
Implementing Realistic Asynchronous Automata
S. Akshay1, Ionut Dinca2, Blaise Genest3, and Alin Stefanescu2

1 Indian Institute of Technology, Bombay, India
2 University of Pitesti, Romania
3 CNRS, IRISA, Rennes, France

Abstract
Zielonka’s theorem, established 25 years ago, states that any regular language closed under com-
mutation is the language of an asynchronous automaton (a tuple of automata, one per process,
exchanging information when performing common actions). Since then, constructing asynchron-
ous automata has been simplified and improved [6, 20, 7, 12, 8, 4, 2, 21, 22].

We first survey these constructions and conclude that the synthesized systems are not realistic
in the following sense: existing constructions are either plagued by deadends, non deterministic
guesses, or the acceptance condition or choice of actions are not distributed. We tackle this
problem by giving (effectively testable) necessary and sufficient conditions which ensure that
deadends can be avoided, acceptance condition and choices of action can be distributed, and de-
terminism can be maintained. Finally, we implement our constructions, giving promising results
when compared with the few other existing prototypes synthesizing asynchronous automata.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Asynchronous automata, Zielonka construction, Implementability

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Designing distributed systems is notoriously difficult and prone to bugs. Verification al-
gorithms are very useful to detect and report bugs, but the discovered issues must be solved
by the designer. An alternative is to use automatic implementation tools, which directly
synthesize an implementation that is guaranteed to be correct by construction. As the com-
plexity of automatic implementation is quite high in the general case of open distributed
systems (distributed games) [9], we focus on closed systems in this paper.

Here, the specification is given as a regular language L over an alphabet Σ where every
action (i.e., letter in Σ) is associated with the set of processes managing that action. Such

AA = deterministic AA

realistic AA
deterministic

deadend
-free AA

deterministic
locally

accepting
AA

Figure 1 Expressivity of different types of asynchronous automata (AA)

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

a specification allows to reason globally about the requirements, instead of having to deal
carefully with partial views of each process in a distributed manner (which is one of the
error-prone tasks). The problem is then to automatically implement a (truly) distributed
control that will globally have the same behavior as the given specification language L. Of
course, not all languages can be implemented with such a distributed control. For instance,
if ab is the only word in the specification language, with a an action local to a process and
b local to another process, then it cannot be implemented in a truly distributed manner.
Indeed, any distributed implementation will also feature the word ba, since a process is
unable to know when another process performs an (independent) action.

Zielonka’s theorem, established 25 years ago [23], states that this is sufficient: every
language closed by this commutation relation can be implemented in the form of an asyn-
chronous automaton, that is, a network of automata where the control is mostly distributed,
and two processes can exchange information whenever they perform a common action. Ini-
tially, this was merely an expressiveness result and was believed to be rather impractical due
to its prohibitive complexity. During subsequent years, this construction has been simplified
and improved in several works [6, 20, 7, 12, 8]. Also, different constructions [4, 2, 21] and
heuristics [22] have been proposed to handle the complexity blow-up.

However, none of these constructions gives a general realistic distributed implementation:
either the constructions are plagued by deadends [23, 6, 20, 7, 12, 8, 2, 4], non-deterministic
guesses [24, 5, 2], or the acceptance condition or choice of actions are not distributed [23, 6,
20, 7, 12, 8]. Further, while the initial state is trivially distributed in Zielonka’s construction
(since it is unique, due to determinism), this is not the case in [24, 5]. One cannot always
obtain an implementation satisfying all these conditions: we schematically depict in Figure 1
the relations between corresponding subclasses, proved in Proposition 6.

Thus, our main goal is to characterize the class of regular languages that can be imple-
mented by a realistic asynchronous automaton, i.e., one which is deterministic, deadend-free,
and has distributed final states and choice of actions. This notion strictly subsumes the
class of deadend-free synchronized product of automata [17]. Our central result provides se-
mantical and syntactical characterizations of languages of realistic asynchronous automata,
together with algorithms to check these characterizations. Thus, given a global regular spe-
cification passing these algorithmic tests, we build a realistic asynchronous automaton which
distributedly implements the specification. Finally, we implement our procedure, based on
the latest, state of the art variant of Zielonka’s construction [8]. On a variety of distributed
programs, we show that this gives realistic distributed implementations of a size which is
reasonable compared to existing implementations.

Asynchronous automata model shared-memory systems directly. However, even for mes-
sage passing systems, Zielonka’s theorems continue to remain interesting: [15] and [10] build
bounded message passing automata using Zielonka’s construction (see [3] for a survey). We
are confident that combining the techniques in [15] with our results would lead to the auto-
matic implementation of realistic bounded message passing automata.

The paper is structured as follows. In section 2, we define (realistic) asynchronous
automata, and restate the different implementation theorems. In section 3, we come up
with semantical and syntactical characterizations of realistic asynchronous automata. In
section 4, we exhibit algorithms to test the characterizations and analyze their complexity. In
section 5, we experiment and compare the automatic distributed implementation of different
specifications.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 2–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Realistic Asynchronous Automata

Let P be a fixed set of processes. A distributed alphabet (Σ, dom) is a finite set Σ of actions
together with the domain function dom : Σ→ 2P\∅, which associates to each action a the set
dom(a) of processes executing a. For any p ∈ P, we also denote Σp = {a ∈ Σ | p ∈ dom(a)}.
We say that actions a and b are independent, denoted (a, b) ∈ I, iff dom(a) ∩ dom(b) = ∅.
This gives rise to an equivalence relation on words: first, for all words v, w ∈ Σ∗ and actions
(a, b) ∈ I, we define vabw ≡1 vbaw. Then, the transitive reflexive closure of ≡1, denoted
≡, is an equivalence relation. The equivalence class containing v, denoted [v], is called a
(Mazurkiewicz) trace [7]. Given a word w ∈ Σ∗ and a process p ∈ P, the p-view of w,
denoted viewp(w), is the shortest trace [v] such that: there exists v′ with w ≡ vv′, and each
action a ∈ Σp occurs as many times in v as in w. Finally, for a language L ⊆ Σ∗, pref(L)
will denote its set of prefixes and ε will denote the empty string.

