Suraq — A Controller Synthesis Tool using
Uninterpreted Functions*

Georg Hofferek! and Ashutosh Gupta?

!Graz University of Technology, Austria
2IST Austria

Abstract. Boolean controllers for systems with complex datapaths are
often very difficult to implement correctly, in particular when concur-
rency is involved. Yet, in many instances it is easy to formally specify cor-
rectness. For example, the specification for the controller of a pipelined
processor only has to state that the pipelined processor gives the same
results as a non-pipelined reference design. This makes such controllers
a good target for automated synthesis. However, an efficient abstraction
for the complex datapath elements is needed, as a bit-precise description
is often infeasible. We present SURAQ, the first controller synthesis tool
which uses uninterpreted functions for the abstraction. Quantified first-
order formulas (with specific quantifier structure) serve as the specifica-
tion language from which SURAQ synthesizes Boolean controllers. SURAQ
transforms the specification into an unsatisfiable SMT formula, and uses
Craig interpolation to compute its results. Using SURAQ, we were able to
synthesize a controller (consisting of two Boolean signals) for a five-stage
pipelined DLX processor in roughly one hour and 15 minutes.

1 Introduction

When developing a complex digital system, some parts are more difficult to im-
plement correctly than others. For example, creating a combinational circuit that
multiplies two 64-bit integers is easier than implementing the stall and forward-
ing logic of a pipelined microprocessor. On the other hand, some system parts
are also easier to formally specify than others. For the pipeline controller, the
specification simply states that the execution of any program on the pipelined
processor should output the same results as executing the same program on a
non-pipelined reference processor. This notion has been introduced by Burch and
Dill [5], who used this paradigm for verification of pipelined processors. Another
key feature of their work was the use of uninterpreted functions for abstraction
of complex datapath elements. A bit-precise description of, e.g., a multiplier
would have been exponentially — and thus prohibitively — large. Hofferek and
Bloem [12] have shown how to turn this verification setting into a synthesis
setting. They introduced specifications that are quantified first-order formulas

* The work presented in this paper was supported in part by the European Research
Council (ERC) under grant agreement 267989 (QUAREM) and the Austrian Science
Fund (FWF) through projects RiSE (S11406-N23) and QUAINT (1774-N23).

() Value)
() Value)
() Value :no_dependence)

(declare-fun i_1
2
1
2 () Value :no_dependence)
1
2
g
s

() Control)
() Control)
(Value) Value)
(Value) Bool)

i
i (declare-fun i
1 (declare-fun o
0 (declare-fun o

(declare-fun ¢
(declare-fun c

(declare-fun n
¢ (declare-fun po

(assert
) (=>
j‘_ 0, (and
m (xor (pos i_1) (pos (meg i_1)))
- (xor (pos i_2) (pos (neg i_2)))
(ite c_1 (= o_1 i_1) (= o_1 (neg i_1)))

¢ (ite c_2 (= 0.2 i_2) (= 0_2 (neg i_2))))
(xor (pos o_1) (pos 0.2))))
(a) (b)

Fig.1. (a) A controller synthesis example with missing controllers of signals ¢1 and
c2. The specification for the controllers states that the outputs always have opposite
signs. (b) The corresponding sythesis query to SURAQ in SMTLIB-like format.

which state that for all inputs/states, there exist values for Boolean control sig-
nals such that (for all values of auziliary variables) a correctness criterion @
holds. The formula @ can be a Burch-Dill style verification condition, or — for
different applications — another first-order formula that states correctness of
the system in question. The certificates for the existentially quantified Boolean
control signals is a correct-by-construction implementation of the controller. One
way to compute such certificates — which is based on (a generalization of) Craig
interpolation [6] — has been introduced in [13].

In this paper, we present SURAQ [1], an open source tool that implements the
synthesis approach of [13]. The most impressive result we achieved with SURAQ
so far is the synthesis of two Boolean control signals for a five-stage pipelined
DLX processor [10]. The required time for this synthesis is roughly one hour and
15 minutes. More details on SURAQ can be found in [11].

Related Work. Research on automated synthesis has flourished over the
last years. A lot of work (e.g. [14,17,7,18,16,8]) is concerned with synthesis
of reactive systems from temporal specifications. However, the specification lan-
guages used by these approaches are bit-precise. Thus, they are not suitable for
the controller synthesis problems we consider. Our approach is closer to program
sketching [19], a mixed imperative/declarative paradigm where parts of a pro-
gram are implemented manually and some missing (constant) expressions are
synthesized automatically. Functional synthesis [15] by Kuncak et al. is orthog-
onal to our work. Whereas we assume that data operations are already imple-
mented, they focus on synthesizing data-oriented functions from specifications
about their input-output behavior.

