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Abstract—A finite state Markov chain M is often viewed as a
probabilistic transition system. An alternative view - which we
follow here - is to regard M as a linear transform operating on
the space of probability distributions over its set of nodes. The
novel idea here is to discretize the probability value space [0,1]
into a finite set of intervals. A concrete probability distribution
over the nodes is then symbolically represented as a tuple D of
such intervals. The i-th component of the discretized distribution
D will be the interval in which the probability of node i falls.

The set of discretized distributions is a finite set and each
trajectory, generated by repeated applications of M to an initial
distribution, will induce a unique infinite string over this finite set
of letters. Hence, given a set of initial distributions, the symbolic
dynamics of M will consist of an infinite language L over the finite
alphabet of discretized distributions. We investigate whether L
meets a specification given as a linear time temporal logic formula
whose atomic propositions will assert that the current probability
of a node falls in an interval.

Unfortunately, even for restricted Markov chains (for instance,
irreducible and aperiodic chains), we do not know at present if
and when L is an (omega)-regular language. To get around this
we develop the notion of an epsilon-approximation, based on
the transient and long term behaviors of M. Our main results
are that, one can effectively check whether (i) for each infinite
word in L, at least one of its epsilon-approximations satisfies
the specification; (ii) for each infinite word in L all its epsilon-
approximations satisfy the specification. These verification results
are strong in that they apply to all finite state Markov chains.
Further, the study of the symbolic dynamics of Markov chains
initiated here is of independent interest and can lead to other
applications.

Index Terms—Model Checking, Probabilistic Computation,
Approximation, Markov Processes.

I. INTRODUCTION

Finite state Markov chains are a fundamental model of
probabilistic dynamical systems. They are well-understood
[13], [20] and their formal verification is well established [3]–
[5], [8]–[10], [12], [14], [16], [17], [23]. In a majority of
the verification related studies, the Markov chain is viewed
a probabilistic transition system. The goal is to reason about
the paths of the transition system using probabilistic temporal
logics such as PCTL [5], [10], [12].

An alternative view - which we follow here - is to view the
state space of the chain to be the set of probability distributions
over the nodes of the chain. The Markov chain transforms -

in a linear fashion - a given probability distribution into a new
one. Starting from a distribution µ one iteratively applies M to
generate a trajectory consisting of a sequence of distributions.
Given a set of initial distributions, one can study the properties
of the set of trajectories generated by these distributions.
The novel idea we explore in this setting is the symbolic
dynamics of a Markov chain. We do so by discretizing the
probability value space [0, 1] into a finite set of intervals
I = {[0, p1), [p1, p2), . . . , [pm, 1]}. A probability distribution
µ of M over its set of nodes {1, 2, . . . , n} is then represented
symbolically as a tuple of intervals (d1, d2, . . . , dn) with
di being the interval in which µ(i) falls. Such a tuple of
intervals which symbolically represents at least one probability
distribution is called a discretized distribution. In general a
discretized distribution will represent an infinite set of concrete
distributions.

A simple but crucial fact is that the set of discretized
distributions, denoted D, is a finite set. Consequently, each
trajectory generated by an initial probability distribution will
uniquely induce a sequence over the finite alphabet D. Hence,
given a (possibly infinite) set of initial distributions, the
symbolic dynamics of M can be studied in terms of a language
over the alphabet D. Our focus here will be on infinite
behaviors. Consequently, the main object of our study will
be LM , the ω-language over D induced by the set infinite
trajectories generated by the set of initial distributions.

The main motivation for studying Markov chains in this
fashion is to avoid the difficulties of numerically tracking
sequences of probability distributions exactly. In many ap-
plications such as the probabilistic behavior of biochemical
networks, queuing systems or sensor networks, exact estimates
of the probability distributions (including the initial ones)
may neither be feasible nor necessary. Further, not all the
nodes may be relevant for the question at hand. In this
case we can filter out such nodes by associating the “don’t
care” discretization {[0, 1]} with each of them. This is a
novel approach to dimension reduction and it can significantly
reduce the practical complexity of analyzing high dimensional
Markov chains. In our future work, we plan to apply this idea
specifically to study the dynamics of biochemical networks.

To reason about the symbolic dynamics, we formulate a



linear time temporal logic in which an atomic proposition
will assert “the current probability of the node i lies in the
interval d”. The rest of the logic is obtained by closing under
propositional connectives and the temporal modalities next and
until in the usual way. We have chosen this simple logic in
order to highlight the main ideas. As we point out in Section III
this logic can be considerably strengthened and our techniques
will easily extend to this strengthened version.

The key verification question is whether each sequence in
LM is a model of a specification ϕ. If LM were to be a ω-
regular language then standard model checking techniques will
apply. Unfortunately determining whether LM is ω-regular
appears to be a difficult problem. Our current conjecture is
- except in some special cases - LM is not ω-regular. To
sketch the nature of the problem, let us suppose that M is
irreducible and aperiodic (the precise definition is given in
Section V). This guarantees that M has a unique stationary
distribution λ (i.e. λ ·M = λ). Further, every trajectory will
converge to λ. However, if one or more components of λ
coincide with the end-points of intervals in the discretization
of [0, 1] then a trajectory may spiral towards λ while visiting
the discretized distributions near λ in a non-periodic fashion.
This is illustrated in fig. 1. Consequently the set of symbolic
sequences generated by a set of initial distributions may fail
to be ω-regular.

We bypass this basic difficulty by constructing approximate
solutions to our verification problem. We fix an approximation
factor ε > 0. We then show that each symbolic trajectory in
LM can be split into a transient phase and a steady state phase.
Further, if ξµ is the symbolic trajectory induced by the initial
distribution µ, then in the steady state phase, ξµ will cycle
through a set of final classes {F0,F1, . . . ,Fθ−1} where each
Fm is a set of discretized distributions. These final classes will
be determined by M , the initial distribution µ and ε. Further,
θ, the number of such classes will depend only on M . In
addition, under a natural metric, all members of a final class
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Fig. 1. A concrete and symbolic trajectory in the 3-dimensional space wrto.
the discretization {d1 = [0, 0.5), d2 = [0.5, 1]} projected onto the x, y
plane, with values in x, y and z. (Γ is the map that associates discretized
distributions to concrete ones with respect to the above discretization.)

will belong to a (discretized) ε-neighborhood. This leads to
the notion of ε-approximation:
ξ′ ∈ Dω is an ε-approximation of ξµ iff ξ′(k) = ξµ(k) for

each k in the transient phase of ξµ. Moreover, ξ′(k) and ξµ(k)
are in the same final class and hence in an ε-neighborhood for
each k in the steady state phase of ξµ.

This leads to two interesting notions of M ε-approximately
meeting the specification ϕ. In stating these notions, we
specify for convenience the initial set of concrete distributions
as a discretized distribution Din. In other words, µ is an initial
distribution iff Din is its symbolic representation.

1) (M,Din) ε-approximately meets the specification ϕ from
below - denoted (M,Din)|=ε ϕ - iff for every µ ∈ Din,
there exists an ε-approximation of ξµ which is a model
of ϕ.

2) (M,Din) ε-approximately meets the specification ϕ from
above -denoted (M,Din)|=ε ϕ - iff for every µ ∈ Din,
every ε-approximation of ξµ is a model of ϕ.

