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Abstract. We propose a model of distributed timed systems where each component is a timed au-

tomaton with a set of local clocks that evolve at a rate independent of the clocks of the other compo-

nents. A clock can be read by any component in the system, but it can only be reset by the automaton

it belongs to.

There are two natural semantics for such systems. The universal semantics captures behaviors that

hold under any choice of clock rates for the individual components. This is a natural choice when

checking that a system always satisfies a positive specification. To check if a system avoids a negative

specification, it is better to use the existential semantics—the set of behaviors that the system can

possibly exhibit under some choice of clock rates.

We show that the existential semantics always describes a regular set of behaviors. However, in

the case of universal semantics, checking emptiness or universality turns out to be undecidable. As

an alternative to the universal semantics, we propose a reactive semantics that allows us to check

positive specifications and yet describes a regular set of behaviors.

Keywords: timed automata, distributed systems

1. Introduction

In today’s world, it is becoming increasingly important to look at networks of timed systems, which

allow real-time systems to operate in a distributed manner. Many real-life systems, such as mobile

phones, computer servers, and railway crossings, depend crucially on timing while usually consisting of
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many interacting systems. In general, there is no reason to assume that different timed systems in the

networks refer to the same time or evolve at the same rate.

Timed automata [2] are a well-studied formalism to describe systems that require timing. However,

networks of timed automata, under the assumption of knowledge of a global time, as done in [6, 7, 13],

do not really reflect the distributed model.

In this paper, we provide a framework to look at distributed systems with independently evolving

local clocks. Each constituent system is modeled by a timed automaton. All clocks belonging to this

timed automaton evolve at the same rate. However clocks belonging to different processes are allowed

to evolve at rates that are independent of each other. We allow clocks belonging to one process to be

read/checked by another but we require that a clock can only be reset by the automaton it belongs to. This

relation of “belonging to” is formalized by defining an ownership map assigning clocks to processes.

Since we have unrelated time values on different processes, we are interested in the underlying un-

timed behaviors of these distributed timed automata rather than their timed behaviors. Thus, the clocks

(and time itself) are implementation or synchronization tools rather than being a part of the observation.

This is a crucial point where our work departs from other related works (see below).

When we assume that clocks behave asynchronously and are subject to external, uncontrollable ef-

fects, the precise system behavior is unpredictable and not amenable to verification. It is therefore natural

to look at different approximations depending on the specification that we want our system to satisfy.

When we want to guarantee that our system exhibits a positive specification, we look at the universal

semantics. This semantics describes the behaviors exhibited by the system no matter how time evolves in

the constituent processes. Thus, the universal semantics is an under-approximation of the actual system

behavior. However, if we want to check that our system avoids a negative specification, then we prefer

to look at the existential semantics. This is the set of behaviors that the system might exhibit under some

(bad) choice of local time rates in the constituent processes. This semantics is an over-approximation

of the system behavior. We perform a region construction on our distributed timed automata to show

that the existential semantics always gives a regular set of untimed behaviors. Thus the model checking

problem of distributed timed automata against regular negative specifications is decidable. On the other

hand, we show that checking emptiness or universality for the universal semantics is undecidable. This

result is further strengthened to a bounded case, where we have restrictions on the relative time rates. To

overcome the negative result and be able to check positive specifications, we introduce a third semantics:

The reactive semantics, which will rely on a game view of our distributed timed systems, is an under-

approximation of the universal semantics and, therefore, of the actual system behavior. We show that the

reactive semantics is always regular and computable so that it allows us to check positive specifications

effectively.

In the above, we have considered systems with a distributed state space consisting of several timed

automata. But if we consider the ownership map assigning clocks to processes, and take a product of

the states of these timed automata, we obtain a single timed automaton with a global state space having

independently evolving clocks. This model with a global state space is more general than the distributed

one, in the sense that any distributed system can be described over a global state space by taking an

asynchronous product of the local state spaces, but the reverse is not true. In this paper, we explicitly

consider both these types of independently evolving clock models, having global and distributed state

spaces. In fact, for many of our results, it will turn out to be simpler to work with global state spaces.

Then, the positive results can be immediately inferred for the distributed state space, while we need to

do some more work to prove the same for the negative results. Nevertheless, all the results in this paper



S. Akshay et al. / Distributed Timed Automata with Independently Evolving Clocks 3

go through for distributed as well as global state spaces.

Related work In [9, 17, 18], classical timed automata are equipped with an additional parameter ∆,

which allows a clock to diverge over a period t from its actual value by ∆t. This model conforms, in a

sense, to our existential semantics, where we restrict the set of clock rates to those corresponding to ∆
(see Section 5). Syntactically, our model coincides with that from [10]: A clock can only be reset by the

owner process, whereas it can be read by any process. However, existing works differ from ours since

they consider timed words rather than untimed languages and we use clocks and time as synchronization

tools only. This also explains why our automata differ from hybrid automata [12]. In the model of

[4], clocks are not shared and clocks on different processes drift only as long as the processes do not

communicate (via synchronizing actions). These assumptions make partial-order–reduction techniques

applicable. Another fundamental difference between all these approaches and our work is that we do not

restrict to the study of system configurations that can be reached under some local-time behavior, which

is only a suitable abstraction if we consider safety specifications. To check positive specifications, we

also provide semantics that can check if a system exhibits some behavior under all relative clock speeds.

Structure of the paper In Section 2, we introduce our distributed automaton model with independently

evolving clocks, and define its existential and universal semantics. Section 3 extends the regions of

a timed automaton to our distributed setting, allowing us to compute a finite automaton recognizing

the existential semantics. Section 4 shows that checking emptiness and universality of the universal

semantics is undecidable. This result is sharpened towards bounded clock drifts in Section 5. Section 6

deals with the reactive semantics, and Section 7 identifies some directions for future work.

A preliminary version of this paper appeared as [1].

2. Distributed timed automata

Preliminaries For a set Σ, we let Σ∗ and Σω denote the set of finite and, respectively, infinite words

over Σ. The empty word is denoted by ε. We set Σ∞ = Σ∗∪Σω and Σ+ = Σ∗ \{ε}. The concatenation

of words u ∈ Σ∗ and v ∈ Σ∞ is denoted by u · v. An alphabet is a non-empty finite set. Given an

alphabet Σ, we denote by Σε the set Σ⊎{ε}. The sets of non-negative/positive real numbers are denoted

by R≥0/R>0, respectively. For t ∈ R≥0, ⌊t⌋ and fract(t) refer to the integral and, respectively, fractional

part of t, hence t = ⌊t⌋+ fract(t).
The set Form(Z) of clock formulas over a set of clocks Z is given by the grammar

ϕ ::= true | x ⊲⊳ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where x is a clock from Z , ⊲⊳ ∈ {<,≤, >,≥,=}, and c ranges over N = {0, 1, 2, . . .}. A clock valuation

over Z is a mapping ν : Z → R≥0. We say that ν satisfies ϕ ∈ Form(Z), written ν |= ϕ, if ϕ evaluates

to true using the values given by ν. For R ⊆ Z , ν[R] denotes the clock valuation defined by ν[R](x) = 0
if x ∈ R and ν[R](x) = ν(x), otherwise.

The model Let us recall the notion of timed automata [2]. These will constitute the building blocks of

our distributed timed automata. A timed automaton is a tuple A = (S,Σ,Z, δ, I, ι, F ) where S is a finite

set of states, Σ is the alphabet of actions, Z is a finite set of clocks, δ ⊆ S×Σε×Form(Z)× 2Z ×S is

the finite set of transitions, I : S → Form(Z) associates with each state an invariant, ι ∈ S is the initial
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Ap: s0 s1 s2
a, y ≤ 1 a, {x}

Aq: r0 r1 r2

y ≤ 1

b, x ≥ 1 b, 0 < x < 1

Figure 1. A distributed timed automaton over {p, q}

state, and F ⊆ S is the set of final states. We let Reset(A) = {x ∈ Z | there is (s, a, ϕ,R, s′) ∈ δ such

that x ∈ R} be the set of clocks that might be reset in A. Without loss of generality, we will assume in

this paper that I(ι) is satisfied by the clock valuation over Z that maps each clock to 0.

We will now extend the above definition to a distributed setting. First, we fix a non-empty finite set

Proc of processes. For a tuple t that is indexed by Proc, tp refers to the projection of t onto p ∈ Proc.

Definition 2.1. A distributed timed automaton (DTA) over the set of processes Proc is a structure D =
((Ap)p∈Proc , π) where the Ap = (Sp,Σp,Zp, δp, Ip, ιp, Fp) are timed automata such that the alphabets

Σp are pairwise disjoint, and π is a (total) mapping from
⋃

p∈Proc Zp to Proc such that, for each p ∈

Proc, we have Reset(Ap) ⊆ π−1(p) ⊆ Zp.

Note that Zp refers to the set of clocks that might occur in the timed automaton Ap, either as clock guard

or reset. The same clock may occur in both Zp and Zq, since it may be read as a guard in both processes.

However, any clock evolves according to the time evolution of some particular process. This clock is

then said to belong to that process, and the owner map, π, formalizes this in the above definition. This

will become more clear when we describe the formal semantics later in this section. Finally, we assume

that a clock can only be reset by the process it belongs to.

Example 2.1. Suppose Proc = {p, q}. Consider the DTA D as given by Figure 1. It consists of two

timed automata, Ap and Aq with Zp = Zq = {x, y}. In both automata, we suppose all states to be

final. Moreover, the owner mapping π maps clock x to p and clock y to q. Note that Reset(Ap) = {x}
and Reset(Aq) = ∅. Before we define the semantics of D formally and in a slightly more general

setting, let us give some intuitions on the behavior of D. If both clocks are completely synchronized,

i.e., they follow the same local clock rate, then our model corresponds to a standard network of timed

automata [6]. For example, we might execute a within one time unit, and at time 1, execute b, ending

up in the global state (s1, r1) and clock valuation ν(x) = ν(y) = 1. If we now wanted to perform a

further b, this should happen instantaneously. But this also requires a reset of x in the automaton Ap and,

in particular, a time elapse greater than zero, violating the invariant at the local state r1. Thus, the word

abab will not be in the semantics that we associate with D wrt. synchronized local-time evolution. Now

suppose clock y runs slower than clock x. Then, having executed ab, we might safely execute a further

a while resetting x and, then, let some time elapse without violating the invariant. Thus, abab will be

contained in the existential semantics, as there are local time evolutions that allow for the execution of

this word. Observe that a and aa are the only sequences that can be executed no matter what the relative

time speeds are: the guard y ≤ 1 is always satisfied for a while. But we cannot guarantee that the guard
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global time

local time

τp

τq

global time

τp

τq

Figure 2. Examples of local time rate functions

x ≥ 1 and the invariant y ≤ 1 are satisfied at the same time, which prevents a word containing b from

being in the universal semantics of D.

