
Improved Single Pass Algorithms for
Resolution Proof Reduction

(poster presentation)

Ashutosh Gupta

IST, Austria

An unsatisfiability proof is a series of applications of proof rules on an input
formula to deduce false. Unsatisfiability proofs for a Boolean formula can find
many applications in verification. For instance, one application is automatic
learning of abstractions for unbounded model checking by analyzing proofs of
program safety for bounded steps [6, 5, 4]. We can also learn unsatisfiable cores
from unsatisfiability proofs, which are useful in locating errors in inconsistent
specifications [10]. These proofs can be used by higher order theorem provers as
sub-proofs of another proof [2].

One of the most widely used proof rules for Boolean formulas is the resolution
rule, i.e., if a∨b and ¬a∨c holds then we can deduce b∨c. In the application of the
rule, a is known as pivot. A resolution proof is generated by applying resolution
rule on the clauses of an unsatisfiable Boolean formula to deduce false. Modern
SAT solvers (Boolean satisfiability checkers) implement some variation of DPLL
that is enhanced with conflict driven clause learning [9, 8]. Without incurring
large additional cost on the solvers, we can generate a resolution proof from a
run of the solvers on an unsatisfiable formula [11].

Due to the nature of the algorithms employed by SAT solvers, a generated
resolution proof may contain redundant parts and a strictly smaller resolution
proof can be obtained. Applications of the resolution proofs are sensitive to
the proof size. Since minimizing resolution proofs is a hard problem [7], there
has been significant interest in finding algorithms that partially minimize the
resolution proofs generated by SAT solvers.

In [1], two low complexity algorithms for optimizing the proofs are presented.
Our work is focused on one of the two, namely Recycle-Pivots. Lets consider
a resolution step that produces a clause using some pivot p. The resolution step
is called redundant if each deduction sequence from the clause to false contains a
resolution step with the pivot p. A redundant resolution can easily be removed by
local modifications in the proof structure. After removing a redundant resolution
step, a strictly smaller proof is obtained. Recycle-Pivots traverses the proofs
single time to remove the redundant resolutions partially. From each clause,
the algorithm starts from the clause and follows the deduction sequences to find
equal pivots. The algorithm stops looking for equal pivots if it reaches to a clause
that is used to deduce more than one clause.

In this work, we developed three algorithms that are improved version of
Recycle-Pivots. For the first algorithm, we observe that each literal from a
clause must appear as a pivot somewhere in all the deduction sequences from



the clause to false. Therefore, we can extend search of equal pivots among the
literals from the stopping clause without incurring additional cost. For the second
algorithm, we observe that the condition for the redundant resolutions can be
defined recursively over the resolution proof structure. This observation leads to
a single pass algorithm that covers even more redundancies but it requires an
expensive operation at each clause in a proof. Note that the second algorithm
does not remove all such redundancies because the removal of a redundancy may
lead to exposure of more. Our third algorithm is parametrized. This algorithm
applies the expensive second algorithm only for the clauses that are used to
derive a number of clauses smaller than the parameter. The other clauses are
handled as in the first algorithm. The parametrization reduces run time for the
third algorithm but also reduces the coverage of the redundancy detection.

We have implemented our algorithms in OpenSMT [3] and applied them on
unsatisfiable proofs of 198 examples from plain MUS track of SAT11 competition.
The original algorithm removes 11.97% of clauses in the proofs of the examples.
The first and the second algorithm additionally remove 0.89% and 10.57% of the
clauses respectively. The third algorithm removes almost as many clauses as the
second algorithm in lesser time for the parameter value as low as 10. We also
observe similar pattern in reduction of the unsatisfiable cores of the examples.
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R. Hähnle, editors, Automated Reasoning (IJCAR 2010), volume 6173 of LNCS,
pages 107–121. Springer, 2010.

3. R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt solver.
volume 6015, pages 150–153. Springer, 2010.

4. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, 2004.

5. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

6. K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In TACAS, pages 2–17, 2003.

7. C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. J. Comput.
Syst. Sci., 37(1):2–13, 1988.

8. J. P. M. Silva, I. Lynce, and S. Malik. Conflict-driven clause learning sat solvers.
In Handbook of Satisfiability, pages 131–153. 2009.

9. J. P. M. Silva and K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.
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