An asynchronous automaton is a tuple ((Sp)p∈P , (∆a)a∈Σ, In,Fin), where for all p ∈ P,
Sp is the set of local states of process p, and for all a ∈ Σ, ∆a ⊆

∏
p∈dom(a) Sp×

∏
p∈dom(a) Sp

defines the (partial) transition relation. Note that while we define the transition relation on
letters for ease of presentation, it is equivalent to a corresponding definition on processes.
Any s = (sp)p∈P ∈

∏
p∈P Sp is called a global state and In,Fin ⊆ (Sp)p∈P denote the set of

global initial and final states, respectively.
The semantics of an asynchronous automaton AA = ((Sp)p∈P , (∆a)a∈Σ, In,Fin) is given

by the (sequential) automaton S(AA) = (C,→, In,Fin) over Σ, where C =
∏
p∈P Sp is

the set of global states, and the global transition relation is given by →: C → C with
(sp)p∈P

a−→ (s′p)p∈P iff (s′p)p∈dom(a) ∈ ∆a((sp)p∈dom(a)) and s′p = sp for all p /∈ dom(a).
As usual, we extend → to words by fixing for ε the empty word: for all s, s′ ∈ C, s ε−→ s′

iff s′ = s and s
aw−→ s′ iff there exists s′′ ∈ C with s

a−→ s′′ and s′′
w−→ s′. In case → is

deterministic (which is the case for deterministic asynchronous automata), we will denote
δw(s) for the unique state s′ ∈ C (if it exists) such that s w−→ s′. The language L(AA)
accepted by AA is by definition L(S(AA)), the language accepted by S(AA).

An automaton A = (C,→, In,Fin) is diamond [7] if for all s, s′, t ∈ C and all (a, b) ∈ I,
if s a−→ s′

b−→ t, then there exists t′ with s
b−→ t′

a−→ t. For any given asynchronous
automaton AA, S(AA) is diamond [7], which implies that L(AA) is closed by commutation:
for all v ∈ L(AA) and w ≡ v, we also have w ∈ L(AA).

An asynchronous automaton, as defined above, cannot always be implemented in a dis-
tributed manner, without adding further restrictions. For instance, the set of final states is
currently given globally. To obtain purely distributed implementations, we now introduce
several restrictions on asynchronous automata.

IDefinition 1 (determinism). An asynchronous automatonAA = ((Sp)p∈P , (∆a)a∈Σ, In,Fin)
is deterministic, if |In| = 1 and |∆a(s)| ≤ 1 for all a ∈ Σ and s ∈

∏
p∈dom(a) Sp.

Non-determinism allows a process to guess what another process is doing concurrently.
Note that every asynchronous automaton can be transformed into a deterministic asyn-
chronous automaton, albeit with an unavoidable blow-up in the number of states [14].

I Definition 2 (deadend-freeness). A global state s is called a deadend, if there does not
exist a word w ∈ Σ∗ and global state s′ ∈ Fin with s w−→ s′. An asynchronous automaton
is deadend-free iff no global state reachable from an initial state is a deadend: for all v ∈
Σ∗, s0 ∈ In, and all s with s0

v−→ s, the state s is not a deadend.

Deadend-freeness prevents a process from performing actions that will not be observable
in terms of the language. For instance, consider two processes p, q and actions a, b, c such that

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 3–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

c

d

a b

(a)

c

c

a

a
′

b
′

b

(b)

c

c

d

d

a

a
′

b
′

b

(c)

Figure 2 Examples of “unrealistic” asynchronous automata accepting respectively L1, L2, L3.
States of process p (resp. q) are unshaded (resp. shaded). Dashed lines mark global final states.

dom(a) = p, dom(b) = q and dom(c) = dom(d) = {p, q}. Then, the language L1 = {ac, bd}
cannot be implemented deterministically and without deadends. Indeed, both a and b are
allowed from the initial state (which is unique, if the implementation is deterministic), and
thus any realistic implementation would also allow ab (and ba), as dom(a) ∩ dom(b) =
{p} ∩ {q} = ∅. However, an asynchronous automaton with deadends can implement this
language as shown in Figure 2(a): the state reached after reading the trace [ab] is a deadend.

I Definition 3 (local acceptance). An asynchronous automaton ((Sp)p∈P , (∆a)a∈Σ, In,Fin)
is said to be locally accepting or have local final states, if Fin =

∏
p∈P Finp for some Finp ⊆

Sp for all p ∈ P.

Local final states ensure that processes can stop locally, and there is no supervisor
which looks at all processes at the same time to choose to stop them. Note that the
asynchronous automaton in Figure 2(a) has local final states. Now, the language L2 =
{ab, ba, a′b′, b′a′, a′bc, ba′c, ab′c, b′ac} with dom(a) = dom(a′) = p, dom(b) = dom(b′) = q,
and dom(c) = {p, q} cannot be accepted by a deterministic asynchronous automaton having
local final states as local states reached on p after a, a′ and local states reached on q after
b, b′ can all be final, depending what the other process did. However, there is a deadend-
free deterministic asynchronous automaton with global final states accepting this language,
as shown in Figure 2(b). Here, the global final states reached after reading [ab] and [a′b′]
cannot be expressed as a product of local final states (without also accepting [ab′], [a′b]).

I Definition 4 (locally enabled). An asynchronous automaton ((Sp)p∈P ,∆, In,Fin) is called
locally enabled, if for all reachable global states s = (sp)p∈P , s′ = (s′p)p∈P , and s′′ = (s′′p)p∈P ,
if there exist a ∈ Σ and global states t, t′ with s′′p ∈ {sp, s′p} for all p ∈ dom(a) and s a−→ t

and s′ a−→ t′, then there exists a global state t′′ with s′′ a−→ t′′.

Local enabledness prevents the processes from taking into account the state of other
processes to decide whether they should propose an action or not. In terms of distributed
control, process based controllers [9] have this property, while action based controllers [11]
do not. The asynchronous automata in Figure 2(a,b) are locally enabled. In a distributed
implementation, non-local enabledness is not realistic. For instance, consider the language
L3 = {abd, bad, a′bc, ba′c, ab′c, b′ac, a′b′d, b′a′d}, with dom(a) = dom(a′) = p, dom(b) =
dom(b′) = q and dom(c) = dom(d) = {p, q}. Intuitively, processes p, q should synchronize

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 4–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

with d if they did both a, b or a′, b′, and with c if they did a, b′ or a′, b. This language cannot
be realized by a deadend-free and locally enabled asynchronous automaton. However, the
deadend-free and locally accepting asynchronous automaton shown in Figure 2(c) accepts
L3, but it is not locally-enabled.

Ideally, we would like a realistic distributed implementation to satisfy all the properties
of determinism, deadend-freeness, local acceptance and local enabledness and not just some
of them. Thus, by combining all the above desired properties of a distributed implementation
we arrive at our proposal for a realistic asynchronous automaton.

IDefinition 5. An asynchronous automaton AA is said to be realistic, if AA is deterministic,
deadend-free, has local final states, and is locally enabled.

With this definition, language L3 above cannot be accepted by a realistic asynchronous
automaton (because of local enabledness). Using languages L1, L2, L3, we conclude:
I Proposition 6. The inclusions schematically represented in Figure 1, between the ex-
pressive powers of the above introduced restrictions of asynchronous automata, are strict.
Further, the classes of deterministic deadend-free and deterministic locally accepting asyn-
chronous automata have incomparable expressive power.