The semantics The semantics of a DTA depends on the (possibly dynamically changing) time rates at

the processes. To model this, we assume that these rates depend on some absolute time, i.e., they are

given by a tuple τ = (τp)p∈Proc of functions τp : R≥0 → R≥0. Thus, each local time function maps

every point in global time to some local time instant. Then, we require (justifiably) that these functions

are continuous, strictly increasing, and divergent. Further, they satisfy τp(0) = 0 for all p ∈ Proc. The

set of all these tuples τ is denoted by Rates . We might also consider τ as a mapping R≥0 → RProc
≥0 so

that, for t ∈ R≥0, τ(t) denotes the tuple (τp(t))p∈Proc .

By superimposing the local time rate maps for each process on the same graph, we can represent τ
pictorially, as in Figure 2. Thus, in the first picture, clocks on process p evolve steadily faster than clocks

on process q. Whereas, in the second picture, the clocks on process q are initially faster than clocks on

process p but start to lag behind them after some time.

Now, a distributed system can usually be described by an asynchronous product of automata. In the

case of DTA, the semantics can be defined using such a product and a mapping that assigns any clock

to its owner process. For this, we start by introducing the following more general model, with a unified

state space, for which it will be easier to define the semantics.

Definition 2.2. A timed automaton with independently evolving clocks (icTA) over Proc is a tuple B =
(S,Σ,Z, δ, I, ι, F, π) where (S,Σ,Z, δ, I, ι, F ) is a timed automaton and π : Z → Proc maps each

clock to a process.

Below, we define the semantics of a DTA D in terms of an icTA BD. Most of the following definitions

and results are based on this more general notion of a timed system and therefore automatically carry

over to the special case of DTAs.

Now, we would like to define a run of an icTA. Intuitively, this is done in the same spirit as a run of a

timed automaton over a timed word except for one difference. The time evolution, though according to

absolute time, is perceived by each process as its local time evolution. Let B = (S,Σ,Z, δ, I, ι, F, π) be

an icTA. Then, given a clock valuation ν : Z → R≥0 and a tuple t ∈ RProc
≥0 , the valuation ν+ t is defined

by (ν + t)(x) = ν(x) + tπ(x) for all x ∈ Z .

Thus, for τ ∈ Rates , we define a τ -run of B as a sequence

(s0, ν0)
a1,t1
−−−→ (s1, ν1)

a2,t2
−−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)
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s0

s1

s2

s3

t1

t2

a

0 < x < 1

0 < y < 1

a

0 < x < 1

0 < y < 1

b

y ≤ 1 ≤ x

b

x < 1 = y

b

y ≤ 1 ≤ x

c

x < 1 < y

Figure 3. An icTA B with independent clocks x and y

where n ≥ 0, si ∈ S, ai ∈ Σε, and (ti)1≤i≤n is a non-decreasing sequence of values from R≥0 (we

assume t0 = 0). Further, νi : Z → R≥0 with ν0(x) = 0 for all x ∈ Z . Finally, for all i ∈ {1, . . . , n},

there are ϕi ∈ Form(Z) and Ri ⊆ Z such that the following conditions hold:

(si−1, ai, ϕi, Ri, si) ∈ δ (1)

νi−1 + τ(t′)− τ(ti−1) |= I(si−1) for each t′ ∈ [ti−1, ti] (2)

νi−1 + τ(ti)− τ(ti−1) |= ϕi (3)

νi = (νi−1 + τ(ti)− τ(ti−1))[Ri] (4)

νi |= I(si) (5)

In this case, we write (B, τ) : s0
a1·...·an−−−−−→ sn or also (B, τ) : s0

a1·...·ai−−−−→ si
ai+1·...·an
−−−−−−→ sn to abstract

from the time instances. The latter thus denotes that B can, reading w, go from s0 via si to sn, while

respecting the local-time rates τ .

Definition 2.3. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and τ ∈ Rates . The language of B wrt. τ ,

denoted by L(B, τ), is the set of words w ∈ Σ∗ such that (B, τ) : ι
w
−→ s for some s ∈ F . Moreover, we

define L∃(B) =
⋃

τ∈Rates L(B, τ) to be the existential semantics and L∀(B) =
⋂

τ∈Rates L(B, τ) to be

the universal semantics of B.

If |Proc| = 1, then an icTA B actually reduces to an ordinary timed automaton and we have L∀(B) =
L(B, τ) = L∃(B) for any τ ∈ Rates . Moreover, if |Proc| ≥ 1 and τ ∈ Rates exhibits, for all p ∈ Proc,

the same local time evolution, then L(B, τ) is the untimed language of B considered as an ordinary timed

automaton.

Example 2.2. Consider an example icTA B over the set of processes {p, q} and Σ = {a, b, c} as depicted

in Figure 3. Assuming π(x) = p and π(y) = q, we have L(B, id) = {a, ab, b}, where idp is the identity

on R≥0 for all p ∈ Proc (i.e., id models synchronization of any process with the absolute time). We

observe that L∀(B) = {a, ab} and L∃(B) = {a, ab, b, c}.

Now, we define the semantics of a DTA in terms of an associated icTA. As usual in a distributed

(timed and untimed) setting, we give an interleaving semantics [4,19]. It is obtained by taking a product

of the components of the DTA that is slightly more complicated than a direct asynchronous product, in

the sense that it simulates the simultaneous firing of independent actions (as in the DTA).
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(s1, r1), {a}

y ≤ 1

z ≤ 0

(s1, r1), {a, b}

y ≤ 1

z ≤ 0

(s1, r1), ∅

y ≤ 1

(s0, r0), ∅ (s0, r1), {b}

y ≤ 1

z ≤ 0

(s0, r1), ∅

y ≤ 1

(s1, r1), {b}

y ≤ 1

z ≤ 0

(s1, r0), {a}

z ≤ 0

(s1, r0), ∅

ε , y ≤ 1 ∧ x ≥ 1

{z}

ε , x ≥ 1

{z}

ε , y ≤ 1

{z}

b

a

b

a

a

b

(T1) (T2)

Figure 4. Part of the icTA BD for the DTA D from Figure 1

Let D = ((Ap)p∈Proc , π) be a DTA where Ap = (Sp,Σp,Zp, δp, Ip, ιp, Fp). We associate with D
an icTA BD = (S,Σ,Z, δ, I, ι, F, π′) as follows. Its set of states is S = (

∏
p∈Proc Sp) × 2Σ where

Σ =
⊎

p∈Proc Σp. The first component of a state collects the current local state of every process. The

intuitive meaning of the second component is the following. Being in a state (s, ∅), the icTA guesses a

set of transitions that the DTA may fire simultaneously. It then collects corresponding actions (except

ε) into the set A, going into some state (s′, A) where s′ contains the target states of all transitions that

had been selected. Now, as long as A 6= ∅, we use a clock invariant to ensure that the icTA can simulate

all these actions, in any order, without time elapsing in between. In doing so, the icTA will eventually

enter (s′, ∅). To ensure that the steps that are taken when A 6= ∅ occur instantaneously, we add an extra

clock z 6∈
⋃

p∈Proc Zp and we set Z = {z} ⊎
⋃

p∈Proc Zp. Thus, with our assumption stating that if time

elapses, then it must elapse in all processes, we can assume z to belong to any process, i.e, π(z) to be

arbitrary.

For s = (sp)p∈Proc ∈
∏

p∈Proc Sp and A ⊆ Σ with A 6= ∅, we define the state invariants I(s, ∅) =∧
p∈Proc Ip(sp) and I(s,A) = z ≤ 0 ∧

∧
p∈Proc Ip(sp). Moreover, we set ι = ((ιp)p∈Proc , ∅), and

F = (
∏

p∈Proc Fp)× {∅}. Then, the transitions in BD are of two types:

(T1) The first type is an ε-move, which guesses the set of processes of the DTA that will move next

and the transitions that each of them would perform. In addition, it checks the guard that each of

them must satisfy and resets the clocks as well. Thus, ((s, ∅), ε, ϕ,R, (s′ , A)) ∈ δ if there are some

non-empty set P ⊆ Proc and transitions (s̃p, ap, ϕp, Rp, s̃
′
p) ∈ δp, p ∈ P , such that

• sp = s̃p and s′p = s̃′p for all p ∈ P , and sq = s′q for all q ∈ Proc \ P ,

• ϕ =
∧
p∈P

ϕp, R =
⋃
p∈P

Rp ∪ {z}, and A = {ap | p ∈ P} \ {ε}.
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(T2) This move performs an action from its guessed set A and then removes it: ((s,A), a, true, ∅, (s,A\
{a})) ∈ δ for all s ∈

∏
p∈Proc Sp, A ⊆ Σ, and a ∈ A.

This completes our definition of the icTA BD associated to a DTA D.

Note that several different semantics in terms of icTA are conceivable here, and that their choice

might depend on the concrete application or property to check. For example, one might require that the

set of actions P ⊆ Proc in condition (T1) be maximal so that a maximal coalition of processes fires

simultaneously. Both our positive and negative results, however, do not depend on this choice. The

positive result holds for icTA anyway. The undecidability result relies on a minimalistic encoding of the

PCP in terms of a DTA, in which the given semantics as well as the maximal-step semantics coincide.

Example 2.3. The Figure 4 illustrates how this construction works on the DTA D from Figure 1. The

picture illustrates how each move of D is in fact split into two phases. In the first phase, from a product

of local states of the DTA, transition (T1) chooses the set of transitions that may fire next. Then in the

second phase, depending on this set we have a sequence of (T2) transitions. Indeed, the second phase

occurs without time elapse since clock z is reset at (T1) and checked to be zero by means of invariants

in intermediate states.

Now we can define the language(s) of a DTA.

Definition 2.4. For a DTA D and τ ∈ Rates , we set L(D, τ) = L(BD, τ) to be the language of D wrt.

τ , and we define L∃(D) = L∃(BD) as well as L∀(D) = L∀(BD) to obtain its existential and universal

semantics, respectively.

Example 2.4. For the DTA D that is given in Figure 1, we can now formalize what we had described

intuitively: L(D, id) = Pref ({aab, aba, baa}), L∃(D) = Pref ({aab, abab, baab}), and L∀(D) =
Pref ({aa}) where, for L ⊆ Σ∗, Pref (L) is the set of prefixes of words in L.

It is worthwhile to observe that L(D, τ) can, in general, have bizarre (non-regular) behavior, if τ is

itself a “weird” function. This is one more reason to look at the existential and universal semantics. Let

us illustrate this with an example.

Example 2.5. Consider the simple DTA D in Figure 5 over Proc = {p, q}, where Σ = {a, b}, π(x) = p
and π(y) = q. The icTA B depicted in Figure 5 is a simplified version of BD where all the intermediate

states and transitions have been removed. Indeed L(B, τ) = L(BD, τ) = L(D, τ) for any τ ∈ Rates .

Now, let τ = (idp, τq), where τq is any continuous, strictly increasing function such that τq(0) = 0 and

τq(n) = 2n − 0.5 for all n ≥ 1. This is seen in the adjoining graph in Figure 5. Then, an a occurs at

every local time unit of p (which is the same as a unit of global time), and a b occurs at every local time

unit of q. Thus, L(B, τ) = L(D, τ) is the set of finite prefixes of the infinite word bab2ab4ab8ab16a . . .,
which is not a regular language.