Our main results are that given M , Din, ε and ϕ, whether
(M,Din) ε-approximately satisfies ϕ from below (above)
can be effectively determined. We note that (M,Din)|=ε ϕ
implies that LM itself meets the specification ϕ. On the other
hand if it is not the case that (M,Din)|=ε ϕ then we can
conclude that LM does not meet the specification ϕ. The
remaining case is when (M,Din)|=

ε
ϕ but it is not the case

that (M,Din)|=ε ϕ. Then, we can decide to accept that LM
meets the specification but only ε-approximately. In many
applications, this will be adequate. If not, one can fix a smaller
ε, say, ε

2 , and perform the two verification tasks again with
minimal additional overhead.

We present only the main constructions and proof sketches
here. All the details can be found in [1]. Further, we will
often use basic results concerning Markov chains without
an attribution. These results can be found in any standard
text book; for instance [13], [20]. Finally, we do not address
complexity issues in order to keep the focus on the main ideas.
However, many of our constructions can be optimized and we
plan to explore this important issue in the future.

Related work: Symbolic dynamics is a classical topic in the
theory of dynamical systems [19]. Shift sequences is the key
notion with shifts of finite type playing an important role in
coding theory [18]. Here, instead, we focus on the symbolic
dynamics from a verification standpoint.

Our discretization quotients the infinite set of probability
distributions into a finite set of discretized distributions. In
spirit, this resembles the regions based discretization in the
theory of timed automata [2] which then leads to bisimulations
of finite index. Similar constructions arise in the theory of
hybrid automata [11] too. There are however two crucial
differences. In our setting there are no resets involved and there
is just one mode, namely the linear transform M , driving the
dynamics. On the other hand, for timed automata and hybrid
automata one obtains finite index bisimulations only in cases
where the dynamics of the variables are decoupled from each
other. In our setting this will be a deal breaker. Consequently
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our symbolic dynamics is delicately poised between “too
coupled to analyze by using bisimulations of finite index”,
and “not expressive enough to lead to undecidability”.

Viewing a Markov chain as a transform of probability dis-
tributions and carrying out formal verification of the resulting
dynamics has been explored previously in [8], [14], [17]. In
fact, the work reported in [8], [14] deals with MDPs (Markov
Decison Processes) instead of Markov chains. However by
considering the special case where the MDP accesses just
one Markov chain we can compare our work with theirs.
Firstly [8], [14], [17] consider only one initial distribution and
hence just one trajectory needs to be analyzed. It is difficult
to see how their results can be extended to handle multiple
-and possibly infinitely many- initial distributions as we do.
Secondly, they study only irreducible and aperiodic Markov
chains. In contrast we consider the class of all Markov chains.
Last but not least, they impose the drastic restriction that
the unique fix point of the irreducible and aperiodic Markov
chain is an interior point w.r.t. the discretization induced by
the specification. In [8], a similar restriction is imposed in a
slightly more general setting. Since the fix point is determined
solely by the Markov chain and has nothing to do with the
specification, this is not a natural restriction. We can also easily
obtain an exact solution to our model checking problem by
imposing such a restriction.

Returning to the two approaches to studying Markov chains,
a natural question to ask is how they are related. It turns out
that from a verification standpoint they are incomparable and
complementary (see [7], [14]). Further, solutions to model
checking problems in one approach (e.g. the decidability
of PCTL in the probabilistic transition system setting) will
not translate into the other. Finally, intervals of probability
distributions have been considered previously in a number of
settings [15], [21], [24]. These studies focus on carrying out
the usual numerical analysis within an envelope of upper and
lower probability distributions and do not address issues re-
lated to symbolic dynamics. In contrast, we fix a discretization
of [0, 1] and develop a verification theory based on the induced
symbolic dynamics.

Plan of the paper: In the next section, we define the notion
of discretized distributions and the symbolic dynamics of
Markov chains. In Section III, we introduce our temporal
logic, illustrate its expressiveness and discuss how it can be
extended. We then formulate our main results in Section IV.
In Section V, we handle irreducible and aperiodic Markov
chains; and in Section VI, irreducible but periodic chains. In
the subsequent section general Markov chains are treated. In
order to highlight the key technical issues, in these sections we
consider just one initial concrete distribution. In Section VIII,
we handle a set of initial concrete distributions. Future direc-
tions are discussed in the concluding section.

II. DISCRETIZED DISTRIBUTIONS

Through the rest of the paper we fix a finite set of nodes
X = {1, 2, . . . , n} and let i, j range over X . As usual a
probability distribution over X , is a map µ : X → [0, 1] such

that
∑
i µ(i) = 1. Henceforth we shall refer to such a µ as a

distribution and sometimes as a concrete distribution. We let
µ, µ′ etc. to range over distributions. A Markov chain M over
X will be represented as an n × n matrix with non-negative
entries satisfying

∑
jM(i, j) = 1 for each i. Thus, if the

system is currently at node i, then M(i, j) is the probability
of it being at j in the next time instant. We will say that M
transforms µ into µ′, if µ ·M = µ′.

We fix a partition of [0, 1] into a finite set I of intervals
and call it a discretization. We let d, d′ etc. range over I.
Suppose D : X → I. Then D is a discretized distribution iff
there exists a concrete distribution µ such that µ(i) ∈ D(i) for
every i. We denote by D the set of discretized distributions,
and let D, D′ etc. range over D. A discretized distribution will
sometimes be referred to as a D-distribution. We often view
D as an n-tuple D = (d1, d2, . . . , dn) ∈ In with D(i) = di.

Suppose n = 3 and I = {[0, 0.2), [0.2, 0.4), [0.4, 0.7),
[0.7, 1]}. Then ([0.2, 0.4), [0.2, 0.4), [0.4, 0.7)) is a
D-distribution since for the concrete distribution
(0.25, 0.30, 0.45), we have 0.25, 0.30 ∈ [0.2, 0.4)
while 0.45 ∈ [0.4, 0.7). On the other hand, neither
([0, 0.2), [0, 0.2), [0.2, 0.4)) nor ([0.4, 0.7), [0.4, 0.7), [0.7, 1])
are D-distributions.

We have fixed a single discretization and applied it to
each dimension to reduce notational clutter. As stated in
the introduction, in applications, it will be useful to fix a
different discretization Ii for each i. In this case one can set
Ii = {[0, 1]} for each “don’t care” node i. Our results will go
through easily in such settings.

A concrete distribution µ can be abstracted as a D-
distribution D via the map Γ given by: Γ(µ) = D iff
µ(i) ∈ D(i) for every i. Since I is a partition of [0, 1] we
are assured Γ is well-defined. Intuitively, we do not wish to
distinguish between µ and µ′ in case Γ(µ) = Γ(µ′). Note
that D is a non-empty and finite set. By definition we also
have that Γ−1(D) is a non-empty set of distributions for each
D. Abusing notation -as we have been doing already- we will
often view D as a set of concrete distributions and write µ ∈ D
(or µ is in D etc.) instead of µ ∈ Γ−1(D).