Proof. First, the fact that asynchronous automata and deterministic asynchronous
automata have the same expressive power is proved in Theorem 8(1).

Second, L1 = {ac, bd}, with dom(a) = p, dom(b) = q and dom(c) = dom(d) = {p, q},
is accepted by a deterministic locally accepting asynchronous automaton (see Figure 2) but
not by any deterministic deadend-free asynchronous automata. Indeed, by contradiction, if
L(AA) = L1 with AA deterministic and deadend-free, then denoting by (sp0, s

q
0) the initial

state of AA, we have ∆a(sp0) = s and ∆b(sq0) = t for some local states s of p and t of q.
Thus (s, t) is a global state reachable by ab. As AA is deadend-free, there exists w with
(s, t) w−→ f with f accepting. It means that abw ∈ L1, a contradiction.

Third, L2 is accepted by a deterministic deadend-free asynchronous automaton (see
Figure 2) but not by any deterministic locally accepting asynchronous automata. Indeed,
by contradiction, if L(AA) = L2 with AA deterministic and locally accepting, then denoting
by (sp0, s

q
0) the initial state of AA, we have ∆a(sp0) = s, ∆a′(sp0) = s′, ∆b(sq0) = t and

∆b′(sq0) = t′. Now, ab, a′b′ ∈ L2 hence (s, t) and (s′, t′) are final. It means that s, s′, t, t′
are local final states as AA is locally accepting, and thus (s, t′) and (s′, t) are final. Thus
ab′ ∈ L2, a contradiction.

Last, the expressive power of realistic asynchronous automata is strictly included into
the expressive power of deterministic deadend-free and locally accepting asynchronous auto-
mata. Indeed, L3 is accepted by a deterministic deadend-free and locally accepting asyn-
chronous automata (see Figure 2). Now, assume by contradiction that there exists a determ-
inistic deadend-free locally enabeled asynchronous automaton AA accepting L3. Denoting
by (sp0, s

q
0) the initial state of AA, we have ∆a(sp0) = s, ∆a′(sp0) = s′, ∆b(sq0) = t and

∆b′(sq0) = t′. Consider the global states (s, t);(s′, t′);(s, t′). We have (s, t) d−→ (s2, t2) and
(s′, t′) d−→ (s′2, t′2) for some s2, s

′
2, t2, t

′
2. Hence there exists a global state (s′′2 , t′′2) such that

(s, t′) d−→ (s′′2 , t′′2). As AA is deadend-free, there exists a global final state r and a word w
such that (s′′2 , t′′2) w−→ r. Thus ab′dw ∈ L3, a contradiction. �

We remark here that the notion of realistic automata as defined above strictly subsumes
the notion of (deadend-free) synchronized product of automata [17]. Such an automaton
is given by a tuple of automata A = (Ap)p∈P , one for each process p on alphabet Σp =
Σ ∩ dom−1(p), such that u ∈ L(A) iff πp(u) ∈ L(Ap) for all p ∈ P, where πp(u) is the
projection of u on Σp, that is u where actions not in Σp have been deleted.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 5–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Proposition 7. Let A = (Ap)p∈P be a (possibly non-deterministic) deadend-free syn-
chronized product of automata. Then there exists a realistic asynchronous automaton B

with L(B) = L(A). However, the converse does not hold.
Proof. First, one can determinize A without changing the language and keeping the

deadend-freeness. This follows since each local automaton can be determinized keeping
the same language, and because of the characterization u ∈ L(A) iff πp(u) ∈ L(Ap). The
resulting automaton can be seen as a deterministic deadend-free asynchronous automaton
B. By definition of the synchronized product of automata, B is also locally accepting and
locally enabled, that is, B is a realistic asynchronous automaton, and we have L(B) = L(A).

To see that the converse does not hold, consider the following language: L5 = {acb, a′cb′}
with dom(a) = dom(a′) = p, dom(b) = dom(b′) = q,dom(c) = {p, q}. This language is easily
realizable by a realistic asynchronous automaton. To see that it cannot be realized by the
synchronized product of automata, let us argue by contradiction: if L4 was the language of
a synchronized product of automata A = (Ap)p∈P , then we would have ac, a′c ∈ L(Ap) and
cb, cb′ ∈ L(Aq), and hence we would have acb′ ∈ L(A), a contradiction. �

2.1 Survey of the different constructions
In the past 25 years, several attempts have been made to construct asynchronous automata
from regular (commutation-closed) specifications which preserve some (but not all) of these
above mentioned properties. We summarize them below.

I Theorem 8. Let L be a regular language closed by commutation. Then, there exists an
asynchronous automaton AA over (Σ, dom) with L(AA) = L such that either:

1. AA is deterministic [23, 6, 7, 20, 12, 8], or
2. AA is deadend-free [24] (see also [5] for a proof for message-passing systems), or
3. AA has local initial and final states [2].

We provide here the worst case space complexities (the number of local states) to obtain
a deterministic or non deterministic asynchronous automaton (Det AA, Non Det AA), given
a deterministic or non deterministic diamond automaton A over a set of processes P:

complexity Det AA Non Det AA
Det A |A|O(|P|2) · 22|P|4 [8] −
Non Det A 2O(|A|·|P|2+|P|4) [12] |A|O(|P|2) [2]

The complexities stated to obtain a deterministic asynchronous automaton from [12, 8]
are optimal, while optimality is not proven for obtaining a non deterministic asynchronous
automaton (using [2] for instance). Note that [2] uses a construction not based on Zielonka’s.
Determinizing an asynchronous automaton is possible, but the blow-up is doubly exponential
[14]: constructing a deterministic asynchronous automaton directly is preferable. Notice that
the complexity is much better in case where the architecture is constrained to be a tree, see
[18].

3 Obtaining Realistic Asynchronous Automata

We now turn to the question of characterizing regular languages L for which there exists
a realistic asynchronous automaton AA such that L(AA) = L. We will give necessary
and sufficient semantical conditions on L to have a realistic distributed implementation AA
accepting L. Further, we will provide syntactical conditions on automata to be equivalent

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 6–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

to realistic distributed implementations, and prove that a diamond automaton with such
conditions is always constructible. Our proofs are constructive, in that they provide realistic
asynchronous automata. We also offer characterizations for subsets of realistic properties.

Our main proof can use any of the variants of the Zielonka construction from [23, 6, 7,
20, 12, 8] as a “black box”, without having to reprove them. Moreover, the changes we make
to the implementation obtained from the Zielonka construction do not add states.