We end this section by noting that icTAs, in fact, capture the behavior of several variants of a shared-

memory model and their semantics. For instance, in the spirit of asynchronous automata [19], we could

have considered a distributed timed automaton to be a tuple
(
(Sp)p, (Σp)p,Z, (δa)a, (Ip)p, ι, (Fp)p, π

)
,

where the alphabets Σp are not necessarily disjoint, a ranges over Σ =
⋃

p∈Proc Σp, ι ∈
∏

p∈Proc Sp, and
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x ≤ 1

a

x = 1

{x} y ≤ 1

b

y = 1

{y}

(a) DTA D

a

x = 1

{x}

b

y = 1

{y}
x, y ≤ 1

(b) icTA B
global time

τq

a

a

a

b

b

b

b

b

b

b

Figure 5. An example of “weird” behaviour

π : Z → Proc. This models a shared-memory system: executing an action a ∈ Σ does not only affect

one single process but rather involves each process from proc(a) = {p ∈ Proc | a ∈ Σp}. Therefore,

δa ⊆ Sa × Form(Z)× 2Za × Sa

where Sa =
∏

p∈proc(a) Sp and Za =
⋃

p∈proc(a) π
−1(p). Such a model of asynchronous DTA can be

easily translated to our icTA, by additionally ensuring that on shared actions all processes sharing the

action evolve simultaneously. The model from [4] corresponds to such an asynchronous automaton ex-

cept for two differences: (1) clocks are local in the sense that they can only be read by those processes

to which they belong, and (2) each process comes with a distinguished clock that is never reset; a syn-

chronizing transition from δa can then be performed only if the special clocks that are associated with

processes from proc(a) exhibit the same value.

3. The existential semantics and the region abstraction

Given an icTA B (which might arise from some DTA D) and a set Bad of undesired behaviors, it is

natural to ask if B is robust against the (unknown) relative clock speeds and faithfully avoids executing

action sequences from Bad . This corresponds to checking if L∃(B) ∩ Bad = ∅. In this section, we

show that this question is indeed decidable, given that Bad is a regular language. To this aim, we define

a partitioning of clock valuations into finitely many equivalence classes and generalize the well-known

region construction for timed automata [2].

But first, we give an alternate view of the icTA semantics as an infinite-state transition system. Given

an icTA B = (S,Σ,Z, δ, I, ι, F, π), we associate the transition system TS (B) as follows: A state of

TS (B) is a tuple (s, ν), where s ∈ S and ν : Z → R≥0. Then, for a ∈ Σε, (s, ν)
a
−→ (s′, ν ′) is a
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transition in TS (B) if there exist t ∈ R≥0, τ ∈ Rates , ϕ ∈ Form(Z), and R ⊆ Z such that:

(s, a, ϕ,R, s′) ∈ δ (6)

ν + τ(t′) |= I(s) for each t′ ∈ [0, t] (7)

ν + τ(t) |= ϕ (8)

ν ′ = (ν + τ(t))[R] (9)

ν ′ |= I(s′) (10)

The initial state is (ι, ν0) with ν0(x) = 0 for all x ∈ Z . A state (s, ν) is final if s ∈ F . A run of

TS (B) on w = a1 . . . an ∈ Σ∗ is a sequence of transitions,

(s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn)

where n ≥ 0. It is accepting if sn ∈ F and in this case we say w ∈ L(TS (B)).

Proposition 3.1. L(TS (B)) = L∃(B).

Proof:

Consider w ∈ L∃(B). Then w ∈ L(B, τ) for some τ and we find an accepting τ -run of B:

(s0, ν0)
a1,t1
−−−→ (s1, ν1)

a2,t2
−−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

with ai ∈ Σε, w = a1 . . . an and such that (1–5) hold for some ϕi ∈ Form(Z) and Ri ⊆ Z . We show

that, abstracting away from the ti’s, we obtain an accepting run of TS (B). For 1 ≤ i ≤ n, we define

t̂i = ti − ti−1 (with t0 = 0) and τi by τi(t) = τ(ti−1 + t)− τ(ti−1). From (2–4), we obtain

νi−1 + τi(t
′) |= I(si−1) for each t′ ∈ [0, t̂i] (11)

νi−1 + τi(t̂i) |= ϕi (12)

νi = (νi−1 + τi(t̂i))[Ri] (13)

Therefore, (s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn) is an accepting run of TS (B)

for w.

Conversely, let w = a1 . . . an ∈ L(TS (B)) and let

(s0, ν0)
a1−→ (s1, ν1)

a2−→ (s2, ν2) · · · (sn−1, νn−1)
an−→ (sn, νn)

be an accepting run of TS (B) for w. By definition, for each 1 ≤ i ≤ n, we find t̂i ≥ 0, τi, ϕi, and Ri

such that (1,5,11–13) are satisfied. We define now by induction the non-decreasing sequence (ti)0≤i≤n

by t0 = 0 and ti = ti−1+t̂i for 1 ≤ i ≤ n. We also define τ in order to obtain a τ -run of B: for 1 ≤ i ≤ n
and t ∈ [ti−1, ti], we let τ(t) = τ(ti−1) + τi(t− ti−1); and for t ≥ tn, we let τ(t) = τ(tn) + id(t− tn).
Then, we can easily check using (11–13) that (2–4) are satisfied. Therefore,

(s0, ν0)
a1,t1
−−−→ (s1, ν1)

a2,t2
−−−→ (s2, ν2) · · · (sn−1, νn−1)

an,tn
−−−→ (sn, νn)

is an accepting τ -run of B. ⊓⊔
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In order to prove that L∃(B) is regular, we define on TS (B) a bisimulation of finite index which

preserves final states. In this way, we obtain as a quotient a finite automaton accepting L(TS (B)) =
L∃(B). As one may expect, this bisimulation is based on clock regions that we define below.

For each clock x ∈ Z , let Cx be the largest constant clock x is compared with in guards or invariants.

Let p ∈ Proc. As before, π−1(p) = {z ∈ Z | π(z) = p} denotes the set of clocks owned by p.

Given a clock valuation ν over Z , define its p-restriction νp : π−1(p) → R≥0 by νp(x) = ν(x) for all

x ∈ π−1(p). Then, from the classical region construction for timed automata, we obtain a notion of

equivalence ∼p between two such valuations. That is, we say that νp ∼p ν
′
p if the following hold:

1. for each x ∈ π−1(p), νp(x) > Cx if and only if ν ′p(x) > Cx,

2. for each x ∈ π−1(p), νp(x) ≤ Cx implies both ⌊νp(x)⌋ = ⌊ν ′p(x)⌋ and fract(νp(x)) = 0 if and

only if fract(ν ′p(x)) = 0, and

3. for each pair x, y ∈ π−1(p) such that νp(x) ≤ Cx and νp(y) ≤ Cy, we have fract(νp(x)) ≤
fract(νp(y)) if and only if fract(ν ′p(x)) ≤ fract(ν ′p(y)). Note that this constraint only applies to

clocks that belong to the same process.

From the result on timed automata [2], it follows that each ∼p is an equivalence relation and also a

time-abstract bisimulation, i.e, if νp ∼p ν ′p, then for all t ∈ R>0, there exists t′ ∈ R>0 such that

νp + t ∼p ν
′
p + t′.

Now, we say that two clock valuations ν and ν ′ over Z are equivalent, denoted ν ∼ ν ′ if they are

equivalent when restricted to each process, i.e, νp ∼p ν ′p for all p ∈ Proc. An equivalence class of

a clock valuation is called a clock region (of B). For a valuation ν, [ν] denotes the clock region that

contains ν. The set of clock regions of B is denoted by Regions(B).

Fact 3.1. The number of clock regions is finite:

|Regions(B)| ≤ (2C + 2)|Z| · |Z|!

where C is the largest constant that a clock is compared with in B.

Clearly, equivalent valuations satisfy the same guards and invariants: if ν ∼ ν ′ then ν |= ϕ if and

only if ν ′ |= ϕ for all ϕ ∈ Form(Z). Moreover,

Lemma 3.1. (Time-abstract bisimulation)

If ν ∼ ν ′, then for all t ∈ RProc
>0 , there exists t′ ∈ RProc

>0 such that ν + t ∼ ν ′ + t′.

Proof:

Let ν, ν ′ : Z → R≥0 and t = (tp)p∈Proc . Then ν ∼ ν ′ implies that νp ∼p ν ′p for each p ∈ Proc.

Then, since each ∼p is a time-abstract bisimulation, for each p ∈ Proc, there exists t′p ∈ R>0 such that

νp + tp ∼ ν ′p + t′p. Thus, defining t′ = (t′p)p∈Proc we obtain ν + t ∼ ν ′ + t′. ⊓⊔

This equivalence can be naturally extended to states of TS (B) by (s, ν) ∼ (s′, ν ′) if s = s′ and

ν ∼ ν ′. In order to show that this defines a bisimulation on TS (B) (Proposition 3.2), we first introduce

the successor relation on regions.
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γ ′
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γ ′
1

Figure 6. Accessible and non-accessible regions

Let γ and γ′ be two clock regions. We say that γ′ is accessible from γ, written γ � γ′, if either

γ = γ′ or there are ν ∈ γ, ν ′ ∈ γ′, t ∈ RProc
>0 such that ν ′ = ν+ t. Note that � is a partial-order relation.

The successor relation, written γ ≺· γ′, is as usual defined by γ � γ′, γ 6= γ′, and γ′′ = γ or γ′′ = γ′ for

all clock regions γ′′ with γ � γ′′ � γ′.

Example 3.1. The accessible-regions relation is illustrated in Figure 6. Suppose we deal with two pro-

cesses, one owning clocks x1 and x2, the other owning a single clock y. Suppose furthermore that, in

the icTA at hand, all clocks are compared to the constant 2. Consider the prisms γ0, γ1, γ2, γ
′
1, γ

′
2, each

representing a non-border clock region, which are given by the following clock constraints:

γ0 = (0 < x2 < x1 < 1) ∧ (0 < y < 1)

γ1 = (1 < x2 < x1 < 2) ∧ (0 < y < 1)

γ2 = (1 < x2 < x1 < 2) ∧ (1 < y < 2)

γ′1 = (0 < x2 < x1 − 1 < 1) ∧ (0 < y < 1)

γ′2 = (1 < x1 < x2 < 2) ∧ (1 < y < 2)

We have γ0 � γ1 � γ2. However, γ0 6� γ′1 and γ0 6� γ′2.

Proposition 3.2. (Bisimulation)

If (s, ν) ∼ (s, ν̂) and (s, ν)
a
−→ (s′, ν ′) then (s, ν̂)

a
−→ (s′, ν̂ ′) for some ν̂ ′ ∼ ν ′.