We focus on infinite behaviors. With suitable modifications,
all our results can be specialized to finite behaviors. A trajec-
tory of M is an infinite sequence of concrete distributions
µ0µ1 . . . such that µl · M = µl+1 for every l ≥ 0. We
let TRJM denote the set of trajectories of M (we will
often drop the subscript M ). As usual for ρ ∈ TRJ with
ρ = µ0µ1 . . ., we shall view ρ as a map from {0, 1, . . .} into
the set of distributions such that ρ(l) = µl for every l. We
will follow a similar convention for members of Dω , the set of
infinite sequences over D. Each trajectory induces an infinite
sequence of D-distributions via Γ. More precisely, we define
Γω : TRJ → Dω as Γω(ρ) = ξ iff Γ(ρ(`)) = ξ(`) for every
`. In what follows we will write Γω as just Γ.

Given an initial set of concrete distributions, we wish to
study the symbolic dynamics of M induced by this set of
distributions. For convenience, we shall specify the set of
initial distributions as a D-distribution Din. In general, Din
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will contain an infinite set of distributions. In the example
introduced above, ([0.2, 0.4), [0.2, 0.4), [0.4, 0.7)) is such a
distribution. Our results will at once extend to sets of D-
distributions.

We now define LM,Din = {ξ ∈ Dω | ∃ρ ∈ TRJ , ρ(0) ∈
Din, Γ(ρ) = ξ}. We view LM,Din to be the symbolic
dynamics of the system (M,Din) and refer to its members as
symbolic trajectories. From now on, we will write LM instead
of LM,Din since Din will be clear from the context.

Given (M,Din), our goal is to specify and verify properties
of LM . If LM were to be an ω-regular language then well-
established techniques can be brought to bear. Unfortunately
we do not know at present whether this is always the case.
As explained in the introduction, we suspect that LM is not
ω-regular even for restricted Markov chains. In light of this,
we shall approximately solve verification problems concerning
LM without placing any restrictions on M . However (as
formalized in Prop. 2 below) our method can often yield exact
verification results.

III. THE VERIFICATION PROBLEM

We formulate here the probabilistic linear time temporal
logic LTLI . In the following sub-section we discuss how
its expressive power can be extended. The set of atomic
propositions is given by: AP = {〈i, d〉 | 1 ≤ i ≤ n, d ∈ I}.
The formulas of LTLI are:
• Every atomic proposition is a formula.
• If ϕ and ϕ′ are formulas then so are ∼ ϕ and ϕ ∨ ϕ′.
• If ϕ is a formula then Oϕ is also a formula.
• If ϕ and ϕ′ are formulas then ϕUϕ′ is also a formula.
The atomic proposition 〈i, d〉 asserts that D(i) = d where

D is the current discretized distribution of M . This in turn
means that if the current concrete distribution of M is µ then
µ(i) ∈ d. The propositional connectives such as ∧, ⊃ and ≡
are derived in the usual way as also the unary modality 3

via 3ϕ = ttUϕ where tt is the constant formula that always
evaluates to “true”. This leads to 2ϕ = (∼ 3 ∼ ϕ).

The semantics of the logic is captured by the satisfaction
relation ξ(l) |= ϕ, where ξ ∈ Dω , l ≥ 0 and ϕ is a formula.
This relation is defined inductively via:
• ξ(l) |= 〈i, d〉 iff ξ(l)(i) = d
• The connectives ∼ and ∨ are interpreted as usual.
• ξ(l) |= Oϕ iff ξ(l + 1) |= ϕ
• ξ(l) |= ϕUϕ iff there exists k ≥ l such that ξ(k) |= ϕ′

and ξ(l′) |= ϕ for l ≤ l′ < k.
We say that ξ is a model of ϕ iff ξ(0) |= ϕ. As usual, Lϕ is

the set of models of ϕ. In what follows, for a distribution µ we
let ρµ denote the trajectory in TRJ which satisfies: ρ(0) = µ.
We let ξµ = Γ(ρµ) be the symbolic trajectory generated by µ.

We shall say that (M,Din) meets the specification ϕ -
and this is denoted M,Din |= ϕ - iff ξµ ∈ Lϕ for every
µ ∈ Din. Stated differently, M,Din |= ϕ iff LM ⊆ Lϕ. The
model checking problem we wish to solve is: given a finite
state Markov chain M , a discretization I, an initial set of
concrete distributions given as the discretized distribution Din

and a specification ϕ as an LTLI-formula, determine whether
M,Din |= ϕ.

We do not know at present whether this problem can be
effectively solved, since it is not clear if and when LM is a
ω-regular language. Consequently we will solve this problem
approximately. Before doing so we discuss what can be said
in our logic and how its expressive power can be extended.

A. Expressiveness issues

Given a D-distribution D = (d1, d2, . . . , dn), we can assert
that the current D-distribution is D via

∧
i(i, di). We can

assert D will appear infinitely often via (23
∧
i(i, di)). We

can assert that the set of D-distributions that appear infinitely
often is from a given subset D′ of D via 32

∨
D∈D′〈D〉

where 〈D〉 is an abbreviation for
∧
i(i,D(i)). In fact one

can easily strengthen this formula to assert that the set of
D-distributions that appear infinitely is exactly D′. Suppose
we classify members of I as representing “low” and “high”
probabilities. For example, if I contains 10 intervals each
of length 0.1, we can declare the first two intervals as
“low” and the last two intervals as “high”. In this case
2((i, d9)∨ (i, d10) ⊃ (j, d1)∨ (j, d2)) will say that “whenever
the probability of i is high, the probability of j will be
low”. We can gain considerable expressive power by letting
an atomic proposition be a sentence taken from the first
order theory of reals [22]. Specifically, we can define the
predicate dist(x1, x2, . . . , xn) to assert that (x1, x2, . . . , xn)
is a concrete distribution. We just have to say that each xi is
non-negative and that

∑
i xi = 1. We can then say that the dis-

tribution (x1, x2, . . . , xn) is in D via xi ∈ D(i) for each i. To
be precise, xi ∈ D(i) is an abbreviation for (l ≤ xi)∧(xi < r)
if D(i) = [l, r) and similarly for the case D(i) = [l, r]. We
can now form an arbitrary sentence ψ expressing a polynomial
constraint over {x1, x2, . . . , xn} saying that the distribution
dist(x1, x2, . . . , xn) satisfies ψ. Finally, we can assert that
every concrete distribution in D satisfies ψ. For instance, we
can say that 2(x1 + x2) < 3(x2

3 + x4) for every distribution
(x1, x2, x3, x4) in the current discretized distribution D.

Next we can associate a value vi (say, a rational number)
with each node i denoting a physical quantity associated
with the system. Then we can define the expected value
E(x1, x2, . . . , xn) =

∑
i xi ·vi and assert that “eventually, the

expected value will always lie in the interval (2, 3.5]”. In actual
applications, we will have a vector of variables associated with
M and these variables will denote the values of entities such as
temperature, queue lengths, concentration levels of molecular
species etc. Hence a rich set of quantitative properties can be
captured by the atomic propositions and the time evolution
of these quantities and their relationships can be captured in
the extended logic. And all our results will go through for the
extended logic as well.

A natural question is how logics interpreted over a sequence
of probability distributions -such as LTLI - are related to
logics interpreted over the paths of a Markov chain -such as
PCTL. As mentioned in the introduction, these two families
of logics are incomparable. There is however much to explore
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here and we leave the exact delineation of what can be said
in one framework but not the other to future research.