3.1 A Theoretical Characterization of Realistic AA
Before stating the main theoretical result of the paper, we first define the syntactical and
semantical restrictions which will enable realistic asynchronous automata. Recall that we
defined the notion of viewp(u) in Section 2, which stands for all actions of u that p has seen
directly or indirectly (through a common action). For instance, let dom(a) = p,dom(b) = q

and dom(c) = {p, q}. Then viewp(abcb) ≡ abc since c is “seen” by p (p ∈ dom(c)) and b is
“before” c, b and c are not independent as dom(b) ∩ dom(c) = {q} 6= ∅.

I Definition 9 (Semantical conditions). For language L, we define the following conditions:

(LC1) forward diamond: Whenever w ∈ Σ∗, (a, b) ∈ I and wa,wb ∈ pref(L), we have
wab ∈ pref(L).

(LC2) causally closed: Whenever w ∈ Σ∗, if for all p ∈ P there exists vp ∈ L with
viewp(vp) = viewp(w), then w ∈ L.

(LC3) locally closed: Whenever w ∈ pref(L), if for all actions c and all p ∈ dom(c), there
exists vpc ∈ pref(L) with viewp(vp) = viewp(w), then wc ∈ pref(L).

The first two language conditions (LC1,LC2) have been defined before (in the different
setting of Message Sequence Charts for (LC2) [1]), and their names are standard in the
Mazurkiewicz trace community. However, they have only been considered separately; and
the third notion (LC3) is new.

I Definition 10 (Syntactical conditions). For a sequential diamond deterministic automaton
A = (C,→, In,Fin), we define the following conditions:

(AC1) forward diamond: Whenever s, s′, t′ ∈ C, (a, b) ∈ I with s a−→ s′ and s b−→ t′, there
exists a state t with s′ b−→ t and t′ a−→ t.

(AC2) Whenever s ∈ C, if for all p ∈ dom(a) there exist rp, tp ∈ C and words wp, (w′)p ∈
(Σ \ Σp)∗, such that rp wp

−→ s, rp (w′)p

−→ tp and tp ∈ Fin, then s ∈ Fin.
(AC3) Whenever s ∈ C and a ∈ Σ, if for all p ∈ dom(a) there exist rp, tp, xp ∈ C and words

wp, (w′)p ∈ (Σ \ Σp)∗, such that rp wp

−→ s and rp (w′)p

−→ tp
a−→ xp, then there exists

t′ ∈ C with s a−→ t′.
The first automaton condition (AC1) has been defined earlier, while the two others are
new. Our main theorem below shows that these local syntactical conditions have a global
semantical implication.

To illustrate (LC3) and (AC3), consider the language L3 in Section 2 (Figure 2(c)). We
observe that L3 does not meet (LC3) as w = ab ∈ pref(L3), dom(c) = {p, q}, ab′c ∈ pref(L3)
with viewp(ab′) = [a] = viewp(w) and ad′bc ∈ pref(L3) with viewq(a′b) = [b] = viewq(w) but
wc /∈ pref(L3). Further, if A3 is a deterministic automaton with L(A3) = L3, denoting by
sw the state reached after w, we consider state sab and action c. Then, letting rp = sa, w

p =
b′, tp = sab and rq = sb, w

q = a′, tq = sa′b it follows that A3 does not satisfy (AC3).

I Theorem 11. Let L be a regular language. Then, the following are equivalent:
© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 7–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1. There exists a (sequential, finite) deterministic diamond automaton A = (C,→, {s0},Fin)
satisfying (AC1,AC2,AC3), with L(A) = L, and such that every state is reachable from
s0 and every state can reach Fin.

2. L is closed under commutation and satisfies (LC1,LC2,LC3).
3. There exists a realistic asynchronous automaton AA with L(AA) = L.

The construction of a realistic asynchronous automaton first builds a deterministic asyn-
chronous automaton by applying the algorithm from [8]. Then, a realistic asynchronous
automaton is obtained by following the transformation described in the next section, which
does not add any state or transition to [8] (though it may result in the removal of some
states). For complexity issues, we expect that L is given by a deterministic diamond auto-
maton A satisfying (AC1,AC2,AC3). Indeed, checking that A fulfills (AC1,AC2,AC3) is
doable in polynomial time (see section 4).

3.2 Proof of Theorem 11
Theorem 11 is shown by proving (1 =⇒ 2), then (2 =⇒ 3), and last (3 =⇒ 1).

3.3 From (AC1,AC2,AC3) to (LC1,LC2,LC3): Theorem 11(1 =⇒ 2)
We start the proof of Theorem 11 by proving that for any reachable and co-reachable dia-
mond deterministic automaton A satisfying (AC1,AC2,AC3), then L(A) is closed by com-
mutation and satisfies (LC1,LC2,LC3).

Firstly, as L is diamond, we get that L(A) is closed by commutation. Then:

(LC1): Let w ∈ Σ∗, (a, b) ∈ I such that wa,wb ∈ pref(L(A)). By (AC1) we have that In wab−→
is defined, and because every state of A is co-reachable, we have that wab ∈ pref(L).

(LC2): Let w ∈ Σ∗ such that for all p ∈ P, there exists vp ∈ L(A) with viewp(vp) =
viewp(w). As A satisfies (AC1), In w−→ s is defined. We let vp = viewp(vp)v′p and

w = viewp(w)wp for all p ∈ P. We define In viewp(vp)=viewp(w)−→ rp and rp
v′

p−→ tp. As
vp ∈ L and A deterministic, we have that tp is final. Also, we have rp wp−→ s. By
(AC2), we thus have s ∈ F , that is, w ∈ L(A). (Note that, here and below, for a
global state s we use sp to denote the p-local component and hence we use sp to
denote the global state s indexed by process p. However for a word v, vp always
denotes indexing by process p and hence we do not need to change this notation.)

(LC3): Let w ∈ pref(L) and a ∈ Σ such that for all p ∈ dom(a), there exists vpa ∈
pref(L(A)) with viewp(vp) = viewp(w). We define s such that In w−→ s. We let
vp = viewp(vp)v′p and w = viewp(w)wp for all p ∈ P. We define In viewp(vp)=viewp(w)−→

rp and rp
v′

p−→ tp
a−→ xp. We have rp wp−→ s. By (AC3) and as the automaton is co

reachable, we thus have wa ∈ pref(L(A)).

3.4 From (LC1,LC2,LC3) to realistic AA: Theorem 11 (2 =⇒ 3)
Our basic strategy to construct a realistic AA is to use Theorem 8 (part 1.) to construct
a deterministic AA from a given language L and then refine this AA to obtain a realistic
AA which accepts the same language. For this, we will use as our template the recent
construction from [8], and hence we begin by stating the relevant result and a definition
that we need from this paper.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 8–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

IDefinition 12 ([8]). A deterministic asynchronous automatonAA = ((Sp)p∈P ,∆, {s0},Fin)
is called locally rejecting if for every process p, there is a set of states Rp ⊆ Sp such that for
each word w: viewp(w) /∈ pref(L(AA)) iff the p-local state reached by AA on w is in Rp.