Proof:

Assume that (s, ν)
a
−→ (s′, ν ′). Let t ∈ R≥0, τ ∈ Rates , ϕ ∈ Form(Z) and R ⊆ Z such that (6–

10) hold. Consider the successive regions γ0 ≺· γ1 ≺· · · · ≺· γn visited along ν + τ [0 . . . t]: there is

0 = t0 < t1 < · · · < tn = t such that, for 0 ≤ i ≤ n, we have γi = [νi] with νi = ν + τ(ti); and

moreover, for any 1 ≤ i ≤ n and all ti−1 < t′ < ti we have ν + τ(t′) ∈ γi−1 ∪ γi.
Assume now in addition that (s, ν) ∼ (s, ν̂). We construct τ̂ such that, for each 0 ≤ i ≤ n, we

have P (i) : ν̂i = ν̂ + τ̂(ti) ∼ νi. We start with τ̂(0) = 0 so that P (0) holds. Let now 1 ≤ i ≤ n
and assume we have constructed τ̂ up to ti−1 with P (i − 1). Using Lemma 3.1 we find t̂ ∈ RProc

>0 such

that ν̂i−1 + t̂ ∼ νi−1 + τ(ti) − τ(ti−1) = νi. Then, define τ̂ on the interval [ti−1, ti] using a linear
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interpolation so that τ̂(ti) = τ̂(ti−1) + t̂. We obtain ν̂i−1 + t̂ = ν̂ + τ̂(ti) = ν̂i and P (i) also holds.

Finally, for t′ ≥ tn = t, we let τ̂(t′) = τ̂(tn) + id(t′ − tn).

For any 1 ≤ i ≤ n and all ti−1 < t′ < ti we have

γi−1 = [ν̂i−1] � [ν̂ + τ̂(t′)] � [ν̂i] = γi

and since γi−1 ≺· γi we obtain ν̂ + τ̂(t′) ∈ γi−1 ∪ γi. Therefore, ν̂ + τ̂(t′) |= I(s) for all t′ ∈ [0, t]
and ν̂n = ν̂ + τ̂(t) |= ϕ. We let ν̂ ′ = ν̂n[R] ∼ νn[R] = ν ′. We have ν̂ ′ |= I(s′) and we deduce that

(s, ν̂)
a
−→ (s′, ν̂ ′) in TS (B). ⊓⊔

To obtain the main result of this section, it remains to consider the finite quotient TS (B)/∼ =
(S′′,Σ, δ′′, ι′′, F ′′). A state in S′′ is an equivalence class [(s, ν)] and we have a transition [(s, ν)]

a
−→

[(s′, ν ′)] ∈ δ′′ whenever (s, ν)
a
−→ (s′, ν ′) is a transition of TS (B). The initial state is indeed ι′′ =

[(ι, ν0)] where (ι, ν0) is the initial state of TS (B). Moreover, a state [(s, ν)] is final if and only if s ∈ F .

Since the bisimulation equivalence relation ∼ on TS (B) preserves final states, we obtain by standard

(and easy) arguments:

Corollary 3.1. L(TS (B)/∼) = L(TS (B)).

The finite quotient TS (B)/∼ is not exactly what is usually called the region automaton in the clas-

sical theory of timed automata. The main difference is that, in the region automaton, transitions are

decomposed into time-elapse ε-transitions from a region to a successor region, and discrete transitions

with no time-elapse. The other minor difference is that we use as set of states S′ = S × Regions(B)
which is indeed isomorphic to S′′. In particular, ι′ = (ι, [ν0]) and F ′ = F × Regions(B). The region

automaton associated with B is therefore RB = (S′,Σ, δ′, ι′, F ′) where, for a ∈ Σε and s, s′ ∈ S and

γ, γ′ ∈ Regions(B), δ′ contains (s, γ)
a
−→ (s′, γ′) if

• a = ε, s = s′, γ ≺· γ′, and ν ′ |= I(s) for some ν ′ ∈ γ′

(we then call (s, γ)
ε
−→ (s, γ′) a time-elapse transition), or

• there are ν ∈ γ and (s, a, ϕ,R, s′) ∈ δ such that ν |= ϕ ∧ I(s), ν[R] |= I(s′), and ν[R] ∈ γ′ (we

then call (s, γ)
a
−→ (s′, γ′) a discrete transition).

A part of the region automaton for the icTA from Figure 3 is shown in Figure 15.

It is easy to see that a sequence of time-elapse transitions followed by a discrete transition of RB is a

transition of TS (B)/∼. Conversely, any transition of TS (B)/∼ can be decomposed into a sequence of

time-elapse transitions followed by a discrete transition of RB . Therefore:

Theorem 3.1. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and let C be the largest constant a clock is

compared with in B. Then, the number of states of TS (B)/∼ and of RB is bounded by |S| · (2C +
2)|Z| · |Z|! and we have

L(RB) = L(TS (B)/∼) = L(TS (B)) = L∃(B)

which is therefore a regular word language.
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Figure 7. dir (τ) = 010 . . .

Now, suppose we are given a negative specification as a regular set Bad . Then, since L∃(B) is a regular

word language, so is L∃(B)∩Bad and hence we can check emptiness and so on. Thus, model checking

icTAs wrt. regular negative specifications is decidable:

Corollary 3.2. The questions L∃(B)∩R ? and R ⊆ L∃(B) ? are decidable for given icTA B and regular

language R.

4. The universal semantics

While the existential semantics allows us to verify negative specifications, the universal semantics is

natural when we want to check if our system has some good behavior. By good we mean a behavior that is

robust against clock variations. We show in this section that emptiness and universality are unfortunately

undecidable for the universal semantics. This is shown for icTAs first and then will be extended to DTAs.

Therefore, it is undecidable if, for a positive specification Good containing the behaviors that a system

must exhibit and a DTA D, we have Good ⊆ L∀(D).

Theorem 4.1. The following problem is undecidable if |Proc| ≥ 2: Given an icTA B over Proc, does

L∀(B) 6= ∅ hold?

Proof:

The proof is by reduction from Post’s correspondence problem (PCP). An instance Inst of the PCP

consists of an alphabet A and two morphisms f and g from A+ to {0, 1}+. A solution of Inst is a word

w ∈ A+ such that f(w) = g(w).

Suppose Proc = {p, q} and let τ ∈ Rates . One may associate with τ two sequences t-dir(τ) =
t1t2 . . . ∈ (R≥0)

ω of time instances and dir (τ) = d1d2 . . . ∈ {0, 1, 2}ω of directions as follows: for

i ≥ 1, we let first (assuming t0 = 0) ti = min{t > ti−1 | τr(t) − τr(ti−1) = 2 for some r ∈ Proc}.
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With this, we set

di =





0 if τp(ti)− τp(ti−1) = 2 and 1 < τq(ti)− τq(ti−1) < 2

1 if τq(ti)− τq(ti−1) = 2 and 1 < τp(ti)− τp(ti−1) < 2

2 otherwise

The construction of dir (τ) is illustrated in Figure 7. The idea is to allow the shape of the relative time-

rate function (from τ ) to encode a word in {0, 1, 2}ω . We do this using 2 × 2-square regions, each

consisting of 4 sub-squares as shown. If the rate function leaves this region by the upper boundary or

right boundary of the right-upper sub-square, then we write 1 or 0, respectively. If it leaves by any other

boundary or by end-points of any sub-square, then we write 2. A new square region is started at the point

where the rate function left the old one. Thus, the direction sequences partition the space of time rates.

Roughly speaking, a word is accepted universally by an icTA if and only if it is accepted for all

directions. Our trick will be to define an icTA such that the PCP instance has a solution w if and only if

the word wb is accepted by the icTA for all directions. Thus, if there is no solution to the PCP, there will

be some direction sequence (respectively, local time rates) for which the icTA does not accept.

Let an instance Inst of the PCP be given by an alphabet A = {a1, . . . , ak} with k ≥ 1 and two

corresponding morphisms f and g. We will construct an icTA B = (S,Σ,Z, δ, I, ι, F, π) over the set

of processes Proc = {p, q} and Σ = {a1, . . . , ak, b} such that L∀(B) = {wb | w ∈ A+ and f(w) =
g(w)}. First, let Z = {x, y} with π(x) = p and π(y) = q. For d ∈ {0, 1, 2}, we set

guard(d) =





x = 2 ∧ 1 < y < 2 if d = 0

y = 2 ∧ 1 < x < 2 if d = 1

((x ≤ 1 ∨ x = 2) ∧ y = 2) ∨ (y ≤ 1 ∧ x = 2) if d = 2

Moreover, let guard(d) =
∨

d′∈{0,1,2}\{d} guard(d
′).

The encoding of the given PCP instance in terms of the icTA is given by Figure 9. Hereby, given

a ∈ A, σ = d1 . . . dn ∈ {0, 1, 2}+ (with dj ∈ {0, 1, 2} for any j ∈ {1, . . . , n}) and i ∈ {1, 2}, a

transition of the form

s

ri

si

(a, σ)

will actually stand for the sequence of transitions that is depicted in Figure 8, say, with intermediate

states s(i,a,σ,1), . . . , s(i,a,σ,n−1).

Example 4.1. Consider the PCP instance Inst given by A = {a1, a2}, f(a1) = 101, g(a1) = 1,

f(a2) = 1, g(a2) = 01110 with the solution w = a1a2a1. One can check that a1a2a1b ∈ L∀(B). This is

illustrated in Figure 10. In the tree depicted, any path corresponds to a finite prefix (of length |f(w)|+1)

of some sequence of directions. The edges are labeled by this sequence, where a left-edge is 0, downward

is 2 and right-edge is 1. Thus, intuitively, a word wb is in the universal language if and only if all paths of

the tree correspond to accepting runs in B. Now, let us verify that the word wb is accepted by B. If clock

rate τ is such that dir(τ) ∈ f(w) · d · {0, 1, 2}ω with d ∈ {0, 1}, then the accepting run of B is the path
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s si

ri

a, guard(d1) ε, guard(d2) ε, guard (dn)

{x, y} {x, y} {x, y}

a, guard(d1) ε, guard(d2)
ε, guard(d3) ε, guard (dn)

. . .

Figure 8. Transition macro

s1

s0

s2

sf

r1 r2

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b

guard(2)

b

A Σ
(ai, f(ai)) (ai, g(ai))

Figure 9. Encoding of PCP: icTA B

shown in the left figure, which assigns states s1 to nodes of the tree and finishes at sf . If d = 2, then the

accepting run of B is the path in the figure on right, which assigns states s2 appropriately, crucially using

the fact that f(w) = g(w), and finally ends at sf . If the clock rate τ has dir(τ) different from the above

cases, it is easy to see that there is an accepting run in which B reaches state sf by passing through state

r1.

Thus, for a given rate τ , the left branch of the automaton given in Figure 9 accepts all words wb such

that f(w) · 2 6≤ dir(τ), while the right branch accepts words wb such that g(w) · 2 ≤ dir(τ). So if w is

a solution, i.e., f(w) = g(w), then wb is accepted for every possible τ , hence wb ∈ L∀(B). And if w is

not a solution, i.e., f(w) 6= g(w), then for some τ such that f(w) · 2 ≤ dir (τ), wb will not be accepted,

hence w 6∈ L∀(B), which gives our desired reduction.

Let us now show that our reduction is formally correct. In the following, let ≤ denote the usual prefix

relation on words. We begin by observing that if a τ -run starting from s0 on B satisfies the guards given

by guard(d) (and thus avoids states r1 and r2), then the time stamps of the run are exactly the ones given

by dir(τ).