IV. THE MAIN RESULTS

To state our main results, we fix an approximation parameter
ε > 0. We expect ε to be a small fraction of the length of
an interval (or the shortest interval) in I. A crucial notion is
that of a discretized ε-neighborhood. To capture this, we first
define the distance ∆ between two distributions µ and µ′ as:
∆(µ, µ′) =

∑
i |µ(i)−µ′(i)|. The discretized ε-neighborhood

of µ is denoted asNε(µ) and is the set of D-distributions given
by: D ∈ Nε(µ) iff there exists µ′ ∈ D such that ∆(µ, µ′) ≤ ε.
Finally F ⊆ D is a discretized ε-neighborhood iff there exists
a distribution µ such that Nε(µ) = F . For convenience, we
will just say ε-neighborhood from now on.

Suppose F is an ε-neighborhood and D1, D2 ∈ F . Then
there exists µ0 such that Nε(µ0) = F . Further there exist µ1 ∈
D1 and µ2 ∈ D2 such that ∆(µ1, µ0) ≤ ε and ∆(µ2, µ0) ≤ ε.
In this sense D1 and D2 will not be too far apart.

The key result concerning the symbolic dynamics is:
Proposition 1: Let M be a Markov chain, ε > 0 and ξµ

the symbolic trajectory generated by the distribution µ. Then,
there exists (i) a positive integer θ that depends only on M (ii)
a positive integer Kε that depends only on M and ε and (iii) an
ordered family of ε-neighborhoods {Fµ,0,Fµ,1, . . . ,Fµ,θ−1} -
called the final classes of µ - such that ξµ(k) ∈ Fµ, k mod θ for
every k > Kε. Further, θ, Kε and {Fµ,0,Fµ,1, . . . ,Fµ,θ−1}
are effectively computable.

According to this result, there will be a transient phase
of length Kε followed by a steady state phase in
which ξµ will cycle through the ε-neighborhood families
{Fµ,0,Fµ,2, . . . ,Fµ,θ−1} forever. This leads to the notion of
of an ε-approximation of a symbolic trajectory. Let µ be a
distribution while θ, Kε and {Fµ,0,Fµ,1, . . . ,Fµ,θ−1} are as
guaranteed by the above proposition. Then ξ′ ∈ Dω is an
ε-approximation of ξµ iff the following conditions hold:
• ξ′(k) = ξµ(k) for 0 ≤ k ≤ Kε.
• For every k > Kε, ξ′(k) belongs to Fµ, k mod θ.
Our approximate model checking problems can now be

formalized:
Definition 1: Let M be a Markov chain, Din an initial

distribution, ε > 0 an approximation factor and ϕ ∈ LTLI :
1) (M,Din) ε-approximately meets the specification ϕ from

below, denoted M,Din|=ε ϕ, iff for every µ ∈ Din, it is
the case that ξ′ ∈ Lϕ for some ε-approximation ξ′ of ξµ.

2) (M,Din) ε-approximately meets the specification ϕ from
above, denoted M,Din|=

ε

ϕ, iff for every µ ∈ Din, it is
the case that ξ′ ∈ Lϕ for every ε-approximation ξ′ of ξµ.

The two notions of approximate satisfaction yield valuable
information about exact satisfaction as follows.

Proposition 2: Let M be a Markov Chain, ε > 0 and ϕ be
a property. Then

1) (M,Din)|=ε ϕ =⇒ (M,Din) |= ϕ, and
2) (M,Din) 6|=

ε
ϕ =⇒ (M,Din) 6|= ϕ.

The proof follows easily from the definitions and the
observation that each ξµ is an ε-approximation of itself. Our
main verification result is:

Theorem 1: Let M be a Markov chain, Din an initial
distribution, ϕ a specification and ε > 0 an approximation
factor. Then the questions whether (M,Din)|=

ε
ϕ and whether

(M,Din)|=ε ϕ can both be effectively solved.
Here, we have fixed a discretization first and designed a

temporal logic that is compatible with it by the choice of
atomic propositions. Alternatively we could have started with
a temporal logic which mentions point values of probabilities
and used these probabilities as interval end points to fix
a discretization; similar to the way regions and zones are
derived in timed automata. We however feel that fixing a
discretization independent of specifications and studying the
resulting symbolic dynamics is a fruitful approach. Indeed, the
discretization can be a crucial part of the modeling phase. One
can then, if necessary, further refine the discretization in the
verification phase.

We now turn to the proof of Theorem 1 by starting with
irreducible and aperiodic Markov chains and considering in-
creasingly complex classes. Further we shall first assume a
single concrete initial distribution and then extend the results
to a set of initial distributions.

V. IRREDUCIBLE AND APERIODIC MARKOV CHAINS

Let M be a Markov chain over X = {1, 2, . . . , n}. The
graph of M is the directed graph GM = (X , E) with (i, j) ∈
E iff M(i, j) > 0. We say that M is irreducible in case GM
is strongly connected. Assume M is irreducible. The period
of the node i is the smallest integer mi such that Mmi(i, i) >
0. The period of M is denoted as θM and it is the greatest
common divisor of {mi}i∈X . The irreducible M is said to be
aperiodic if θM = 1. Otherwise it is periodic.

In what follows we shall abbreviate “irreducible and ape-
riodic” as just “aperiodic”. Fig. 2 shows an example of an
aperiodic Markov chain. Through the rest of this section, we
will assume an aperiodic Markov chain over X , a specification
given as a LTLI-formula ϕ and an approximation factor ε > 0.
We also assume we are given a single initial distribution µ0.

A. The determination of Kε and the final classes

We set θ = θM . Since M is aperiodic, we have θ = 1.
To determine the final classes we start with the standard fact
that the aperiodic chain M has a unique stationary distribution
(fix point) λ. That is, λ ·M = λ. Further, every trajectory will
converge to λ. One can effectively compute λ by solving the
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Fig. 2. An irreducible and aperiodic Markov chain M
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linear system of equations x · (M − I) = 0 where I is the
n-dimensional identity matrix. We then fix {F0 = Nε(λ)} to
be the set of final classes.

Thus for the present case, there will be only one final class.
If F0 itself is a singleton i.e. it consists of just one discretized
distribution then it is easy to show that the original model
checking problem can be solved exactly. In general however
F0 will not be a singleton.

We next construct Kε.
Lemma 1: There exists a positive integer Kε such that for

every µ and every k > Kε, we have ∆(ρµ(k), λ) < ε.
Proof: One can effectively compute η < 1 such that for

every µ we have ∆(µ·M `, λ) < η ·∆(µ, λ). The details can be
found in [1]. Here, ` is the least integer -guaranteed to exist-
such that M `(i, j) > 0 for every i, j. It now follows that if
k > k′ · `, then ∆(µ ·Mk, λ) < ηk

′ · ∆(µ, λ). In addition,
by definition, ∆(µ, λ) ≤ 2. Therefore, we can compute a
sufficiently large k′ and set Kε = k′ · ` so that for every
µ, ∆(µ ·Mk, λ) < ε for every k ≥ Kε.

It follows that ρµ(k) ∈ F0 for every µ and every k > Kε,
thus establishing Prop. 1 for the irreducible and aperiodic case.

B. Solutions to the approximate model checking problems

To determine whether (M,µ0)|=ε ϕ we will construct a non-
deterministic Büchi automaton B such that the language ac-
cepted by B is non-empty iff (M,µ0)|=

ε
ϕ. Since the emptiness

problem for Büchi automata is decidable, we will have an
effective solution to our model checking problem.