2 Synthesis Method

SURAQ implements the synthesis method presented in [13], although with some
improvements. We start from a formula of the form

vz .Je. VT . b, (1)

where € is a vector of Boolean control signals which we want to synthesize, T
and T’ are vectors of first-order variables, and @ is a formula in the combina-
tion of the quantifier-free fragment of the theory of uninterpreted functions and
equality (“QF_UF”), and the array property fragment [4]. A precise definition of
this combination of theories is given in [12]. SURAQ first performs the index set
construction [4] to reduce @ to an equivalent formula in QF_UF. Next, SURAQ
instantiates the existential quantifier, renames the universally quantified T’ vari-
ables in each of the resulting 2/° instantiations, and negates the whole formula.
This yields an unsatisfiable SMT formula in QF_UF. SURAQ uses the VERIT SMT
solver [3] to obtain a refutation proof.

Based on this refutation proof, SURAQ supports two modes. In iterative mode,
SURAQ first computes a solution for one control signal, using the interpolation
method of Fuchs et al. [9]. This solution is then resubstituted into the origi-
nal formula, before performing the aforementioned reduction, expansion (now
yielding only 2/¢/—1 instantiations), and transformation again. From the result-
ing SMT instance, the solution for the next control signal is computed. This is
repeated until solutions for all control signals have been obtained.

In contrast to this, in n-interpolation mode, SURAQ computes all control sig-
nals from the first refutation proof. To perform this so-called n-interpolation,
the proof must be made colorable and local-first [13]. To obtain these proper-
ties, we follow the proof transformations outlined in [13], with one significant
improvement: We do not perform the transformation to remove non-colorable
literals from the proof. Instead, when parsing the proof, we immediately discard
the subproofs of any proof nodes that are solely derived from theory lemmata.
This way, the proofs never contain any non-colorable literals. Splitting of non-
colorable theory lemmata is done in parallel. SURAQ provides a command-line
parameter to specify how many threads should be used for splitting.

2.1 Using Suraq

As an input, SURAQ requires a specification in form of a formula as shown in
Equation 1. The formula @ should be given in SMTLIB-like [2] format. The quan-
tifier prefix is implicitly given by the variable declarations. Variables declared
with sort Control are bound by the existential quantifier (and thus, certificates
for them should be synthesized). Variables declared with a :no_dependence at-
tribute are bound by the inner universal quantifier. Thus, these are auxiliary
variables that the synthesized functions cannot depend on. All other variables
are bound by the outer universal quantifier. An example is shown in Figure 1.

As its output, SURAQ also produces a file in SMTLIB format, where the
solution for each control signal is given as an expression of the form (assert (=
c_i <expr.>)).Moreover, the declarations and main formula from the input file
is copied, in a slightly modified way: The sort Control is replaced by Boolean,
all :no_dependence attributes are removed, and the main formula is negated.
This way, the output file can directly be used for third-party verification of the
synthesis result. One simply has to give the file to an SMT solver, which will
return unsat if the result is correct.

Table 1. Runtime Results (n-Interpolation Mode). Column 1 names the bench-
mark. Column 2 gives the time for the formula reductions, that is, the total time
required for reading the specification, performing the formula reductions, and creating
an input file for VERIT. Column 3 gives the time required by VERIT to produce a proof.
Column 4 gives the (wall clock) time taken to split all non-colorable theory lemmata,
using 24 parallel threads. Column 5 gives the time taken by VERIT for propositional
SAT solving with the stronger theory lemmata obtained from splitting. Column 6 gives
the time for reorder the proof to make it local-first. Column 7 gives the time spent on
proof parsing, including splitting of multi-resolution nodes. This combines the time for
parsing the SMT proof and the propositional SAT proof. Column 8 gives the total time
of synthesis. All times are given in seconds, and rounded to integers.

1 2 3 4 5 6 7 8
Name Formula SMT Splitting SAT Re- Proof Total
Reduction Solving Leaves Solving ordering Parsing
simple_pipeline <1 <1 <1 <1 <1 <1 1
illus_02 <1 <1 <1 <1 <1 <l <1
illus_03 <1 <1 <1 <1 <1 <1 1
illus_04 1 <1 <1 <1 <1 <1 2
illus_05 2 <1 <1 <1 <1 <1 3
illus_06 4 <1 <1 <1 <1 <1 5
illus_07 7 <1 <1 <1 <1 <1 11
illus_08 14 1 <1 <1 <1 <1 17
illus_09 28 3 <1 <1 <1 <l 34
simple_processor <1 <1 <1 <1 <1 <1 4
dlx_stall_f-a-ex 6 1718 6 7 n/a 442 n/a

3 Experimental Results

We have evaluated SURAQ with several benchmarks. First, we used the simple
pipeline example from [12]. Furthermore, we used several instances of the scal-
able, illustrative example from [13] (see also Fig. 1). We also tried the simple,
two-stage pipelined processor from [13]. Finally, to demonstrate the applicabil-
ity of our approach to real-world problems, we synthesized a controller for a
five-stage pipelined DLX processor [10]. We have created several variants of the
DLX benchmark, where we synthesize different control signals (while the other
are implemented manually); in the dlx_stall_f-a-ex benchmark, we even synthe-
size 2 signals simultaneously.