Fact 4.1. Let τ ∈ Rates and let t-dir (τ) = t1t2 . . . ∈ (R≥0)
ω and dir(τ) = d1d2 . . . ∈ {0, 1, 2}ω be

the associated sequences. In addition, we set t0 = 0. Consider a τ -run

(s0, ν0)
a1,t′1−−−→ (u1, ν1) . . . (un−1, νn−1)

an,t′n−−−→ (un, νn)
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1

1
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Figure 10. The tree generated by w = a1a2a1b with respect to f and g.

of B with ai ∈ Σε and where un−1 /∈ {r1, r2, sf}. Assume moreover d′1, . . . , d
′
n are the (unique)

elements from {0, 1, 2} such that νi−1 + τ(t′i) − τ(t′i−1) |= guard(d′i) for all i ∈ {1, . . . , n}. Then,

t′i = ti and d′i = di for all 1 ≤ i ≤ n, and νi = ν0 for all 1 ≤ i < n.

Proof:

We proceed by induction. Assume t′i−1 = ti−1 and νi−1(x) = νi−1(y) = 0 for some 1 ≤ i ≤ n (note

that this is the case for i = 1). By assumption, τ(t′i)−τ(ti−1) |= guard(d′i). Here we consider the former

expression as a valuation by considering the p-component of the pair as the clock value of x and the q-

value as that of y. Now assume d′i = 0 (the cases d′i ∈ {1, 2} are analogous). Then, τp(t
′
i)−τp(ti−1) = 2

and 1 < τq(t
′
i) − τq(ti−1) < 2. Hence, t′i = min{t > ti−1 | τr(t)− τr(ti−1) = 2 for some r ∈ Proc}.

We deduce t′i = ti and d′i = di. Moreover, νi(x) = νi(y) = 0 if i < n. ⊓⊔

Fact 4.2. For τ ∈ Rates and w ∈ A+, the following hold (recall that ≤ denotes the prefix relation):

(1) f(w) ≤ dir(τ) iff (B, τ) : s0
w
−→ s1

(2) g(w) ≤ dir (τ) iff (B, τ) : s0
w
−→ s2

(3) f(w) 6≤ dir(τ) iff (B, τ) : s0
w
−→ r1

Proof:

First note that (1) and (2) can be shown along the same lines. Moreover, their “if”- directions follow

from Claim 4.1.

Let τ ∈ Rates and let t-dir(τ) = t1t2 . . . ∈ (R≥0)
ω and dir(τ) = d1d2 . . . ∈ {0, 1, 2}ω be the

associated sequences. We also set t0 = 0. Suppose w = a1 . . . an where ai ∈ A for all i ∈ {1, . . . , n}.

For i ∈ {1, . . . , n}, let moreover ℓi denote the length of f(a1 . . . ai). Finally, ν is the valuation with

ν(x) = ν(y) = 0.
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(1) Suppose f(w) ≤ dir (τ). We have f(w) = d1 . . . dℓn . Let us check that

(s0, ν)
(a1,t1)
−−−−→ (s(1,a1,f(a1),1), ν)

(ε,t2)
−−−→ . . .

(ε,tℓ1 )−−−−→ (s1, ν)
(a2,tℓ1+1)
−−−−−−→ (s(1,a2,f(a2),1), ν)

(ε,tℓ1+2)
−−−−−→ . . .

(ε,tℓ2 )−−−−→ (s1, ν)
...

(an,tℓn−1+1)
−−−−−−−−→ (s(1,an,f(an),1), ν)

(ε,tℓn−1+2)
−−−−−−−→ . . .

(ε,tℓn)−−−−→ (s1, ν)

is a τ -run of B, which implies (B, τ) : s0
w
−→ s1. We need to show that, for all i ∈ {1, . . . , ℓn},

τ(ti) − τ(ti−1) |= guard(di). So let i ∈ {1, . . . , ℓn}. Assuming di = 0, we indeed have τ(ti) −
τ(ti−1) |= x = 2 ∧ 1 < y < 2, whereas di = 1 implies τ(ti)− τ(ti−1) |= y = 2 ∧ 1 < x < 2.

(3) Let us assume f(w) 6≤ dir (τ). There is j ∈ {1 . . . , ℓn} such that we have f(w) = d1 . . . dj−1d
′
j . . . d

′
ℓn

for some d′j , . . . , d
′
ℓn

∈ {0, 1} with d′j 6= dj . We construct a τ -run that coincides with the run that we

constructed above until the (j − 1)-th transition. Now, τ(tj)− τ(tj−1) |= guard(dj) and since d′j 6= dj ,

the j-th transition leads to state r1. Once in r1, we stay in r1 under any timing. Thus, (B, τ) : s0
w
−→ r1.

Conversely, assume that (B, τ) : s0
w
−→ r1 and consider a τ -run

(s0, ν0)
a′
1
,t′
1−−−→ (u1, ν1)

(a′
2
,t′
2
)

−−−−→ · · ·
(a′j−1

,t′j−1
)

−−−−−−−→ (uj−1, νj−1)
a′j ,t

′

j
−−−→ (r1, ν

′)

with a′1 · · · a
′
j ≤ w and uj−1 6= r1. Let moreover d′1, . . . , d

′
j be the (unique) elements from {0, 1} such

that νi−1 + τ(t′i) − τ(t′i−1) |= guard(d′i) for all 1 ≤ i ≤ j. By Claim 4.1, we deduce that ti = t′i and

d′i = di for all 1 ≤ i ≤ j. Since the last transition reaches state r1 from uj−1 6= r1, we deduce that

d1 · · · dj−1 ≤ f(w) but dj differs from the j-th letter of f(w). Therefore, f(w) 6≤ dir(τ). ⊓⊔

With Claim 4.2, we can now show both directions of the correctness of the construction of B, i.e.,

L∀(B) = {wb | w ∈ A+ and f(w) = g(w)}.

Let w ∈ A+ with f(w) = g(w) and let τ ∈ Rates . We distinguish three cases. If dir (τ) ∈

f(w) · {0, 1} · {0, 1, 2}ω , then (B, τ) : s0
w
−→ s1

b
−→ sf by Claim 4.2 (1). If dir (τ) ∈ f(w) · 2 · {0, 1, 2}ω ,

then (B, τ) : s0
w
−→ s2

b
−→ sf by Claim 4.2 (2), since g(w) = f(w). If f(w) 6≤ dir (τ), then (B, τ) :

s0
w
−→ r1

b
−→ sf by Claim 4.2 (3). Hence, wb ∈ L∀(B).

Conversely, let w ∈ A+ and suppose wb ∈ L∀(B). Pick τ ∈ Rates such that dir(τ) ∈ f(w) · 2 ·
{0, 1, 2}ω . As f(w) ≤ dir (τ), we have (B, τ) : s0

w
−→ s1 and (B, τ) : s0 6

w
−→ r1 by Claim 4.2 (1,3),

and since f(w) · 2 ≤ dir (τ) we deduce that (B, τ) : s0
w
−→ s1 6

b
−→. Thus, (B, τ) : s0

w
−→ s2

b
−→ sf .

Hence, g(w) · 2 ≤ dir (τ) by Claim 4.2 (2). As f(w), g(w) ∈ {0, 1}∗ and both f(w) · 2 ≤ dir(τ) and

g(w) · 2 ≤ dir (τ), we deduce f(w) = g(w). ⊓⊔

Thus, we have shown that it is undecidable to check the emptiness of the universal semantics. We

also show that the universality problem for this case is undecidable.

Theorem 4.2. Suppose that |Proc| ≥ 2. For icTA B over Proc, it is undecidable to know if L∀(B) = Σ∗

(where Σ is the set of actions of B).
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b Σ
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Figure 11. Encoding of PCP: icTA B̃

Proof:

As before, the reduction is from the PCP problem. The construction of the corresponding automaton

is obtained by a slight modification of the automaton in the previous proof as we shall see below. We

consider, as before, an instance of the PCP. We will then construct an icTA B̃ over Proc = {p, q} and

Σ = A ∪ {b}, where A = {a1, . . . , ak}, such that

L∀(B̃) = Σ∗ \ {wb | w ∈ A+ and f(w) = g(w)}.

Thus, the PCP instance has a solution if and only if L∀(B̃) 6= Σ∗.

Define icTA B̃ as in Figure 11 where the transition macros are as defined in Figure 8. This automaton

is almost the same as B in Figure 9, except for two differences. One is that we have switched the final

states and b-transitions leading to them. Further, we have a 3-state gadget on the top of the previous

automaton which does not use any clocks. In fact, this gadget is just the automaton which accepts the

language Σ∗ \A+b. Thus, if we have a word which is not in A+b, it gets nondetermistically accepted by

this gadget. If the word is in A+b then it can only be accepted in states r1 or r2.

Fact 4.3. For τ ∈ Rates and w ∈ A+, the following hold:

(a) f(w) · 2 6≤ dir(τ) iff (B̃, τ) : s0
wb
−→ r1

(b) g(w) · 2 6≤ dir (τ) iff (B̃, τ) : s0
wb
−→ r2

Proof:

The proof of both these statements follows that from Claim 4.2 which itself depends on Claim 4.1. But,

since we have only fiddled with the final states/transitions, these claims still hold. ⊓⊔

We resume with the proof of Theorem 4.2. First, suppose the PCP has a solution, say w ∈ A+,

then consider the word wb and choose τ such that dir(τ) ∈ f(w) · 2 · {0, 1, 2}ω . Then, by Claim 4.3,

we have (B̃, τ) : s0 6
wb
−→ r1. Now, since w is assumed to be a solution, we have f(w) = g(w) and



20 S. Akshay et al. / Distributed Timed Automata with Independently Evolving Clocks

s si

ri

x ≤ 1

y ≤ 1

x ≤ 1

y ≤ 1

x ≤ 1

y ≤ 1

x ≤ 1

y ≤ 1
x ≤ 1

y ≤ 1

ε ε εε L, guard (d1) ε, guard(d2) ε, guard(dn)

R R R

L, guard(d1) ε, guard(d2) ε, guard(d3) ε, guard (dn)

. . .

Figure 12. Transition macro for the distributed setting

dir(τ) ∈ g(w) · 2 · {0, 1, 2}ω and so again from Claim 4.3 we have (B̃, τ) : s0 6
wb
−→ r2. Further, on

reading wb, B̃ can only (nondeterministically) reach the reject state u3, not the accepting states u1 or u2
or s0. Therefore, wb 6∈ L(B̃, τ) and so L∀(B̃) 6= Σ∗.

Conversely, suppose L∀(B̃) 6= Σ∗. Let w′ ∈ Σ∗ such that w′ 6∈ L∀(B̃). Necessarily, w′ = wb with

w ∈ A+, since otherwise it would be accepted by the gadget for all τ ∈ Rates . Moreover, there exists τ
such that w′ 6∈ L(B̃, τ), i.e., after reading w′ = wb, B̃ does not reach the accepting states r1 or r2. By

Claim 4.3, we can now conclude that f(w) · 2 ≤ dir(τ) and g(w) · 2 ≤ dir(τ), which finally implies

that f(w) = g(w) and thus the PCP has a solution, namely w. ⊓⊔

In fact, the above proof also demonstrates that checking if the existential and universal semantics

coincide is undecidable.

