) = LV
2 ' € children(v).—wisited(v") 2 I € children(v).~wisited(v")
3 then 3 then
4 return 4 return
5 wisited(v) := true 5 wvisited(v) := true
s for each v’ € children(v) do 6 if children(v) > k then
¢ pv) = o) N () U {rlit(o,0)}) |7 p(v) = ellv)
s done s else
9 vr = L(v) 9 for each v’ € children(v) do
10 v = R(v) 10 p(v) = pv)N(p(v") U{rlit(v,v")})
1 if piv(v) € p(v) then R(v) := L 11 done
12 if —piv(v) € p(v) then L(v) :== L 12 vg := L(v)
13 ALL-RMP1vOoTS(v1.) 13 g = R(v)
14 ALL-RMP1VOTS(vR) 14 if piv(v) € p(v) then R(v) := L
end 15 if —piv(v) € p(v) then L(v) := L
16 K-RMPI1vOTS(vr)
17 K-RMPIvVOTS(vR)
end

Fig.5. ALL-RMP1voTrs and K-RMPIvOTS are our second and third modified algo-
rithms respectively. Each can replace RMP1voTs. To find redundant resolutions, ALL-
RMP1voTs considers all the paths from a node to the sink. Depending on the parameter
k, K-RMP1voTs only considers the paths that contain nodes with less than k children.

are removed. Therefore, if a node eventually becomes unreachable from the sink
then the node also becomes isolated. Since removal of a redundancy may expose
more redundancies, the algorithm removes the redundancies partially.

Ezample 3. Consider the resolution proof presented in figure 6(a). The resolution
at node 10 is redundant because the pivot of node 10 is variable b and literal
b appears as a resolving literal on both the paths from node 10 to node 1.
RMP1voTs* fails to detect it because node 6 has multiple descendants and c¢l(6)
does not contain b. ALL-RMP1vOTS computes the following values for map p.

p(2) ={b} p(4) ={d,b} p(5)={~d,b} p(6)={a,b} p(10)={a,b, ~c}

Since b € p(10), ALL-RMP1vOTS detects the redundancy. In figure 6(b), the
minimized proof that is obtained after consecutive run of ALL-RMP1voTs and
RESTORERESTREE is presented.

5 Redundancy detection up to k children

In this section, we present our third algorithm that only considers a fraction of
paths from a node to the sink to find the redundancies. The fraction is deter-
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Fig. 6. (a) An example of resolution proof on which RMP1voTs* fails to detect the re-
dundancy at node 10. (b) Minimized form of the example obtained by ALL-RMPIVOTS.

mined by a parameter k. This algorithm only considers the paths that contain
nodes with less than k children. In the following equation, we present a modified
definition of the expansion set that implements the restriction.

0 if v =g
_ Jd) if [children(v)| > k
o) = ﬂ p(v") U {rlit(v,v")} \ {-rlit(v,v")} otherwise.

v’ Echildren(v)

If a node v has more than or equal to k children then the above equation under-
approximates the expansion set by equating it to cl(v). This modification may
decrease the cost of computation of the expansion sets but may also lead to fewer
redundancy detection.

In figure 5, we also present our third algorithm K-RMPIVOTS using the
above definition of expansion set. K-RMPIvOTs is a modified version of
ALL-RMP1vOTS. At line 6, this algorithm introduces an if-condition that checks
if the node v has more than or equal to k children. If the condition holds than
the algorithm inexpensively computes p(v). Otherwise, this algorithm operates
as ALL-RMP1voTS.

6 Complexity

RMP1vOTS* visits each node of the input resolution proof only once. The worst
case cost of visiting each node for RMP1voTs* is O(log(|Lit(P)|)) because of
the find and insert operations on D. Therefore, the complexity of RMP1voTs*
is O(V llog(|Lit(P))))-

ALL-RMP1voTs, and K-RMP1vOTS also visit each node of the input res-
olution proof only once. For each visited node, ALL-RMPIVOTS iterates over
children and applies the intersection operation. Since total number of edges in a

10



Algorithms avg. % reduction|avg. % reduction
in proof size |in unsat core size|time(s)

RMP1IvoTs 11.97 0.98 1753
RMmPIvoTs* 12.86 1.10 1772
K-RMP1voTs with k =5 19.60 2.13 2284
K-RMP1voTs with k£ = 10 21.14 2.41 2599
K-RMP1voTs with k£ = 20 21.90 2.67 2855
ALL-RMP1voTs 22.54 2.93 5000

Fig. 7. We applied our algorithms to the resolution proofs obtained by OPENSMT for
198 examples from plain MUS track of SAT11 competition. The proofs in total contain
144,981,587 nodes.