To start with, let Σ = 2APϕ with APϕ being the set
of atomic propositions that appear in ϕ. We can interpret a
formula of LTL(I) over α ∈ Σω via: α(k) |=Σ (i, d) iff
(i, d) ∈ α(k) (ii) the propositional connectives are interpreted
in the standard way. (iii) α(k) |=Σ O(ϕ) iff α(k + 1) |=Σ ϕ
(iv) α(k) |=Σ ϕ1Uϕ2 iff there exists k′ ≥ k such that
α(k′) |=Σ ϕ2 and α(k′′) |=Σ ϕ1 for k ≤ k′′ < k′. We
say that α is a Σ-model of ϕ iff α(0) |=Σ ϕ. This leads
to L̂ϕ = {α | α, 0 |= ϕ}.

We can now construct the non-deterministic Büchi automa-
ton A = (Q,Qin,Σ,−→, A) running over infinite sequences
in Σω such that the language accepted by A is exactly L̂ϕ.
This is a standard result [23] and we omit the details. We just
wish to highlight that Q is the set of states, Qin ⊆ Q is the
initial set of states, Σ is the alphabet, −→⊆ Q×Σ×Q is the
transition relation and A ⊆ Q is the set of accepting states.

We next define S = {(k, µ0 ·Mk) | 0 ≤ k ≤ Kε}. The
Büchi automaton B = (R,Rin,Σ,⇒, B) -which will also run
over infinite sequences in Σω- is defined as follows:
• R = (S ∪ F0)×Q is the set of states.
• Rin = {(0, µ0)} ×Qin is the set of initial states.
• The transition relation⇒ is the least subset of R×Σ×R

satisfying the following conditions.
First, suppose ((k, µ), q) and (k′, µ′), q′ are in R and
Y ⊆ APϕ. Then ((k, µ), q), Y, (k′, µ′), q′)) ∈⇒ iff the
following assertions hold:

1) k′ = k + 1 and µ ·M = µ′;

2) if (i, d) ∈ APϕ, then we have µ(i) ∈ d iff (i, d) ∈ Y ;
3) (q, Y, q′) ∈−→.
Next, suppose ((k, µ), q)) and (D, q′) are in R with D ∈
F0. Let Y ⊆ APϕ. Then (((k, µ), q), Y, (D, q′)) ∈⇒ iff
k = Kε and (i, d) ∈ Y iff µ(i) ∈ d for all (i, d) ∈ APϕ.
Furthermore, (q, Y, q′) ∈−→.
Finally, suppose (D, q) and (D′, q′) are in R and Y ⊆
APϕ. Then ((D, q), Y, (D′, q′)) ∈⇒ iff for every (i, d) ∈
APϕ, D(i) = d iff (i, d) ∈ Y . Further, (q, Y, q′) ∈−→.

• The set of final states is B = F0 ×A.
It is easy to show that (M,µ0)|=

ε
ϕ iff the language ac-

cepted by B is non-empty. To determine whether (M,µ0)|=ε ϕ,
we first construct the non-deterministic Büchi automaton A′
such that the language accepted by A′ is precisely L̂∼ϕ. We
then repeat the above construction using A′ in place of A
to construct B′. Then one can show that M,µ0|=

ε

ϕ iff the
language accepted by B′ is empty. The details can be found
in [1].

Notice that transitions of B and A check whether the current
distribution µ satisfies µ(i) ∈ d or whether D satisfies D(i) =
d. Since the first order theory of reals is decidable, we can
also decide whether µ(i) or D(i) satisfies a sentence ψ in
this theory. Hence our decision procedures easily extend to
the setting where atomic propositions consist of sentences in
the first order theory of reals (as discussed in Section III).

VI. IRREDUCIBLE PERIODIC MARKOV CHAINS

We now consider an irreducible periodic chain M with
period θM 6= 1. As before we will abbreviate “irreducible
and periodic” as “periodic”. We set θ = θM . A standard fact
is there exists a partitioning of X into θ equivalence classes
X0,X1, . . . ,Xθ−1 such that in the graph of M , if there is an
edge from i to j and i ∈ Xm then j ∈ X(m+1 mod θ). In
what follows we shall refer to each Xi as a component set. As
before, we fix an initial distribution µ0 and the approximation
parameter ε > 0. We let m, m′ range over {0, 1, . . . , θ − 1}.
An example of a periodic chain with period 3 is shown in
fig. 3(a). In this chain, X0 = {1, 2},X1 = {3},X2 = {4}.

A key feature of M is that the probability masses of the
component sets will cyclically shift through an application of
M . To track this we will use the notion of a weight vector
which is a map w : {0, 1, . . . , θ − 1} → [0, 1] such that
Σmw(m) = 1. The distribution µ induces the weight vector
w given by: w(m) = Σi∈Xm µ(i). Now suppose µ ·M = µ′

1
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Fig. 3. An irreducible and periodic Markov chain and its class-decomposition
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and w′ is the weight vector induced by µ′ .Then it is easy to
check that w′(m+ 1 mod θ) = w(m). As a consequence, if
w′′ is the weight vector induced by µ ·Mθ then w = w′′.

A second key feature of M is that Mθ (i.e., M multiplied
by itself θ times) restricted to Xm is an aperiodic chain for
each m. We call these chains component chains and denote
them as Bm for each m. We will obtain a global stationary
distribution γ0 of Mθ by weighting the unique local stationary
distributions {λm} of {Bm} with the weight vector induced
by µ0. The ε-neighborhood of γ0 will constitute a final class.
Subsequently, the ε-neighborhoods of the global stationary
distributions γm obtained via γm = γ0 ·Mm for each m will
determine the θ final classes. We consider an example before
formalizing this idea.

In fig. 3 we have shown the graphs of the three component
chains B0, B1, B2. The associated stationary distribution λ0

of B0 is given by λ0(1) = 2
5 and λ0(2) = 3

5 . Clearly the
stationary distributions of B1 and B2 are λ1(3) = 1 and
λ2(4) = 1. The initial distribution µ0 = (1

5 ,
1
10 ,

1
2 ,

1
5 ) induces

the weight vector w = ( 3
10 ,

1
2 ,

1
5 ). Hence γ0 is given by

γ0 = ( 6
50 ,

9
50 ,

1
2 ,

1
5 ). The other two stationary distributions

from µ0 are γ1, γ2, given by γ1 = γ0 ·M , γ2 = γ0 ·M2.

A. The determination of Kε and the final classes

As already fixed above, θ = θM the period of M . In
constructing the final classes and Kε the basic observation
is that the infinite sequence of distributions (µ0 ·Mk)k≥0 can
be analyzed in terms of the θ subsequences (µm ·Mθ·k′)k′≥0

where µm = µ0 ·Mm for 0 ≤ m ≤ θ − 1. Actually one just
needs to consider the first subsequence (µ0 ·Mθ·k′)k′≥0. The
other subsequences can be simply obtained by applying Mm

(0 < m < θ) to each element of this subsequence.
Before proceeding it will be convenient to introduce some

additional notations using which we can analyze the global be-
havior of Mθ in terms of the local behaviors of the components
{Bm}. Let w the weight vector induced by the distribution µ.
Then ↓m (µ) = β is the map β : Xm → [0, 1] given by:
β(i) = µ(i)

w(m) if w(m) 6= 0 and β(i) = 0 if w(m) = 0. It is
easy to see that β is a distribution over Xm in case w(m) 6= 0.