Corollary 4.1. Suppose that |Proc| ≥ 2. For icTA B over Proc, it is undecidable to check if L∀(B) =
L∃(B).

Proof:

Consider the icTA B̃ in Figure 11 constructed for the above proof. Then L∃(B̃) = Σ∗ and thus checking

if L∀(B̃) = L∃(B̃) is the same as checking if L∀(B̃) = Σ∗. But this is undecidable by Theorem 4.2. ⊓⊔

These results can be strengthened and extended to the distributed setting as follows:

Theorem 4.3. Suppose |Proc| ≥ 2. For DTAs D over Proc, the emptiness and universality of L∀(D)
are undecidable.

Proof:

We fix Proc = {p, q} and the clock distribution π(x) = p and π(y) = q. Each process will be a copy of

the automaton B that is depicted in Figure 9 for emptiness (respectively, B̃ in Figure 11 for universality),

except for one difference: in the copy Ap for process p, the transition macro from Figure 8 is replaced

with that from Figure 12 where L is the letter a ∈ A and R is the singleton set {x}; and in the copy Aq

for process q, we use the same new macro, but now we have L = ε and R = {y}.

The main difficulty is to make sure that transitions with guard(dj) or guard(dj) are taken simulta-

neously in the two copies Ap and Aq. If this is the case, then clock y is always reset synchronously with

clock x and Ap faithfully simulates the icTA B (or B̃) with the slight difference induced by the additional
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ε-transitions from the states with invariant x ≤ 1 ∧ y ≤ 1. Therefore, the proof of Theorems 4.1 or 4.2

can be carried out similarly.

We explain now how we make sure that transitions with guards are taken simultaneously. We have

splitted each state of the transition macro described in Figure 8 (except si and ri) into two. The combi-

nation of the guards and the invariants ensure that both clocks have been reset simultaneously.

Let us examine this in more detail. Being in two identical copies of a state with an invariant, the ε-

transitions might indeed be taken asynchronously by Ap and Aq. However, the following transitions will

be performed synchronously. Assume first that p follows a transition of the form (sp, a, guard(d), {x}, s
′
p)

before process q moves. As guard(d), where d ∈ {0, 1}, is satisfied when p goes to s′p, the value of both

clocks exceeds 1. But as x is reset at the same time whereas y is not, the invariant associated with s′p is

violated, which is a contradiction. Thus, q has to take the corresponding transition, which is of the form

(sq, a, guard(d), {y}, s
′
q), simultaneously. This explains why we use 2 × 2-squares as in Figure 7 and

corresponding guards. In the DTA D, they allow us to check when one clock has been reset and the other

has not. Now consider the case where p performs a transition of the form (sp, a, guard(d), ∅, s
′
p). When

p executes its transition, at least one clock has reached the value 2. As this clock cannot be reset anymore,

q is obliged to follow instantaneously the corresponding transition of the form (sq, a, guard(d), ∅, s
′
q), to

reach a final state. ⊓⊔

We obtain that model checking regular positive specifications is undecidable for DTA:

Corollary 4.2. The questions L∀(D) ∩ R ? and R ⊆ L∀(D) ? are undecidable for given DTA D and

regular language R.

5. Playing with local time rates

In the previous sections, we considered the set of behaviours when the local-time rates are arbitrarily

chosen (existential) or arbitrarily enforced (universal). It is then natural to ask what would happen if

there are some restrictions on the way these rates are chosen or enforced. In this section, we consider

some such questions. Broadly, we examine two types of restrictions on the local-time rates. In the first

case, we try to bound the clock drifts between processes, while in the second case, we restrict to a natural

sub-class of local-time rate functions.

5.1. Bounding the clock drifts

Our first attempt is to try to bound the way the clocks drift on different processes, thus curtailing the

independence of the local-time rates. We consider two sub-cases here, where we insist (1) the ratio or (2)

the difference of local times in different processes is always bounded by a constant. We might expect that

such a strong restriction could lead to a decidability result for the universal semantics. However, it turns

out that we can strengthen the undecidability proof in Section 4 to show that emptiness and universality

of the universal semantics is already undecidable in this restricted case.

Let us formalize this. We will restrict to two processes, Proc = {p, q}. We note however that the

following definitions (and results) can easily be generalized to more processes. For a rational number

k ≥ 1, we define Rates rat(k) = {τ = (τp, τq) ∈ Rates | 1
k ≤ τp(t)

τq(t)
≤ k for all t ∈ R>0}. This is the set

of all rate-function tuples such that the ratio of the local times in the two processes are always bounded
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Figure 13. Bounding the clock drifts by ratio and difference

by fixed rationals. Thus, when we plot the local times in the two components of the rate-function tuple

against each other, this function lies completely within the shaded region in Figure 13 (a).

Further, for a rational number ℓ ≥ 0, Ratesdiff(ℓ) = {τ = (τp, τq) ∈ Rates | |τp(t) − τq(t)| ≤ ℓ
for all t ∈ R≥0}. These are the rate-function tuples for which the difference between the local times

in the two processes are bounded by some constant. Thus again, any function in the shaded region in

Figure 13 (b) describes such a bounded rate-function tuple.

Accordingly, for an icTA or a DTA B, we define

• Lrat,k
∃ (B) =

⋃
τ∈Ratesrat(k)

L(B, τ), Lrat,k
∀ (B) =

⋂
τ∈Rates rat(k)

L(B, τ),

• Ldiff,ℓ
∃ (B) =

⋃
τ∈Ratesdiff(ℓ)

L(B, τ), Ldiff,ℓ
∀ (B) =

⋂
τ∈Ratesdiff(ℓ)

L(B, τ).

Theorem 5.1. For icTAs or DTAs B over Proc = {p, q},

1. checking emptiness of Lrat,1
∀ (B) = Ldiff,0

∀ (B) is decidable while checking universality is undecid-

able.

2. checking emptiness and universality of Lrat,k
∀ (B) are undecidable for every rational k > 1.

3. checking emptiness and universality of Ldiff,ℓ
∀ (B) are undecidable for every rational ℓ > 0.

Proof:

For k = 1 or ℓ = 0, the sets Rates rat(k) and Ratesdiff(ℓ) consist of exactly the tuples in which time

evolves at the same rate in both processes. Thus, the sets Lrat,1
∀ (B) and Ldiff,0

∀ (B) are identical and

correspond to the language of an ordinary timed automaton. Hence, checking emptiness is decidable,

while checking universality is undecidable. This proves Part (1) of the theorem.

To prove the remaining parts of the theorem, we need the following lemma.

Lemma 5.1. Let k > 1, ℓ > 0 be some fixed rationals. For all σ ∈ {0, 1, 2}∗ , there exists τ ∈
Rates rat(k) ∩ Ratesdiff(ℓ) such that σ is a prefix of dir(τ).

Proof:

Let σ = d1d2 . . . dn ∈ {0, 1, 2}∗ be of length n. We define τ (in terms of n + 1 points) as follows: τp
is the piecewise linear function with τp(2i) = xi for i ∈ {0, . . . , n} and τp(2n + t) = xn + t for all
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t ∈ R≥0. Similarly, τq is defined as the piecewise linear function with τq(2i) = yi for i = {0, . . . , n} and

τq(2n+ t) = yn+ t for t ∈ R≥0. The points (xi, yi) are defined by x0 = y0 = 0 and, for i ∈ {1, . . . , n},

xi = 2i−α|d1 . . . di|1 and yi = 2i−α|d1 . . . di|0 (|σ′|d denoting the number of occurrences of d in σ′),

where α is a rational parameter to be fixed.

With the above definition, we observe that, for all i, we have |xi − yi| ≤ iα, and, for i > 0,

we have 1 − α
2 ≤ xi

yi
≤ 1

1−α/2 . Thus, by choosing α = min{1
2 ,

ℓ
n , 2(1 − 1

k )}, we can check that

τ ∈ Rates rat(k) ∩ Ratesdiff(ℓ).
Finally, we show that dir (τ) = σ · 2ω. This is done by induction. Assume that d1 · · · di−1 ≤ dir(τ)

for some 1 ≤ i ≤ n. If di = 2 then xi−xi−1 = 2 = yi−yi−1 and we deduce that d1 · · · di−1di ≤ dir (τ).
If now di = 0 then xi − xi−1 = 2 and yi − yi−1 = 2 − α. Since 0 < α < 1, we deduce that

d1 · · · di−1di ≤ dir (τ). The proof is similar when di = 1. Hence, σ = d1 · · · dn ≤ dir (τ). Since after

t = 2n clocks x and y are synchronous, we obtain dir (τ) = σ · 2ω . ⊓⊔

With the above lemma, we now prove Parts (2) and (3) of the theorem. Let k > 1 and ℓ > 0.

First, we will show that checking emptiness is undecidable. Given a PCP instance as before, we again

consider the icTA (or DTA) B from Figure 9. We want to show that w ∈ A+ is solution if and only if

wb ∈ L∀(B) = Lrat,k
∀ (B) = Ldiff,ℓ

∀ (B). One direction is trivial. If, for w ∈ A+, we have f(w) = g(w),

then wb ∈ L∀(B), and this implies that wb ∈ Lrat,k
∀ (B) and wb ∈ Ldiff,ℓ

∀ (B). On the other hand, if

wb ∈ Lrat,k
∀ (B) or wb ∈ Ldiff,ℓ

∀ (B), then, by Lemma 5.1, we pick τ ∈ Rates rat(k)∩Ratesdiff(ℓ) such that

dir(τ) = f(w) · 2 · 2ω , and the remaining part of the proof follows as before.

Now, to show that the universality is undecidable, we consider icTA B̃ from Figure 11 and show that

w ∈ A+ is a solution iff wb 6∈ Lrat,k
∀ (B̃), and that w is a solution iff wb 6∈ Ldiff,ℓ

∀ (B̃). One direction

is again easy. If wb 6∈ Lrat,k
∀ (B̃) or wb 6∈ Ldiff,ℓ

∀ (B̃) then wb 6∈ L∀(B̃) and since wb ∈ A+b, we

deduce that f(w) = g(w) as in the proof of Theorem 4.2. On the other hand, assume w is a solution

so that we have f(w) = g(w). Again by Lemma 5.1, we pick τ ∈ Rates rat(k) ∩ Ratesdiff(ℓ) such that

dir(τ) = f(w) · 2 · 2ω and so by Claim 4.3, (B̃, τ) : s0 6
wb
−→ r1 and (B̃, τ) : s0 6

wb
−→ r2. We also have that

after wb, states s0, u1,u2 cannot be reached and so wb 6∈ Lrat,k
∀ (B̃) and wb 6∈ Ldiff,ℓ

∀ (B̃).
This completes the proof of the whole theorem.

⊓⊔

As a related question, we could also ask if the existential semantics still describes a regular set of be-

haviours, i.e, for each k ≥ 1 and ℓ ≥ 0, are Lrat,k
∃ (B), Ldiff,ℓ

∃ (B) regular? We leave this as an open

question. We note however, that this does not immediately follow from the region construction, since the

restriction induced by the bounds may not result in classical zones (union of regions).