Notice that if AA reaches Rp on a word w, then it does so on every extension of w, i.e.,
every word w′ such that w is a prefix of w′. Obviously, no reachable global final state of AA
has a (projected) component in Rp, which justifies why the states in Rp are called rejecting.
Any Zielonka construction gives a naturally locally rejecting asynchronous automaton. In
particular:

I Theorem 13 ([8]). Let A be a deterministic diamond automaton over the alphabet (Σ, dom).
We can construct a deterministic locally rejecting asynchronous automaton AA with at most
|A||P|2 · 22|P|4 states such that L(A) = L(AA).

Now we can prove our result as follows. Given a regular language L closed by com-
mutation under (Σ, dom), we first build its minimal deterministic automaton A. It is then
easy to check that A has the diamond property [7]. Now, we apply Theorem 13 to obtain
a deterministic asynchronous automaton AA such that L(AA) = L(A) = L. Of course, AA
may still have deadends (or global final states or not be locally enabled). Henceforth, for
s

w−→ t with t = (tp)p∈P , we will denote the (local) state tp by δpw(s). Notice that as the
asynchronous automaton is deterministic, δpw(s) is unique (if it exists) for each p, w, s.

First, we show that deadends can be avoided by using the locally rejecting property of
AA. We remove all states of Rp from AA = ((Sp)p∈P , (∆a)a∈Σ, {s0},Fin). That is, we
define the asynchronous automaton AA′ = ((S′p)p∈P , (∆′a)a∈Σ, {s0},Fin′) with S′p = Sp \Rp
for all p ∈ P, and ∆′a = ∆a ∩

∏
p∈dom(a) S

′
p ×

∏
p∈dom(a) S

′
p for all a ∈ Σ, Fin′ = Fin \ R,

where R = {(sp)p∈P ∈
∏
p∈P Sp | ∃q, sq ∈ Rq}. We assume for convenience that s0 /∈ R

(else L = ∅ is trivial to deal with).

I Lemma 14. AA′ is deadend-free and L(AA′) = L(AA) = L.

Proof. Recall thatAA′ is the asynchronous automatonAA′ = ((S′p)p∈P , (∆′a)a∈Σ, {s0},Fin′)
with S′p = Sp \Rp for all p ∈ P, and ∆′a = ∆a ∩

∏
p∈dom(a) S

′
p ×

∏
p∈dom(a) S

′
p for all a ∈ Σ,

and Fin′ = Fin \R where R = {(sp)p∈P ∈ (Sp)p∈P | ∃q, sq ∈ Rq}.
We first show that L(AA′) = L(AA). By construction, if w ∈ L(AA′), then w ∈ L(AA).

For the converse, take w ∈ L(AA). Assume that w /∈ L(AA′). This means that for some
prefix va of w, for some process q, δqva(s0) ∈ Rq (but δqv(s0) ∈ S′q). By definition of Rq,
viewq(va) /∈ pref(L(AA)). This is a contradiction with viewq(va) is a prefix of w ∈ L(AA) =
L. Thus, we have L(AA′) = L(AA) = L.

Now, let us prove that AA′ has no deadend. Let s = (sp)p∈P be any global state
reachable from the initial state s0: that is, there exists w such that for all p, δ′pw(s0) = sp.
In particular, δ′pw(s0) is defined for all p. It follows by definition of rejecting states, that
viewp(w) ∈ pref(L(AA)), for all process p. Now we can prove that w ∈ pref(L(AA))
using (LC1). Let us first sketch the case when |P| = 2, denoting P = {p, q}. We have
[w] = [uaxbb′y] with [uax] = viewp(w) ∈ pref(L(AA)), [ubb′y] = viewq(w) ∈ pref(L(AA))
and the domain of any action of ax and the domain of any action of bb′y is disjoint. Now, ua
and ub are in pref(L(AA)), and (a, b) ∈ I. So by (LC1), we get uba ∈ pref(L(AA)). But we
also have ubb′ ∈ pref(L(AA)) with (a, b′) ∈ I, hence by (LC1) we get ubb′a ∈ pref(L(AA)).
Now, a first induction on the length of bb′y gives ubb′ya ∈ pref(L(AA)). And a second
induction on the length of ax gives ubb′yax ∈ pref(L(AA)), that is w ∈ pref(L(AA)) (as
pref(L(AA)) is closed by commutation). This completes the proof for the case of |P| = 2.
And the result follows by a third induction on the number of processes |P|.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 9–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Hence we have shown that for any reachable global state s, there exists w ∈ pref(L(AA))
with s = δ′w(s0). Thus there exists v such that wv ∈ L(AA) = L(AA′), and δ′v(s) is final as
AA′ is deterministic. That is, no reachable global state s is a deadend. �

Now, AA′ may still not be realistic due to final states that are global. To obtain local final
states, we define Finp = {δpw(s0) ∈ Sp | w ∈ L} for all p ∈ P and let Fin′′ =

∏
p∈P Finp.

Thus, we obtain a new asynchronous automaton AA′′ = ((S′p)p∈P , (∆′a)a∈Σ, {s0},Fin′′),
differing from AA′ only in its final states.

I Lemma 15. AA′′ is a realistic asynchronous automaton such that L(AA′′) = L(AA′) = L.

Proof. By definition, AA′′ is locally accepting, and it is deterministic since AA′ and AA
were deterministic. Also as Fin′ ⊆ Fin′′, setting the final states to be Fin′′ does not add a
deadend. Next, we show that L(AA′′) = L(AA′) = L. Take a word w ∈ L(AA′′). Hence
δpw(s0) ∈ Finp for all p. By definition of Finp, for all p there exists vp ∈ L(AA′) = L with
δpw(s0) = δpvp

(s0). We want to use (LC2) to conclude, but so far, there is no reason that
viewp(vp) = viewp(w) for any p. We will thus build v′p ∈ L such that viewp(v′p) = viewp(w)
for every p. Let p ∈ P. It suffices to decompose [vp] = viewp(vp) [yp]. We then set
v′p = viewp(w) yp and so viewp(v′p) = viewp(w) for all p. To obtain that v′p ∈ L, we use
a property of the Zielonka’s construction from a deterministic automaton A: for all words
w,w′ such that δpw(s0) = δpw′(s0), the state of A reached from the initial state after reading
viewp(w) is the same as the state reached after reading viewp(w′) (in other words, the p-
state maintains the information about the state of A reached by the p-view of the executed
trace). Now, let s be the state of the minimal deterministic automaton A for L reached after
reading viewp(v′p) = viewp(w). This is also the state reached after reading viewp(vp) because
δpw(s0) = δpvp

(s0) and by the property above. Reading yp from s thus leads to a final state
of A, as viewp(vp)yp ∈ L and the automaton is deterministic. Thus v′p = viewp(wp)yp ∈ L
too. Applying (LC2), we get w ∈ L = L(AA′), and thus L = L(AA′) = L(AA′′).