Next let {βm} be such that for each m, either βm is a
distribution over Xm or βm = 0m (where 0m(i) = 0 for each
i ∈ Xm). Suppose w is a weight vector. Then ↑w {βm} is the
map µ : X → [0, 1] given by µ(i) = w(m) · βm(i) if i ∈ Xm.
In the contexts in which we use this map, it will turn out that
µ is a distribution over X . In particular, if w is induced by µ
then ↑w {↓m (µ)} = µ.

We are now prepared to define the final classes. Let λm
be the unique stationary distribution of the component Bm
for each m. Let u be the weight vector induced by µ0. We
now define γ0 =↑u {λm}. It is not difficult to check that γ0

is a stationary distribution of Mθ. For each m < θ, we let
γm = γ0 ·Mm. Finally, we define {Fm = Nε(γm)}0≤m<θ as
the set of final classes.

To determine Kε we note that due to Lemma 1, for each
component Bm we can effectively determine an integer Kε,m

such that for any distribution ν over Xm, ∆(λm, ν ·B
Kε,m
m ) ≤

ε. We now set Kε = θ ·maxm<θ{Kε,m}.
To show that Kε has the required properties we begin with:
Lemma 2: Suppose µ is a distribution and w is the weight

vector induced by µ. Let d ≥ 0 and µ · Mθ·d = µ′. Then
µ′ =↑w {Bdm(↓m (µ))}.

The proof follows easily from the definitions.
Lemma 3: ξµ0(k) ∈ F(k mod θ) for every k > Kε.

Proof: Let µ0 ·Mk = µ′ with k > Kε. We shall show
that ∆(µ′, γ(k mod θ)) ≤ Kε. This will imply that ξµ0

(k) ∈
F(k mod θ) as required.

Let us consider first the case k mod θ = 0 with k′ = k · θ.
Let ↓m (µ0) = βm for each m and assume u is the weight
vector induced by µ0. Set βm · Bk

′

m = β′m for each m. For
each m, in case u(m) = 0, we have βm = 0m and hence
β′m = 0m. In case u(m) > 0, by the choice of Kε we are
guaranteed ∆(β′m, λm) ≤ ε.

According to the previous lemma µ′ =↑u {β′m}. Hence
∆(µ′, γ0) = Σm cm where cm = Σi∈Xm |u(m)·β′m(i)−u(m)·
λm| ≤ u(m)·ε. Since Σmu(m) = 1 we now have ∆(µ′, γ0) ≤
ε as required. The other cases for k = k′θ + m for 0 <
m < θ follow easily from: ∆(µ0 ·Mk, γm) = ∆(µ0 ·Mk′θ ·
Mm, γ0 ·Mm) ≤ ∆(µ0 ·Mk′θ, γ0) ≤ ε, due to the fact that
∆(µ ·M,µ′ ·M) ≤ ∆(µ, µ′) for any Markov chain M .

We have now established Prop. 1 for the class of periodic
Markov chains.

B. Solutions to the approximate model checking problems

As before, we let Σ = 2APϕ and first construct the
non-deterministic Büchi automaton A such that the language
accepted by A is exactly L̂ϕ where L̂ϕ is defined as in the
previous section. The required Büchi automaton B can now be
constructed along the lines followed in the previous section.
Starting from µ0, B will iteratively apply M and simulate
A on the resulting D-distributions. At the end of Kε steps
the resulting discretized distribution is guaranteed to be in
F0. Starting from here, if the current D-distribution is in Fm
then the automaton will non-deterministically move to a D-
distribution in Fm+1 mod θ in the next step while continuing
to simulate the automaton A on the resulting D-distributions.
The resulting run is accepted if A reports success. Otherwise
it is rejected. We can then easily show;

Theorem 2: M,µ0|=ε ϕ iff the language accepted by B is
non-empty.

To determine whether M,µ0|=
ε

ϕ we first construct the
automaton A′ which accepts L̂∼ϕ. We then use it instead of
the automaton A to construct a Büchi automaton B′ such that
M,µ0|=

ε

ϕ iff the language accepted by B′ is empty. Again,
all the details can be found in [1].

VII. UNRESTRICTED MARKOV CHAINS

Let M be a Markov chain with initial distribution µ0, an
approximation factor ε and a specification ϕ. We shall assume
for convenience that GM is connected and that for every node
i either µ0(i) > 0 or there is a path j0j1 . . . j` in GM such
that i = j` and µ0(j0) > 0. Let {SC1, SC2, . . . , SCr} be

7



the set of strongly connected components (SCCs) of GM . The
relation � over the SCCs is given by: SC � SC ′ iff there
exists a node i in SC, a node j in SC ′ and a path from i
to j in GM . Clearly � is a partial ordering relation and the
maximal elements under � will be called the bottom strongly
connected components (BCCs). M restricted to each BCC will
be aperiodic or periodic. If i belongs to a non-bottom SCC
then it is a transient node. If a node is not transient then it
is recurrent. An example of such a Markov chain is shown in
fig. 4(a) and the poset of its SCCs is shown in fig. 4(b) (each
SCC is represented by its set of nodes). Thus in fig. 4, nodes
{1, 2, 3, 4} are transient and {5, 6, 7, 8, 9} are recurrent. The
BCC {5, 6, 7} is irreducible and periodic with period 3 while
the BCC {8, 9} is irreducible and aperiodic.

As M is iteratively applied to µ0, the probability mass on
the transient nodes will be transferred to the recurrent nodes.
In the limit, all the probability mass will be distributed over
the BCCs. We can then ignore the transient nodes and analyze
a set of disjoint chains each of which will be aperiodic or
periodic. This can be done easily using the results of the
previous sections. However this will happen only in the limit
while we must solve our model checking problems by running
over sequences along which this transfer is taking place.

Our strategy will be to first compute the limit distribution
of probability masses over the BCCs. This will enable us to
compute a set of local final distributions induced by the BCCs.
Then, as in the previous section, these local final distributions
will be used to construct a set of global final distributions
which in turn via their ε-neighborhoods will induce the final
classes. We say here “final” instead of “stationary” to empha-
size that these distributions will arise only in the limit.

The crucial next step is to compute two constants Kt and
Kr such that by first iterating M on µ0 for Kt times there
will only be a negligible amount of probability mass left on
the transient nodes. Then through a further Kr iterations we
will be guaranteed to get ε-close to the desired global final
distribution. With Kε = Kt + Kr we then will be able to
establish Prop.1 which in turn will lead to the solutions to the
approximate model checking problems.
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Fig. 4. A general Markov chain (unlabelled transitions have probability 1)
and (the Hasse diagram of) its poset of strongly connected components

A. The determination of Kε and the final classes

In what follows Xtrn will denote the set of transient
nodes and Xrec denote the set of recurrent states. We let
{X1,X2, . . .Xu} be the node sets of the BCCs of M . Con-
sequently,

⋃
1≤v≤u Xv = Xrec. We let their periods be

θ1, θ2, . . . , θu, respectively. We next decompose each Xv -
which in general will be periodic - into its set of aperiodic
components Xv,0,Xv,1, . . . ,Xv,θv−1 as done in the previous
section. Obviously θv = 1 and Xv,0 = Xv in case the vth BCC
is aperiodic. We define θ to be the lcm (least common multiple)
of θ1, · · · , θu. As in the previous section, Mθ restricted to
Xv,m will be denoted as Bv,m and it will be an aperiodic
chain. We shall refer to Xv,m as a component in what follows.