5.2. Restricting to fixed slopes

In this subsection, we restrict the behaviour by considering a selected subclass of local-time rate func-

tions, rather than all of them. In particular, we restrict to the class of local-time rate functions that have

fixed and constant (rational) slopes. Surprisingly, even checking emptiness of the existential semantics

turns out to be undecidable with this restriction.

In fact, we show that checking emptiness of the existential semantics is undecidable even in a slightly

weaker setting, where the local-time rate functions have a fixed slope with respect to each other. To

see this, let us define Ratesfix = {τ ∈ Rates | for each pair p, q ∈ Proc, there is a constant αpq ∈
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Q≥0 such that τp(t) = αpq · τq(t) for all t ∈ R≥0}. Again, for an icTA or DTA B, we define Lfix
∃ (B) =⋃

τ∈Ratesfix
L(B, τ) and Lfix

∀ (B) =
⋂

τ∈Ratesfix
L(B, τ). Now, we can state the theorem formally:

Theorem 5.2. For icTAs or DTAs B, checking emptiness of Lfix
∃ (B) is undecidable.

The proof is by reducing to the above problem a certain “unknown-sampling rate discrete-time reach-

ability problem” for timed automata [3, 8], which was proved in [8] to be undecidable. The idea is that

the fixed constant β between the local-time rates of two processes can be used to simulate a β-sampled

run of a timed automaton. To make this clear, we need to define sampled runs and the results known

about them.

A timed run σ = (a1, t1) . . . (an, tn), with ai ∈ Σε, ti ∈ R≥0, of a timed automaton A =
(S,Σ,Z, δ, I, i, F ) can be seen as an alternating sequence of discrete (or ε) moves and time elapse

moves (see, e.g., [3] for details). Then, σ is called a β-sampled run for some β ∈ Q≥0, if each time

elapse is exactly β, i.e., ti − ti−1 = β for all i ∈ {1, . . . , n}, t0 = 0. A state s of A is reachable in

the β-sampled semantics of A, if there is a β-sampled run of A that reaches it. It is easy to see that this

definition coincides with the one in [8] from which we have the following theorem:

Theorem 5.3. (cf. [8])

The following problem is undecidable: Given a timed automaton A and a state s of A, does there exist

β ∈ Q≥0 such that s is reachable in the β-sampled semantics of A.

Proof:

[of Theorem 5.2] Given a timed automaton A and a state s of A, we will construct a DTA D such that

Lfix
∃ (D) 6= ∅ if and only if there is a β such that s is reachable in the β-sampled semantics of A. Thus,

from the undecidability result of the theorem above, it follows that checking emptiness of Lfix
∃ (D) is

undecidable.

The DTA we construct will consist of two components/processes. The broad idea is that the first

component just measures its local time by making a transition at every clock tick. The second component

simulates the timed automaton A and in addition checks a clock of the first component, to ensure that

its transitions occur exactly at clock ticks of the first component. Thus, if the relative local-time rate is

β, then a run of the automaton in the second component corresponds to a β-sampled run of the timed

automaton.

There is a point of subtlety here. The automaton in the second component must make a transition

every clock tick and cannot be allowed to remain at a state as time passes. It turns out that straightforward

use of state invariants is not enough. Our construction below describes one way to handle these concerns.

Let A = (SA,ΣA,ZA, δA, IA, ιA, FA) be the timed automaton and sA ∈ SA. We set Proc = {p, q}
and define DTA D = ((Ap,Aq), π) as follows.

The p-component uses and owns a single clock x (which occurs in both components, as will be seen).

Thus, Zp = {x} and π(x) = p. This automaton Ap is described in Figure 14.

The second component consists of two copies of A with transitions alternating between them, defined

as follows: Aq = (Sq,Σq,Zq, δq, Iq, ιq, Fq), where

• Sq = SA × {0, 1},

• Σq = ΣA,
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x ≤ 2

ε

x = 2

{x}

Figure 14. The timed automaton Ap

• Zq = ZA ⊎ {x} and π(y) = q for all y ∈ ZA,

• if (s, a, ϕ,R, s′) ∈ δA, then ((s, 0), a, ϕ,R, (s′ , 1)), ((s, 1), a, ϕ,R, (s′ , 0)) ∈ δq,

• Iq((s, 0)) = IA(s) ∧ (0 ≤ x ≤ 1) and Iq((s, 1)) = IA(s) ∧ (1 ≤ x ≤ 2),

• ιq = (ιA, 0), and

• Fq = {(sA, 0), (sA, 1)}.

Thus, in the above construction of Aq, in any state of the first copy, the value of clock x must be

between 0 and 1. Similarly, in any state of the second copy, the clock has a value between 1 and 2.

Further, transitions can only occur from one copy to another (never within a copy). These properties

ensure that transitions (of Aq) occur at every clock tick (of clock x) and there must occur a transition

at every clock tick (else a state invariant is violated). But clock x measures its local time, i.e, the

local time of process p. Thus, if β is the ratio between the fixed local-time rates of the two processes

τ = (τp, τq) ∈ Ratesfix, then each transition of Aq (which simulates A) occurs at β-intervals, thus

simulating a β-sampled run of A. Finally, a run of D under this local-time rate function τ is accepting,

if and only if the corresponding β-sampled run reaches sA. Thus, the existential fixed-slope semantics

of D is non-empty if and only if there is a β such that sA is reachable in the β-sampled semantics. This

completes the proof of the theorem. ⊓⊔

We could also consider the emptiness problem for the universal semantics, i.e., is Lfix
∀ (D) = ∅? From

the above construction, we have Lfix
∀ (D) = ∅ if and only if there is a β such that sA is not reachable in

the β-sampled semantics of A. Thus if the safety problem for β-sampled semantics is undecidable (to

the best of our knowledge, the status of this problem is open), then this would imply undecidability here

as well.

6. The reactive semantics

The goal of this section is to tackle the undecidability results that come along with the universal semantics

so that we are still in a position to check a given system against positive specifications. In order to do

this, we come up with a non-trivial under-approximation of the system behaviors that is also an under-

approximation of (or is contained in the) universal semantics. Thus, if the set of behaviors given by the

positive specification is contained in this set, then we are certain that it is satisfied under all possible

choices of clock rates. We will show that this set is always regular thus allowing us to effectively check

it against regular positive specifications.
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We start by taking a closer look at the roots of the undecidability result. To explain the undecid-

ability, it is useful to consider both semantics, the existential one and the universal one, as a game. In

the existential semantics, there is one player, controlling both, system transitions and time. Indeed, a

behavior is accepted if it is executable under some arbitrary time rates. It is then left to the only player

to find transitions and rates that get a given behavior accepted. In the universal semantics, there are two

players: Player 0 controls the transitions, and Player 1 controls the environment, i.e., time. Actually,

this game has only two rounds, since Player 1 has to provide the entire time rates in advance without

knowing the transitions that Player 0 will choose. Given this first “blind move” by Player 1, Player 0 can

then choose transitions freely. A behavior is accepted if Player 0 has a winning strategy, i.e., if a final

state can be reached no matter what the initial move by Player 1 was. Note that, in game frameworks,

the lack of information of one player is often the reason for undecidability (see, e.g., [15, 16]). Based

on this observation, we introduce a third semantics: The reactive semantics considers our system model

to be a (more) turn-based, perfect-information two-player game. It allows Player 1 to react upon the

moves made by Player 0. As, then, Player 1 is granted more power, the reactive semantics contains fewer

behaviors than the universal semantics. Therefore, it is an under-approximation of the system behavior,

too. However, we will show that, thanks to perfect information, it is always regular and, thus, a suitable

tool to check a system against positive specifications.

Let us illustrate the reactive semantics through an example. Consider the icTA B from Figure 3. We

have that ab is in the universal language since Player 0 has a winning strategy for ab: For any time rates

(any move by Player 1), we can find an accepting run. In such an accepting run on ab, we start at s0 and

we can move to either s1 or s2. This choice of which state to move to now (i.e., at s0 with clock values

x < 1, y < 1) depends on how the local time rates behave in the future, an information that is given to

Player 0 in advance. In particular, if a region will be reached with x = 1 and 0 < y ≤ 1, then we move

to s1 so that we can safely execute b. If, on the other hand, we know that the region with 0 < x < 1 and

y = 1 will be reached, then we go to s2. Thus, the universal semantics works by assuming that Player

1 (the environment, or, time) provides the whole future time rate function at any point without knowing

anything about Player 0 (blind move). In a turn-based, perfect-information game, on the other hand,

Player 1 reveals the time evolution only piecewise and can adapt its strategy according to the system

moves. This can be seen pictorially from Figure 15. In the case of ab, the environment simply waits

for the first transition chosen by Player 0 and then chooses a time evolution that spoils the goal to reach

a final state while reading ab: Initially, Player 1 chooses the region 0 < x, y < 1 and gives control to

Player 0. If Player 0 goes to s1, Player 1 moves to the time region with 0 < x < 1 and y = 1. Otherwise,

it may move to x = y = 1. In both cases, b cannot be executed anymore. Thus, ab is not in the reactive

semantics. Indeed, we will show that the reactive semantics is always contained in the universal one.

An advantage of the reactive semantics is that it can be refined in terms of a bounded look-ahead,

which still yields a regular language: We can grant Player 0 more power by requiring that Player 1 has

to reveal a larger (but bounded) amount of information of his future moves.

There is another subtle but powerful motivation for looking at the reactive semantics. To check if

the system satisfies a positive specification, we would like to design a controller which does this check.

For this, the universal semantics is inadequate, in the sense that, to choose a correct run in the system,

we might need to know the future time rates. For instance, in the icTA from Example 2.2 (Figure 3), ab
is in its universal language. However, as seen from Figure 15, to accept ab, the automaton, at state s0,

must guess how the time rates will evolve after this step and accordingly go to either s1 or s2. If we

are designing a controller, then we do not know how the time rates will change later. Thus, we do not
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Figure 15. Part of the region/alternating automaton for the icTA from Figure 3

know a priori whether we will reach this region or the other, and so the controller actually has no way

of deciding which transition to take, to ensure an accepting run. Thus, in Figure 15, though ab is in the

universal language, there is no step-by-step, “practically constructible” accepting run on ab. The reactive

semantics disallows such words and hence can be potentially used for controller synthesis.

Formally, we will describe the reactive semantics using an alternating automaton, which is based

on the region automaton introduced in Section 3. Intuitively, time-elapse transitions are controlled by

the environment (Player 1), and discrete transitions are controlled by the system (Player 0), which aims

at exhibiting some behavior. Actually, this game is not turn-based in a strict sense because the system

should be able to execute several discrete transitions while staying in the same region. After moving

from some region to a successor region, the environment hands over the control to the system so that the

system always has a chance to execute some discrete transition. On the other hand, after executing some

discrete transition, the system may either keep the control or hand it over to the environment.

Since icTAs or DTAs have ε-transitions, we define an alternating automaton with ε-transitions (ε-

AA) as a tuple A = (S,Σ, δ, ι, F ) where S is a finite set of states, ι ∈ S is the initial state, F ⊆ S is the

set of final states, and δ : S × Σε → B+(S) is the alternating transition function. Here, B+(S) denotes

positive boolean combinations of states from S.