It remains to prove that AA′′ is locally enabled: Let w1, w2, w3 be words with (sip)p∈P
the state reached on wi in AA′′ (the state is unique by determinism of AA′′). Let a be an
action such that s3

p ∈ {s1
p, s

2
p} for all p ∈ dom(a). Assume that (s1

p)p∈P
a−→ (t1p)p∈P and

that (s2
p)p∈P

a−→ (t2p)p∈P for some (t1p)p∈P and (t2p)p∈P . As AA′′ is deadend-free, it means
that w1a and w2a are in pref(L). We want to show that w3a ∈ pref(L), which will imply
that there exists (t3p)p∈P with (s3

p)p∈P
a−→ (t3p)p∈P , that is local enabledness of AA′′.

We now use, as above, the property that if w,w′ reach in AA the same local state sp on
process p, then prefp(w), prefp(w′) reach the same state s in A. We decompose dom(a) into
two sets: P1, P2 such that p ∈ P1 iff s3

p = s1
p. We have that for all p ∈ P1, both prefp(w3)

and prefp(w1) reach s1
p on process p. Hence prefp(w3) and prefp(w1) reach in A the same

state s1. Writing w1 = prefp(w1)vp, we have that for wp = prefp(w3)vp, wpa ∈ pref(L), with
viewp(wp) = prefp(w3) = viewp(w3). The same reasoning for p ∈ P2 gives the existence of
some wp with viewp(wp) = viewp(w3) and wpa ∈ pref(L). It suffices to apply the definition
of (LC3) to deduce that w3a ∈ pref(L), which implies that AA′′ is locally enabled. �

Notice that Finp can be computed in time O(|A|). Indeed, we reuse the property that
a local p states δpw(s0) keeps the state s of A reached from the initial state after reading
viewp(w). To know whether there exists w′ ∈ L such that δpw(s0) = δpw′(s0), it suffices to
perform one graph search(e.g. DFS) using edges of A except the ones using letters in Σp,
and see whether a final state of A is reachable from s by this search. This takes time O(|A|).

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 10–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3.5 From realistic AA to (AC1,AC2,AC3): Theorem 11 (3 =⇒ 1)
Given a realistic asynchronous automaton AA = ((Sp)p∈P ,∆, In,Fin), we consider its global
(sequential) automaton S(AA) = (C,→, In,Fin). We can then prove that (the reachable
part of) S(AA) satisfies (AC1, AC2, AC3). As AA is deadend-free, every reachable state s
of S(AA) is also co-reachable, that is, there exists w such that s w−→ s′ with s′ ∈ Fin. First,
by construction, as AA is deterministic, S(AA) is deterministic. Further, S(AA) is diamond
for any AA as mentioned earlier. Then:

(AC1): Let s, s′, t′ ∈ C and (a, b) ∈ I with s a−→ s′ and s b−→ t′, and s is reachable. That is,
there exists In w−→ s. We have In wab−→ is defined: indeed, In wa−→ s′ = (s′p)p∈P . Now,
notice that for all p /∈ dom(a), s′p = sp. Also, (s′p)p∈P

b−→ (tp)p∈P , with tp = s′p
for all p /∈ dom(b), and tp = t′p for all p ∈ dom(b), as dom(a) ∩ dom(b) = ∅. Hence
(AC1) is satisfied by S(AA).

(AC2): Assume that s ∈ C and that for each p ∈ P, there exist tuples of states and words
(rp, tp, wp, (w′)p)p∈P such that rp ∈ C, tp ∈ Fin and wp, (w′)p ∈ (Σ \ Σp)∗ and
rp

wp

−→ s and rp (w′)p

−→ tp. Because wp, (w′)p ∈ (Σ \Σp)∗, and by definition of S(AA),
we have that s and tp have the same p state, say sp. Now, tp is final and AA has
local final states, so it means that sp is final. As this is true for all p ∈ P, it means
that s itself is final, since it is a product of all local final states, i.e., s ∈ Fin.

(AC3): Assume that s ∈ C and for some a ∈ Σ, for all p ∈ dom(a) there are tuples
(rp, tp, xp, wp, (w′)p)p∈dom(a) such that rp, tp, xp ∈ C and wp, w′p ∈ (Σ\Σp)∗, rp

wp

−→

s, rp (w′)p

−→ tp
a−→ xp. Again, by definition of S(AA), s and tp have the same local

p-state sp. Hence, for every p ∈ dom(a), sp enables a (i.e., a can be fired from
sp), and because AA is locally enabled, there exists s′ with s a−→ s′, which proves
(AC3).

3.6 Corollaries
In many (but not all) cases, there is an automaton for L satisfying (ACi) as soon as L is
(LCi), for i = 1, 2, 3. We first consider the cases where all states are final (see [22]), in which
case (LC2) and (AC2) are not useful: The first corollary follows directly by removing (LC2)
and (AC2) from Theorem 11, and hence we just state it in full below.

I Corollary 16. Let L be a regular language. Then, the following are equivalent:

1. There exists a (sequential,finite) deterministic diamond automaton A = (C,→, In,Fin)
such that every state is reachable from In and every state can reach Fin, with L(A) = L,
and satisfying (AC1) and (AC3).

2. L satisfies (LC1) and (LC3) and is closed under commutation.
3. There exists a deterministic, deadend-free, locally enabled asynchronous automaton AA

with L(AA) = L, and AA has at most as many states as the asynchronous automaton
obtained by applying [8] to the minimal deterministic (sequential) automaton accepting L.

The following results are useful in section 4 to test if a given asynchronous automaton is
realistic, that is, for testing if each of the conditions (LC1),(LC2),(LC3) hold. The following
corollary does not follow immediately from what we proved earlier, since it states that we
can choose A to be the minimal deterministic automaton. Hence, we state this result in full
and also provide an explicit proof.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 11–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Corollary 17. Let L be a regular language. Then, the following are equivalent:

1. The minimal (sequential, finite) deterministic diamond automaton A = (C,→, In,Fin)
of L satisfies (AC1).

2. L satisfies (LC1) and is closed under commutation.
3. There exists a deterministic, deadend-free asynchronous automaton AA with L(AA) = L,

and AA has at most as many states as the asynchronous automaton obtained by applying
[8] to the minimal deterministic (sequential) automaton accepting L.