Let λv,m be the unique stationary distribution of Bv,m for
each v ∈ {1, 2, . . . , u} and each m ∈ {0, 1, . . . (θv − 1)}.
We next define the weight vector w which assigns the weight
w(v,m) -denoting the probability mass transferred to Xv,m
in the limit- to each (v,m). The key observation is that w
can be obtained as the unique solution to a system of linear
equations. Since the focus is on the components, we will need
to work with Mθ rather than M . Accordingly, Gθ will denote
the underlying graph of Mθ. We first define Tv,m to be the
subset of X given by: i ∈ Tv,m iff i /∈ Xv,m and there exists
a directed path in Gθ from i to some node in Xv,m. It is easy
to see that Tv,m ⊆ Xtrn. There will be a variable xi for each
i in Tv,m and the equation for xi will be:
xi = Σj∈Tv,mM

θ(i, j) · xj + Σ`∈Xv,mM
θ(i, `).

Due to [6] (in particular Theorem 10.19) the above system
of equations has a unique solution which can be computed
effectively. Let v : Tv,m → [0, 1] denote this solution.
Again using the least fixpoint characterization of this solution
provided in [6] we can in fact show that this solution satisfies
v(i) = limk→∞ xk(i), with xk(i) =

∑
j∈Xv,mM

k·θ(i, j). We
now define w(v,m) = Σi∈Tv,mµ0(i) · v(i) + Σj∈Xv,mµ0(j).
Using the expressions for v(i) as limits, it is easy to prove:

Lemma 4: ∀v,m, k,w(v,m) ≥ Σi∈Xv,mµ0 ·Mk·θ(i).
The global final distribution γ0 is now given by γ0(i) =

w(v,m) · λv,m(i) if i ∈ Xv,m, and γ0(i) = 0 if i ∈ Xtrn.
We let γd = γ0 ·Md for 0 < d < θ. With Fd = Nε(γd),

this leads to {Fd}0≤d≤θ−1 as the set of final classes.
The next task is to define Kε. Let i ∈ Xtrn. Then there

exists k ≤ |Xtrn| and j ∈ Xrec such that Mk(i, j) > 0. Next
we note that if i1 . . . ik is a path in GM and i` ∈ Xrec for some
` with ` < k, then iv ∈ Xrec for every v satisfying ` ≤ v ≤ k.
Consequently we can find a p > 0 such that for every i ∈
Xtrn, there exists j ∈ Xrec such that M |Xtrn|(i, j) ≥ p. This
implies

∑
i∈Xtrn(µ0 ·M |Xtrn|)(i) ≤ (1 − p) · µ0(i) for each

i ∈ Xtrn. Since p > 0, we have 1− p < 1 and hence for any
δ > 0 there exists a computable k such that (µ0 ·Mk)(i) < δ.
Therefore we can fix K to be the least positive integer such
that

∑
i∈Xtrn(µ0 ·MK)(i) ≤ ε

4 .
We now set Kt = K · θ so that we have:
Lemma 5: for all k ≥ Kt,

∑
i∈Xtrn µ0 ·Mk(i) ≤ ε

4 .
Next we determine Kr by letting Kv,m be the least integer

such that for any distribution ν over Xv,m, |ν ·BKv,mv,m , λv,m| ≤
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ε
2 . Recall that Bv.m is the restriction of Mθ to Xv,m and that
λv,m is the unique stationary distribution of the component
Xv,m. We know from Lemma 3 that Kv,m exists and is
computable. We now set Kr = θ · maxv,m(Kv,m). Finally,
we fix Kε as Kε = Kt +Kr.

To prove that Kε has the required properties, we show
that probability mass that has accumulated in Xv,m after Kt

applications of M to µ0 is close to w(v,m). More precisely,
we have;

Lemma 6: Σv,m|w(v,m)− (Σj∈Xv,mµ0M
Kt

(j))| ≤ ε
4 .

Proof: By Lemma 4, Σv,m|w(v,m) −
(Σj∈Xv,mµ0M

Kt

(j))| = Σv,mw(v,m)−Σj∈Xv,mµ0M
Kt

(j).
But Σv,mw(v,m) − Σj∈Xv,mµ0M

Kt

(j) = Σv,mwv,m −
Σv,mΣj∈Xv,mµ0M

Kt(j). Clearly Σv,mw(v,m) = 1
and Σv,mΣj∈Xv,mµ0M

Kt(j) = Σj∈Xrecµ0M
Kt(j) =

1− Σj∈Xtrnµ0M
Kt(j) ≥ 1− ε

4 by Lemma 5.
We now wish to show that by iterating further Kr times,

starting from µ0 · MKt , we will get ε-close to the final
distribution γ0. However it will be easier to work with the
distribution µ′ which is very much like µ0M

Kt but has no
probability mass in Xtrn. We will then use µ′ as a bridge to
compare γ0 with µ0 ·MKε

. First define the weight vector β
via β(v,m) = Σj∈Xv,mµ0M

Kt(j). We define µ′ as:
• µ′(i) = 0 for every i ∈ Xtrn.
• Suppose j ∈ Xv,m. Then µ′(j) = w(v,m)

β(v,m) · µ0M
Kt(j) if

β(v,m) 6= 0. Else, µ′(j) = 0.
Clearly, Σj∈Xv,mµ

′(j) = w(v,m) for each (v,m).
The bridging role played by µ′ can now be brought out:
Lemma 7: 1) ∆(µ′, µ0 ·MKt) ≤ ε

2
2) ∆(µ′ ·MKr , γ0) ≤ ε

2
Proof: ∆(µ′, µ0M

Kt) = Σi∈X |µ′(i) − µ0M
Kt(i)| =

Σi∈Xtrn |µ′(i)−µ0M
Kt(i)|+Σj∈Xrec |µ′(i)−µ0M

Kt(i)|. But
then µ′(i) = 0 for every i ∈ Xtrn and Σi∈Xtrnµ0M

Kt(i) ≤ ε
4

by Lemma 5.
We shall now show Σj∈Xrec |µ′(j) − µ0M

Kt(j)| ≤ ε
4 .

Note Σj∈Xrec |µ′(j) − µ0M
Kt(j)| = Σv,mΣj∈Xv,m |µ′(j) −

µ0M
Kt(j)|. From Lemma 4, it follows that w(v,m) ≥

β(v,m) and hence µ′(j) ≥ µ0M
Kt(j) for every

j ∈ Xv,m. For all v,m, we have Σj∈Xv,m |µ′(j) −
µ0M

Kt(j)| = Σj∈Xv,mµ
′(j)−µ0M

Kt(j) = Σj∈Xv,mµ
′(j)−

Σj∈Xv,mµ0M
Kt(j) = w(v,m) − Σj∈Xv,mµ0M

Kt(j). Sum-
ming over all v,m, we apply Lemma 5: Σj∈Xrec |µ′(j) −
µ0M

Kt(j)| ≤ ε
4 .

The second part of the lemma follows the same line as the
proof of Lemma 3.