Algorithms avg. % reduction|avg. % reduction
in proof size |in unsat core size|time(s)

RmPIvoTs 6.35 1.52 17.2
RMP1voTs* 6.69 1.69 18.0
K-RMP1vors with k£ =5 10.10 2.76 24.1
K-RMP1voTs with k£ = 10 10.43 2.88 27.8
K-RMP1voTrs with k£ = 20 10.54 2.90 31.7
ALL-RMP1voTs 10.58 291 51.3

Fig. 8. We also applied our algorithms to the resolution proofs obtained by OPENSMT
for 132 examples from SMTLIB. The proofs in total contain 13,629,927 nodes.

resolution proof are less than twice the number of the nodes in the proof, the total
number of intersection operation is linearly bounded. In worst case, each inter-
section may cost as much as the total number of literals in the resolution proofs.
Therefore, The worst case average cost of visiting each node for ALL-RMPI1vOTS
is O(|Lit(P)|). K-RMP1vOTS has worst case complexity as ALL-RMP1vOTS. The
complexities of ALL-RMP1vOoTs and Kk-RMP1voTs are O(|V||Lit(P)]).

Since the number of literals are usually small compare to the number of
nodes, we observe in experiments that although the intersections are expensive
but the run times do not grow quadratically as number of nodes increases.

7 Experiments

We implemented our algorithms within an open source SMT solver
OPENSMT [5]. We applied our algorithms to the resolution proofs obtained
by OPENSMT for 198 unsatisfiable examples from plain MUS track of SAT11
competition. We selected an example if a proof is obtained with in 100 sec-
onds using default options of OPENSMT and has resolution proof larger than
100 nodes.! These examples in total contain 144,981,587 nodes in the resolu-
tion proofs. The largest proof contains 9,489,571 nodes. In figure 7, we present
the results of the experiments. We applied K-RMP1vOTSs with three values of

! Please find detailed results at http://www.ist.ac.at/~agupta/sat12/index.html
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k: 5, 10, and 20. The original algorithm RMPIVOTS removes 11.97% of nodes
in the proofs of the examples. RMPIvoTs* and ALL-RMPIvoTs additionally
removes 0.89% and 10.57% of nodes respectively. Even for small values of k,
K-RMP1vOTS reduces the proofs about as much as ALL-RMPI1voTs, but within
significantly less run times. We observe the similar pattern in reduction of the
unsat cores.

The run time of RMPIVOTS* is almost equal to RMPIVOTS as expected. Due
to the costly computations of the intersections of sets of literals, ALL-RMP1voTs
shows significantly increased run time as compared to RMP1voTs. K-RMPI1vOTS
provides a parameter that allows one to achieve the proof reduction almost as
much as ALL-RMP1vOTs and within the run times almost as less as RMPIvoTs*.

We also selected 132 unsatisfiable examples from smtlib benchmarks in the
theory of QF_UF to test the performance of our algorithms in another setting.!
These examples in total produce 13,629,927 nodes in the resolution proofs. The
largest proof in the examples contains 275,786 nodes. In figure 8, we present the
results of applying our three algorithms to the examples. We observe the similar
pattern in the results as observed in previous example set.

We note that the % of proof reduction may vary a lot for individual examples
(from 0% to 48%).! We also observe that the two example sets have different
absolute % reduction in proof sizes.

In figure 9, we plotted the relative performances of RMPIVOTS, ALL-
RMP1voTs, and k-RMP1voTs with k& = 10 for the individual examples with
proof sizes greater than 10000 nodes. In figure 9(a), we plot the run times of
RMP1vOTs verses the proof sizes. The dotted line in the plot denotes a linear
growth. We observe that the run times grow non-linearly but for the most exam-
ples the run times are close to the linear line. In figure 9(b), we observe that the
ratios of the run times of ALL-RMP1vOoTS and RMP1vVOTS have increasing trend
with the increasing proof sizes, which follows from the difference in their com-
plexities. In figure 9(c), we observe that the ratios of run times of K-RMPIvVOTS
with £ = 10 and RMPIvVOTS are fairly constant across the different proof sizes,
which is the result of the heuristic. In figure 9(d), we observe that the ratios of
the reductions in the proofs by ALL-RMP1voTs and K-RMP1voTs with k£ = 10
remain below 1.1 for most of the examples.