Proof. [of Corollary 17] (1) =⇒ (2) ⇐⇒ (3) follows from the proof of Theorem 11.
We finish the proof by proving (2) =⇒ (1), that is, for L a regular language closed by
commutation satisfying (LC1) and A be the minimal deterministic automaton with L(A) =
L, we have that A satisfies (AC1).

Let s, s′, t′ be three states such that s a−→ s′ and s b−→ t′ with (a, b) ∈ I. Further let v
be any word such that s0

v−→ s (for initial state s0) and w,w′ words such that s′ w−→ r and
t′

w′

−→ r′ with r, r′ ∈ F . All three words exist by minimality of A. Then vaw, vbw′ ∈ L(A),
and so, by (LC1), vab ∈ pref(L(A)). That is, there exists a word u with vabu ∈ L(A). Now
since A is deterministic, we have the existence of t such that s′ b−→ t. Further, as L(A)
is closed by commutation, we also have vbau ∈ L(A), and thus there exists a state t with
t′

a−→ t. But now, by the minimality of A, it follows that t = t. To see this, note that for
all words u such that vabu ∈ L(A), we also have vbau ∈ L(A). This implies that t and t

are “equivalent” with respect to the language accepted, and hence in the (unique) minimal
automaton A, we have t = t.

�
In the proof of subsection 3.3, both (AC1) and (AC2) are used to prove (LC2). How-

ever, if deadends are allowed, one can alternatively use only (AC2) to prove (LC2) if the
deterministic (sequential) automaton A = (C,→, In,Fin) is complete. We state and prove
this result below.

I Corollary 18. Let L be a regular language. Then, the following are equivalent:
1. There exists a deterministic diamond complete automaton A = (C,→, In,Fin) with
L(A) = L satisfying (AC2).

2. L satisfies (LC2) and is closed under commutation.
3. There exists a deterministic (locally enabled) asynchronous automaton AA with local

final states and L(AA) = L. Also, if |S| is the number of states of the AA obtained by
applying [8] to the minimal deterministic (sequential) automaton accepting L, then AA

has at most |S| − |P| states.

Proof. (2) =⇒ (3) =⇒ (1) follows from the proof of Theorem 11. We finish the
proof by proving (1) =⇒ (2), that is, for any complete diamond deterministic automaton
A satisfying (AC2), then L(A) is closed by commutation and satisfies (LC2).

Firstly, as L is diamond, we get that L(A) is closed by commutation. Then: Let w ∈ Σ∗
such that for all p ∈ P, there exists vp ∈ L(A) with viewp(vp) = viewp(w). As A is complete,
In w−→ s is defined. We let vp = viewp(vp)v′p and w = viewp(w)wp for all p ∈ P. We define

In viewp(vp)=viewp(w)−→ rp and rp
v′

p−→ tp. As vp ∈ L and A deterministic, we have that tp is
final. Also, we have rp wp−→ s. By (AC2), we thus have s ∈ F , that is, w ∈ L(A). This ends
the proof. �

Notice that the above corollary uses the fact that if deadends are allowed, then one can
always ensure that an asynchronous automaton is locally enabled, by adding a state on each

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 12–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

process which is a deadend. This fact also means that L satisfying (LC3) alone is not useful
in terms of asynchronous automata.

Finally, if we keep (LC1) and (LC2), we can again use the proofs of the previous section
to immediately conclude the following easy yet interesting corollary (when considering action
based controllers [11]):

I Corollary 19. Let L be a regular language. Then, the following are equivalent:

1. There exists a (sequential, finite) deterministic diamond automaton A = (C,→, In,Fin)
such that every state is reachable from In and every state can reach Fin, with L(A) = L,
and satisfying (AC1) and (AC2).

2. L satisfies (LC1) and (LC2) and is closed under commutation.
3. There exists a deterministic, deadend-free asynchronous automaton AA with local fi-

nal states and L(AA) = L, and AA has at most as many states as the asynchronous
automaton obtained by applying [8] to the minimal deterministic (sequential) automaton
accepting L.

4 Testing for Realistic Asynchronous Automata

We now explain how to check each property (LCi) and (ACi) for all i = 1, 2, 3.

Testing automata restrictions (ACi): Let A be an automaton, possibly non determ-
inistic. To test (AC1), for each state s we need to check if it has a pair of outgoing transitions
on actions that are independent, and if so, test for the existence of a common state that can
be reached, giving a complexity quadratic in the number of states and transitions of A.

To test (AC2), we perform one graph search (e.g. DFS) from each state s /∈ Fin and for

each process p ∈ P to compute the set Rsp of states r with r
w′

p−→ s for some w′p ∈ (Σ \Σp)∗.
This is a simple graph search in linear time, done on the graph with reverse edge and where
edges using letters of Σp have been deleted. Computing Rsp thus takes time linear in the
size of the graph. We then perform another graph search from Rsp to compute the set T sp of
final states t such that r wp−→ t, for some r ∈ Rsp and wp ∈ (Σ \Σp)∗. Now A does not satisfy
(AC2) iff ∃s,∀p, T sp 6= ∅. Hence, these two graphs search are applied |P| times (one for each
process) and |A| times (one for each state s). Overall, it takes time O(|P| · |A|2). The test
of (AC3) is similar, with the same complexity.

Testing language restrictions (LCi): We now describe how to test language restric-
tions. We assume that the language L to be tested is given as an automaton (possibly non
deterministic). First, using Corollary 17, one has a simple way to test for (LC1): compute
the minimal deterministic automaton A with L(A) = L, and test (AC1) using the polyno-
mial procedure given above at the beginning of the section. This gives a PSPACE algorithm.
The complexity is polynomial if the starting automaton is deterministic.

In order to test for (LC2), we use Corollary 18. Indeed, we build the asynchronous
automaton AA from A as if L(A) satisfies (LC2). This can only add executions to the
language, as final states are possibly added. Then we test whether L(AA) ⊆ L(A). If the
inclusion holds, then A satisfies (LC2), else A does not satisfy (LC2). This gives a PSPACE
algorithm. If P is not part of the input and A is deterministic, then it is polynomial time.
Notice that one cannot resort, as in the case of (LC1), to using the minimal automaton
associated to L. This minimal automaton may not necessarily satisfy (AC2), even if L
satisfies (LC2). For instance, consider the language L4 = {ε, a1, b1, a1b1, b1a1}∪{aibjc, bjaic |
i, j ∈ {1, 2}} with dom(ai) = p, dom(bi) = q for all i, j ∈ {1, 2} and dom(c) = {p, q}. There

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 13–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

is a state t in the minimal automaton with s0
a1−→ s

b2−→ t and s0
b1−→ s′

a2−→ t, with
s, s′ final, meaning if (AC2) holds that t is final, a contradiction. Finally, to test (LC3),
we again implement L into an AA and test if S(AA) satisfies (AC3). As described in
the proof of Theorem 11, if L(A) satisfies (LC3), then S(AA) satisfies (AC3). Conversely, if
S(AA) satisfies (AC3), the proof also shows that L(A) satisfies (LC3). This gives a PSPACE
algorithm. The complexity is polynomial if P is not part of the input and A is deterministic.