In Table 1, we present runtime results for n-interpolation mode. Note that the
reordering of the resolution proof times out for the dlx_stall f-a-ex benchmark. In
Table 2, we give sizes of the proofs (in various stages of transformation). Table 3
gives results (runtimes and proof sizes) for the iterative mode.

From this data, we can see that neither iterative mode, nor n-interpolation
mode is clearly superior over the other. Instead, it depends on the characteristics
of the benchmark which approach performs better. While for some benchmarks
n-interpolation clearly outperforms iterative interpolation, in other instances the
need for proof reordering makes n-interpolation inapplicable.

Table 2. Proof Sizes. The Col. 1 gives the name of the benchmark. Col. 2 states the
size of the proof, as obtained from VERIT, however with subproofs of theory lemmata
already removed. Col. 3 gives the number of leaves that are non-colorable and need
to be split, and Col. 4 gives the total number of leaves. Col. 5 gives the size of the
proof obtained by calling a SAT solver on the skeleton of the original formula, together
with the colorable theory lemmata and the (stronger) theory lemmata obtained from
splitting. This is the proof that is given to the reordering procedure. The size of the
proof after reordering is given in Col. 6. Col. 7 gives the size of the proof that is used
for n-interpolation, that is, the reordered proof with local subproofs removed. All proof
sizes are given as the number of nodes in the DAG.

1 2 3 4 5 6 7
Name Original # Leaves # Leaves Before After w/o Local
Proof to split (total) Reordering Reordering Subproofs
simple_pipeline 506 2 178 496 494 12
illus_02 102 2 44 106 106 12
illus_03 179 3 7 198 218 26
illus_04 390 7 133 356 428 46
illus_05 408 9 165 700 971 115
illus_06 669 4 176 758 1576 320
illus_07 1006 11 219 916 2823 785
illus_08 1101 6 242 2214 8082 1347
illus_09 1101 7 269 1388 5364 1293
simple_processor 9576 123 1503 6853 7899 73
dlx_stall_f-a-ex 856 121 2748 21349 333260 n/a n/a

4 Conclusion

SURAQ is a controller synthesis tool based on the method presented in [13].
SURAQ has successfully synthesized a controller for a five-stage pipelined DLX
processor [10]. Since the DLX benchmark is of realistic size and complexity,
our experiments suggest that the approach is scalable enough for real-world
problems.

References

1. SURAQ — Synthesizer using Uninterpreted functions, aRrays and eQuality. http:
//www.iaik.tugraz.at/content/research/design_verification/suraq/ (2014)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
of the 8th Int. Workshop on Satisfiability Modulo Theories (2010)

3. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: CADE (2009)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: VMCAT
(2006)

5. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: CAV (1994)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), pp. 269-285 (1957)

Table 3. Iterative Mode. The 8 columns after the name give the SMT solving time
(in seconds) and the proof size per iteration, in the format “time; size”. Columns not
required are left empty. The last column gives the total synthesis time.

Iteration Total
Name 1 2 3 4 5 6 7 8 9 Time
simple_pipeline <1; 506 <1
illus_02 <1102 5 1
illus_03 <1179 5 5<01§ 2
illus_04 <300 SO SNk 3
illus_05 <1; 408 2<1135 jéog 3<21€;)8 3?3}%1 6
illus-06 <1669 Soh T soo6 9043 10088 12
illus 07 <1006 S50 Tolo 2bor2 33041 26543 52000 31
illus_08 L1100 Silo Saly 1612 shost sa7s2 c0s22 Tassr 66
illus-09 851101 30000 60002 108636 117 535 245 332 291 780 301 277 981 313 455
simple_processor <1; 9576 8<éé2 4
dlx_stall s 537
dlx_f-a-ex ?1%90 028 1358
dlx_f-b-wb I 2174
dlx_stall_f-a-ex 1711 923; 4528

856121 1460582

®

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In:
CAV (2009)

Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: VMCAI (2012)

Fuchs, A., Goel, A., Grundy, J., Krstic, S., Tinelli, C.: Ground interpolation for
the theory of equality. Logical Methods in Computer Science 8(1) (2012)
Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 2nd Edition. Morgan Kaufmann (1996)

Hofferek, G.: Controller Synthesis with Uninterpreted Functions. Ph.D. thesis,
Graz University of Technology (July 2014)

Hofferek, G., Bloem, R.: Controller synthesis for pipelined circuits using uninter-
preted functions. In: MEMOCODE (2011)

Hofferek, G., Gupta, A., Kénighofer, B., Jiang, J., Bloem, R.: Synthesizing multiple
boolean functions using interpolation on a single proof. In: FMCAD (2013)
Jobstmann, B., Galler, S.J., Weiglhofer, M., Bloem, R.: Anzu: A tool for property
synthesis. In: CAV (2007)

Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for linear arith-
metic and sets. STTT 15(5-6) (2013)

Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and the
non-confluence property for efficient LTL synthesis. In: GANDALF (2010)
Schewe, S., Finkbeiner, B.: Bounded synthesis. In: ATVA (2007)

Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. STTT 15(5-6) (2013)

Solar-Lezama, A.: Program sketching. STTT 15(5-6) (2013)