8 Conclusion

We presented three new single pass algorithms that can find redundant res-
olutions even in the resolution proofs that have DAG form, without causing
significantly large run times. Since these algorithms do not try to escape a local
minimum, the improvements in reductions due to these algorithms are limited.
For an analogy, we can compare these algorithms with compiler optimizations in
which an efficient and less compressing algorithm is always welcomed as compare
to an expensive and more compressing algorithm.

These algorithms can be further harnessed by placing them in the iterative
algorithm of [18]. We leave that for future work. We specially note that the addi-
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Fig.9. (a) Run times of RMPIVOTS vs. number of nodes in the proofs. The dotted
line in the plot denotes a linear growth. (b) Ratio of the run times of ALL-RMPIvOTS
and RMPIvVOTS vs. number of nodes in the proofs. (¢) Ratio of the run times of K-
RMP1voTs with & = 10 and RMP1vVOTS vs. number of nodes in the proofs. (d) Ratio of
reduction in the proofs by ALL-RMP1voTs and K-RMP1voTs with £ = 10 vs. number
of nodes in the proofs. For these plots, we only used the examples from the earlier
benchmarks that have more than 10000 nodes.

tional rules (other than A1 and A2) for restructuring a resolution proof presented
in [18] become redundant if applied in combination with our algorithms.
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A Proof of correctness and complexity

In this section, we will present proof of correctness of our modifications. We
need to define some notation first. Let (V| L, R,cl, piv,v9) be a proof DAG.
Let p be defined by the recursive equation 1. Let cl?(v) = cl(v) U p(v). Let
Res*(C,D,a) = (C\{a}) V(D \{~a}).

In the following definition, we will define an invariant for the input of RE-

STORERESTREE. We will show that RMP1voTs* and ALL-RMPIvVOTS trans-
forms the input resolution proof into a proof DAG that satisfies the invariant.

Definition 2 (Restorable property). The proof DAG (V, L, R, cl, piv,vy) is
restorable if each internal node v € V' satisfies the following conditions.

14



(1) L(v) # LV R(v) # L
)= LV ER(

(2) if L(v) = LV R(v) = L then
clP(L(v)) if R(v) =L
(3) clP(v) D K clP(R(v)) if Llv) =L
Res*(cl?(L(v)), cl?(R(v)), piv(v)) otherwise

Theorem 1. If a proof DAG is restartable then RESTORERESTREE transforms
the proof DAG into a resolution proof.

We will not provide a proof for the above theorem. Please look in [3] for the
proof. To prove the correctness, we will prove that during the runs of both the
algorithms maintain the following invariant.

Definition 3 (Invariant). A proof DAG (V, L, R, cl,piv,vy) satisfies this in-
variant if each reachable from sink and internal node v € V' satisfies the following
conditions.

(1) L(v) £ LV R@v) # L
(2) if R(v) # LAL(v) # L then cl(v) = Res(cl(L(v)), cl(R(v)), piv(v))
19) 4 R0y = L thos a2 (o)) and pio(0) € plo

(4) if L(v) = L then cl(v)u{-piv(v)} 2 cl(L(v)) and —piv(v) € p(v)

where, U is disjoint union.

It can be easily checked that the invariant is a stronger property than then the
restorable property. Since both RMPI1voTs* and ALL-RMPI1VOTS only remove
edges from a proof DAG, conditions 1 and 2 of the invariant will be true trivially.
Further, first half of 3 and 4 are also true trivially. To show validity of the rest
of the conditions that we need to prove the following lemma.

Lemma 1. If the proof DAG satisfies the invariant then for each v € V, cl(v) C
p(v).

Proof. We prove it by induction over the height of the proof DAG starting from
sink node. The base case at sink node is trivially true. By induction hypothesis,
for a node v € V, lets assume for each v € children(v), cl(v') C p(v'). Let
v = L(v") and the proof for the other case is similar. Due to condition (2) and
(3) of the invariant, cl(v) C p(v') U {piv(v’)}. Due to definition of p, we can
derive cl(v) C p(v). O

Theorem 2. RMPIVOTS* maintains the invariant.

Proof. The theorem is due to the previous lemma and the correctness proof of
RECYCLE-PIVOTS from [3]. O

Theorem 3. ALL-RMPIVOTS maintains the invariant.
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Proof. ALL-RMPIVOTS traverses the proof DAG in reverse topological order.
Therefore, a node is visited only when all the ancestors of the node has been
visited. The computed value of p for the node will not be changed due to future
changes since all the future change will not happen with in the ancestors of the
node. Hence by construction, the second half of the third and fourth conditions
will be satisfied. O

The above theorems are sufficient to prove the correctness of our algorithms.

16