As usual, a run of an ε-AA will be a (doubly) labeled finite tree. We assume the reader to be familiar

with the notion of trees and only mention that we deal with structures (V, σ, µ) where V is the finite set

of nodes with a distinguished root, and both σ and µ are node-labeling functions. Given a node u ∈ V ,

the set of children of u is denoted children(u). Let w = a1 . . . a|w| ∈ Σ∗ be a finite word. A run of A
on w is a doubly labeled finite tree ρ = (V, σ, µ) where σ : V → S is the state-labeling function and

µ : V → {0, . . . , |w|} is the position-labeling function such that, for each node u ∈ V , the following

hold:

• if u is the root, then σ(u) = ι and µ(u) = 0 (we start in the initial state at the beginning of the

word),

• if u is not a leaf (i.e., children(u) 6= ∅), then we have
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– either µ(u′) = µ(u) for all u′ ∈ children(u) and in this case

{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ε)

– or µ(u′) = µ(u) + 1 = i ≤ n for all u′ ∈ children(u) and in this case

{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ai).

The run is accepting if all leaves are labeled with F ×{|w|}. The set of words from Σ∗ that come with an

accepting run is denoted by L(A). This set is indeed regular since ε-AAs are special cases of two-way

alternating automata (2-AA) which accept only regular languages.

Lemma 6.1. (cf. [5])

Given a 2-AA A with n states, one can construct a non-deterministic finite automaton with 2O(n2) states

that recognizes L(A).

Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA. We associate with B an ε-AA AB = (S′,Σ, δ′, ι′, F ′)
as follows: First, let S′ = S × Regions(B) × {0, 1}. Intuitively, tag 0 is for system positions (Player

0) while tag 1 is for environment positions (Player 1). Recall that the environment controls how time

elapses whereas the system wants to accept some word. Then, ι′ = (ι, [ν], 0) where ν(x) = 0 for each

x ∈ Z , and F ′ = F ×Regions(B)× {0, 1}. Finally, for (s, γ) ∈ S × Regions(B) and a ∈ Σε, we let

δ′((s, γ, 1), a) =

{
False if a 6= ε or γ maximal
∧
{(s, γ′, 0) | γ ≺· γ′} otherwise

δ′((s, γ, 0), a) =

{∨
{(s′, γ′, 0) | (s, γ)

a
−→d (s′, γ′)} if a 6= ε or γ maximal

(s, γ, 1) ∨
∨
{(s′, γ′, 0) | (s, γ)

ε
−→d (s′, γ′)} otherwise

where
a|ε
−−→d denotes a discrete transition of the region automaton RB (Section 3).

Definition 6.1. For an icTA B, let Lreact (B) = L(AB) be the reactive semantics of B. Moreover, for a

DTA D, Lreact (D) = Lreact(BD) is the reactive semantics of D.

Example 6.1. Consider, again, the icTA B from Figure 3. A part of its ε-AA AB is shown in Figure 15.

States with tag 0 are depicted as ovals and are existential (non-deterministic) states and states with tag

1 are depicted as rectangles and are universal states. We have, e.g., δ′(r1, ε) = r3 ∧ r4 ∧ r5. Note,

however, that a transition from an oval to a rectangles should actually be split into two transitions, which

is omitted in the picture. For example, there is a state r′1 between r0 and r1 which resembles r1 but is

tagged 0. Similarly, there is another state r′2 between r0 and r2, and we have δ′(r0, a) = r′1∨r′2. Then, as

mentioned in the beginning of the section, under the reactive semantics, the language of this automaton

contains a but does not contain ab. Thus, Lreact (B) = {a}.

The following theorem follows from Lemma 6.1:

Theorem 6.1. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and let n be the number of states of RB (which

is bounded by |S| · (2C + 2)|Z| · |Z|! where C is the largest constant a clock is compared with in B).

Then, Lreact (B) is regular and one can compute a non-deterministic finite automaton with 2O(n2) states

that recognizes Lreact(B).
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As expected, the reactive semantics is more restricted than the universal semantics, so we get the

inclusion of Proposition 6.1. It can also be considered as an underapproximation of the universal seman-

tics. Therefore, we can safely use the reactive semantics to check an icTA for a positive specification

Good containing the behaviors that a system must exhibit. If Good ⊆ Lreact (B) then the system has a

strategy to ensure each good behaviors robustly against all possible clock variations.

Proposition 6.1. For any icTA B, Lreact(B) ⊆ L∀(B).

Proof:

Assume B = (S,Σ,Z, δ, I, ι, F, π) to be an icTA and let AB = (S′,Σ, δ′, ι′, F ′) be the associated ε-AA,

and let w ∈ Lreact (B) = L(AB). Let furthermore ρ = (V, σ, µ) be an accepting run of AB on w. We

pick τ ∈ Rates .

We construct inductively a maximal branch u0u1 . . . un ∈ V ∗ in ρ and two sequences t0, t1, . . . , tn
and ν0, ν1, . . . , νn as follows. First, we let u0 = ε, t0 = 0 and ν0(x) = 0 for all x ∈ Z . Note

that σ(u0) = (ι, [ν0], 0). Assume that the sequences have been constructed up to k and that σ(uk) =
(sk, [νk], plk). If uk is a leaf, the construction is over and n = k. Otherwise, there are three cases. First,

assume that plk = 1. Let tk+1 > tk be such that [νk] ≺· [νk+1] with νk+1 = νk + τ(tk+1) − τ(tk).
By definition of δ′, there exists a child uk+1 of uk such that σ(uk+1) = (sk, [νk+1], 0). Assume now

that plk = 0. Choose uk+1 in children(uk). Either σ(uk+1) = (sk, [νk], 1) and we let tk+1 = tk and

νk+1 = νk in this second case. Otherwise, the move from uk to uk+1 corresponds to some discrete

transition of RB with label ak+1 ∈ Σε and some reset set R ⊆ Z . In this third case, we let tk+1 = tk
and νk+1 = νk[R] so that we have σ(uk+1) = (sk+1, [νk+1], 0).

The discrete moves along the constructed branch correspond to the sequence 0 < i1 < · · · < iℓ ≤ n
of indices k such that plk−1 = plk = 0. As ρ is an accepting run for w, we have w = ai1 · ai2 · · · · · aiℓ
and siℓ = sn ∈ F . It is now easy to verify that the sequence

(s0, ν0)
ai1 ,ti1−−−−→ (si1 , νi1)

ai2 ,ti2−−−−→ . . .
aiℓ ,tiℓ−−−−→ (siℓ , νiℓ)

is a τ -run of B so that w ∈ L(B, τ). ⊓⊔

To summarize, we have the following strict hierarchy of our semantics.

Proposition 6.2. Suppose that |Proc| ≥ 2. There are some DTA D over Proc and some τ ∈ Rates such

that Lreact(D) $ L∀(D) $ L(D, τ) $ L∃(D).

Proof:

Consider the icTA B from Figure 3. Recall that Lreact (B) = {a}, L∀(B) = {a, ab}, L(B, id) =
{a, ab, b}, and L∃(B) = {a, ab, b, c}. As B does not employ any reset, we may view it as a DTA

where B models a process owning clock x, and where a second process, owning clock y, does nothing,

but is in a local accepting state. ⊓⊔

7. Conclusion

We provided a framework for the analysis of distributed timed systems where each clock belongs to a

local process and may evolve independently of clocks of other processes. The analysis is based on a

regular under- or over-approximation of the system behavior, depending on the property at hand.
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As future work, it remains to investigate the expressive power of DTAs and, in particular, the syn-

thesis problem: Given a (global) specification Spec, can we generate a DTA D (over a given system

architecture) such that Lreact (D) = Spec ? Here, the system architecture describes the clock accessibil-

ity relation between processes by specifying constraints like “process p can only read clocks of process

q.” A similar synthesis problem has been studied in [11] in the framework of untimed distributed channel

systems. There, additional messages are employed to achieve a given global behavior. In this context,

it would be favorable to have partial-order based specification languages and a partial-order semantics

for DTAs (see, for example, [14]). It would also be worthwhile to study to which extent partial-order

methods [4, 14] can be applied to make our model-checking approach more efficient.

Acknowledgments

We thank the anonymous referees for their useful remarks and interesting comments on this paper.

References

[1] Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed Timed Automata with

Independently Evolving Clocks, Proc. of CONCUR, 5201, Springer, 2008.

[2] Alur, R., Dill, D. L.: A Theory of Timed Automata., Theoretical Computer Science, 126(2), 1994, 183–235.

[3] Alur, R., Madhusudan, P.: Decision Problems for Timed Automata: A Survey, Formal Methods for the

Design of Real-Time Systems, Springer, 2004.

[4] Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial Order Reductions for Timed Systems, Proc. of CONCUR,

1466, Springer, 1998.

[5] Birget, J.-C.: State-complexity of finite-state devices, state compressibility and incompressibility, Mathemat-

ical Systems Theory, 26(3), 1993, 237–269.

[6] Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Unfoldings for Networks of Timed Automata, Proc. of ATVA,

4218, Springer, 2006.

[7] Cassez, F., Chatain, T., Jard, C.: Symbolic Unfoldings For Networks of Timed Automata, Proc. of ATVA,

4218, Springer, 2006.

[8] Cassez, F., Henzinger, T. A., Raskin, J.-F.: A Comparison of Control Problems for Timed and Hybrid Sys-

tems, Proc. of HSCC, 2289, Springer, 2002.

[9] De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and Implementability of Timed Automata,

Proc. of FORMATS and FTRTFT, 3253, Springer, 2004.

[10] Dima, C., Lanotte, R.: Distributed Time-Asynchronous Automata, Proc. of ICTAC, 4711, Springer, 2007.

[11] Genest, B.: On Implementation of Global Concurrent Systems with Local Asynchronous Controllers., Proc.

of CONCUR, 3653, Springer, 2005.

[12] Henzinger, T. A.: The theory of hybrid automata, Proc. of LICS, IEEE Computer Society, 1996.

[13] Larsen, K. G., Pettersson, P., Yi, W.: Compositional and symbolic model-checking of real-time systems,

Proc. of RTSS, IEEE Computer Society, 1995.

[14] Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of

timed automata, Theoretical Computer Science, 345(1), 2005, 27–59.



S. Akshay et al. / Distributed Timed Automata with Independently Evolving Clocks 31

[15] Peterson, G., Reif, J.: Multiple-Person Alternation, Proc. of FOCS, 1979.

[16] Peterson, G., Reif, J., Azhar, S.: Lower Bounds for Multiplayer Noncooperative Games of Incomplete Infor-

mation, Comput. Math. Appl., 41, 2001, 957–992.

[17] Puri, A.: Dynamical Properties of Timed Automata, Discrete Event Dynamic Systems, 10(1-2), 2000, 87–

113, ISSN 0924-6703.

[18] Swaminathan, M., Fränzle, M., Katoen, J.-P.: The surprising robustness of (closed) timed automata against

clock-drift, Proc. of IFIP-TCS, 273, Springer, 2008.

[19] Zielonka, W.: Notes on finite asynchronous automata, R.A.I.R.O. — Informatique Théorique et Applications,

21, 1987, 99–135.