We can now obtain:
Lemma 8: ∆(µ0 ·MKε

, γ0) ≤ ε
Proof: We have ∆(µ0 · MKε

, γ0) = ∆(µ0 · MKt ·
MKr , γ0) ≤ ∆(µ′ ·MKr , µ0 ·MKt ·MKr )+∆(µ′ ·MKr , γ0)
using the triangle inequality. The second part is lower than
ε
2 due to the second statement of the lemma above. The
first part is lower than ε

2 due to the first part of the lemma
above together with the fact that any Markov chain N satisfies
∆(y ·N, x ·N) ≤ ∆(y, x).

Following the same line of reasoning as in the previous
section, it is now easy to show that µ0 ·Mk ∈ Fk mod θ for

every k ≥ Kε. This establishes Prop. 1 for general Markov
chains.

The construction of the required Büchi automata to solve the
approximate model checking problems is then very similar to
the ones in the previous sections and the details can be found
in [1]. Thus we obtain:

Theorem 3: Given a specification ϕ we can effectively
construct non-deterministic Büchi automata B,B′ such that:

1) M,µ0|=ε ϕ iff the language accepted by B is non-empty.
2) M,µ0|=

ε

ϕ iff the language accepted by B′ is empty.

VIII. MULTIPLE INITIAL DISTRIBUTIONS

We now show how multiple initial distributions can be
handled. Let M be a Markov chain. Assume that we are given
a discretized distribution Din as the set of initial concrete
distributions.

Given µ ∈ Din, we now know how to compute - using µ in
place of µ0 - the final distribution γd to which µd ·Mkθ will
converge for 0 ≤ d ≤ θ − 1 and µd = µ ·Md. However, we
cannot handle members of Din one at a time since there will
be in general an infinite number of them. Hence we will group
them into a finite number of equivalence classes as follows.
Before proceeding it is worth noting that the choice of Kε

(as also that of Kr and Kt in the previous section) depended
only on M and ε and not on the initial distribution µ0. This is
crucial for handling an infinite number of initial distributions.

Let µ be in Din and let {γ0
µ, . . . , γ

θ−1
µ } be

its associated set of final distributions. Then we
will say that µ has the ε-approximate behavior
Bh =< D1D2 · · ·DKε ;D0, . . . ,Dθ−1 > if Dk = ξµ(k) for
1 ≤ k ≤ Kε, and Dd = Nε(γdµ) for 0 ≤ d < θ. Since D is
a finite set there are only a finite number of ε-approximate
behaviors.

Now suppose µ, µ′ ∈ Din have the same ε-approximate be-
havior. Then it is easy to see that (M,µ)|=

ε
ϕ iff (M,µ′)|=

ε
ϕ.

And (M,µ)|=ε ϕ iff (M,µ′)|=ε ϕ. This leads to the notion
of (M,Bh)|=ε ϕ which holds iff for some µ ∈ Din whose
ε-approximate behavior is Bh, we have (M,µ)|=

ε
ϕ. Simi-

larly (M,Bh)|=ε ϕ holds iff for some µ ∈ Din whose ε-
approximate behavior is Bh, we have (M,µ)|=ε ϕ. Clearly
the algorithm of the previous section can be used to an-
swer whether (M,Bh)|=ε ϕ and whether (M,Bh)|=ε ϕ, for
any ε-approximate behavior Bh. The issue now is which ε-
approximate behaviors are witnessed (realized) by distribu-
tions in Din.

To address this, we observe that Din is a convex set of
concrete distributions. In other words, if µ1, µ2, . . . , µk ∈ Din

and c1, c2, . . . , ck ∈ [0, 1] with
∑
l cl = 1 we are assured that

µ = c1 ·µ1 + c2 ·µ2 + . . . ck ·µk will be a distribution in Din.
Using the definition of a discretized distribution, we can easily
find a finite set of corner points CP = {κ1, κ2, . . . , κJ} ⊆
Din such that for each µ ∈ Din there exist c1, c2, . . . , cJ ∈
[0, 1] such that

∑
l cl = 1 and µ = c1 ·κ1+c2 ·κ2+. . .+cJ ·κJ .

We wish to show that the final distributions induced by a
distribution µ in Din can be represented as the convex hull of
the final distributions induced by the corner points. To make

9



this precise, for each µ ∈ Din, let wµ be the weight vector
induced by µ. Let γµ be the final distribution induced by µ as
computed in the previous section, i.e. such that limk→∞∆(µ ·
Mkθ, γµ) = 0.

Proposition 3: Let ν =
∑

1≤q≤J cqκq with cq ∈ [0, 1] and∑
1≤q≤J cu = 1. Then γν =

∑
1≤q≤J cqγκq .

Proof: This follows from the linearity of M , that is, (aκ+
bκ′)M = aκM + bκ′M .

By linearity, we also have a similar property for γdµ = γµ ·
Md, 0 ≤ d < θ. Hence, we only need to compute explicitly
γκ for each corner point κ ∈ CP . Now, given a sequence
D1 · · ·DKε ∈ D and a θ-tuple of sets (D0,D2, . . . ,Dθ−1)
with Di ⊆ D we can decide whether there exist cq ∈ [0, 1]
with 1 ≤ u ≤ J such that
•
∑

1≤q≤J cq = 1,
• for all k < Kε,

∑
1≤q≤J cqM

k(κq) ∈ Dk, and
• for all 0 ≤ m ≤ θ − 1, Nε(

∑
1≤q≤J cqγ

m
κq ) = Dm.

We can decide this using the first order theory of reals.
Consequently we can compute the finite set of ε-approximate
behaviors of M generated by the distributions in Din. As
noted earlier, for each ε-approximate behavior in this set,
we can decide if it meets the specification ϕ and by taking
the conjunction of all the outcomes we can decide whether
(M,Din)|=

ε
ϕ and whether (M,Din)|=ε ϕ.

IX. CONCLUSION

We have initiated here the study of the symbolic dynamics
of finite state Markov chains obtained by discretizing the
probability value space [0, 1] into a finite set of intervals. This
leads to the notion of discretized distributions and symbolic
trajectories. We have designed a simple temporal logic to
reason about the symbolic dynamics and have considered two
variants of an approximate model checking problem in this
setting. Our main result is that both the variants are decidable.

In the present study we have used a discretized distribu-
tion to specify the initial set of distributions. An alternative
approach would be to present it as the convex hull of a finite
set of concrete distributions with rational component values.
Naturally one can then also allow a finite union of such convex
polytopes to specify the set of initial distributions. With some
additional work our results can be easily extended to handle
such initial distributions. Further, as pointed out at the end
of Section V, we can also allow the atomic propositions to
express polynomial constraints over the current distributions.

An interesting application to explore is the dynamics of
biochemical networks modeled by the Chemical Master Equa-
tion [25]. We feel that our symbolic dynamics approach can
bring considerable benefits in this setting. In particular, the
errors incurred through the ε-approximation method will be
entirely acceptable. Further applications can open up by ex-
tending our results to the setting of Markov decision processes
(MDPs). As an orthogonal extension, one can also explore
the discretization of transition probabilities. This will however
considerably complicate the computation of the symbolic
dynamics and hence will likely require the development of
new techniques. Finally, as mentioned in the introduction, we

have not paid close attention to complexity issues. We are
however confident that geometric representations and linear
algebraic techniques can considerably reduce the complexity
of many of our constructions. We plan to address this issue as
well in our future work.
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