Note that while the algorithms to test for (LC1),(LC2),(LC3) may be PSPACE, they
are actually polynomial in the size of the asynchronous automaton AA we want to obtain.
As shown below, obtaining the global state space for AA is actually feasible in a number of
examples, and hence testing for (LC1), (LC2) and (LC3) is also doable in these cases.

5 Experiments
In this section, we report our experiments on the implementation of the results in this paper,
based on the construction from [8], which has not been implemented before. To give a
point of comparison, we also report results obtained using the only previous implementation
prototype for Zielonka constructions from [22], which implements the original synthesis
algorithms from [23] and the heuristic in [22].

We report below the results of several systems that are (distributively) implemented
using these three algorithms: We will denote by heuristic the heuristic from [22], by original
the original Zielonka’s construction from [23], and by local and global two different metrics
for our new implementation as described below. heuristic takes into account the structure of
the automaton (using ideas from the theory of regions [17]) to identify small asynchronous
automata before generating the whole global state space. Since such structural properties
cannot be found for every regular commutation-closed language, it uses the equivalence in
original as an upper bound. Hence, the state space produced by heuristic is never bigger than
the one of original. On the other hand, original uses a generic construction which always
produces an asynchronous automaton. In contrast to these two algorithms producing global
state spaces, our implementation produces the local state space directly. Further, ours
is an on-the-fly symbolic algorithm. As argued in [20], on-the-fly computation allows to
implement distributed algorithms whose global state space cannot be explicitly enumerated:
with 4 processes, the timestamping used in [23, 8] can give rises to 107 global states, and
to 1016 global states with 5 processes. But for symbolic algorithms (e.g., the one from [8]
that we implement), 5 processes means maintaining 128 bits of information, which can be
updated in time polynomial in the number of bits. To produce and compare the results of
all algorithms, we report global state spaces, thus limiting ourselves to less than 4 processes.

The results are compiled in the table below. The first column gives the names of the
input systems, while second and third provide their number of states |A| and processes |P |,
respectively. The fourth column states the syntactical properties (ACi) of the automaton A.
The next three columns give the number of global states produced by each of the algorithms.
As noted earlier, the new prototype does not need to compute the global state space, un-
like [22, 23]. The column local reports the total number of local states generated by our
algorithm, which is closer to what would be used in practice (but is still larger than what
is explored on-the-fly). The last row describes the properties (DF for deadend-free, LA for
locally accepting, LE for locally enabled, and R for realistic) of the obtained asynchronous
automaton using the new implementation, all being deterministic.

The first four systems come directly from distributed algorithms: a mutual exclusion
protocol with semaphores with 2 different distribution alphabets referred to as mutex-a
and mutex-b; a simple program with 3 processes denoted simple; and a dining philosopher

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 14–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

protocol phil. All these examples except simple, from [22], satisfy AC1,AC2,AC3.

|A| |P| satisfies heuristic original global local satisfies
mutex-a 13 3 (AC1,AC2,AC3) 13 1493 271 126 (R)
mutex-b 14 4 (AC1,AC2,AC3) 14 34 22 16 (R)
simple 3 3 (AC1,AC2) 5 12 12 9 (DF+LA)
phil 5 4 (AC1,AC2,AC3) 5 70 71 60 (R)
prop2 6 2 (AC2) 188 188 36 21 (LA+LE)
prop3 11 3 (AC2) 639 639 240 92 (LA+LE)
L4 8 2 (AC1,AC3) + (LC2) N/A 10 10 5 (R)

For these first 4 systems, the new prototype gives an implementation with lesser states
than original (up to 10 times), although not as good as heuristic. Adapting ideas from
heuristic [22] might reduce the size of the produced implementation. The two systems
propN correspond to a distributed supervisor which detects whether a critical section has
been accessed by 2 processes in parallel among N processes. On each process, it observes
entry and exit of the critical section and synchronization between processes, and detects
if a process which enters the critical section has been informed that other processes have
exited it. This supervisor works on any possible (correct or not) mutual exclusion protocol,
and detects on-the-fly whether the critical section was accessed by 2 processes concurrently.
On this example, heuristic does not do better than original. The number of local states
is around 8 times smaller, while global states are around 4 times smaller than previous
implementations. As (LC1) does not hold, a realistic implementation is not possible here.

Notice that heuristic is guaranteed to return correct results only when all states are
final [22], which is the case for the first 6 systems. The last system we experiment on is
the minimal automaton L4 for language L4 from the previous section (L4 does not satisfy
(AC2), although L4 satisfies (LC2)). Some states of this automaton are not final and the
implementation created by heuristic is incorrect: its language is strictly larger than L4. On
the other hand, implementations produced by original and the new prototype accept exactly
L4. Details on the experiments can be found online at: http://is.gd/fsttcs13_benchmark.

6 Related Work and Conclusion

In this paper, we have provided syntactical and semantical characterizations of languages cor-
responding to several variants of realistic asynchronous automata. We designed algorithms
to obtain the distributed implementation, test for the different characterizations and showed
their experimental effectiveness. Our results subsume past results and answer several open
questions. Corollary 17 subsumes what was claimed in [17] and proved in [22] (Theorem
2) in the subcase where the language is prefix closed. It is also worth mentioning that [1]
had introduced the notion of causal closure for Message Sequence Graphs, which are a dis-
tributed model using message passing for communication. Our notion of causal closure is
directly adapted from theirs. However, unlike in Corollary 18, only one direction was proved
for their model. Also, they lack the syntactical characterization using (AC2) which holds
by Theorem 11. Also, Corollary 18 answers an open question in the conclusion of [2].

As future work, it would be interesting to consider alternative ways of inputing the
language, e.g., by giving a set of representatives to represent the language. This would avoid
starting from a large automaton, and may lead to a smaller distributed implementation.

Acknowledgments: This work was supported by Romanian NASR project PN-II-ID-PCE-
2011-3-0688 (MuVeT), INRIA Associated team DISTOL and DST/INSPIRE faculty award
[IFA12-MA-17].

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 15–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://is.gd/fsttcs13_benchmark
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

References
1 B. Adsul, M. Mukund, K. Narayan Kumar and V. Narayanan. Causal closure for MSC

languages. Proc. of FSTTCS’05, LNCS 3821, pp. 335-347, 2005.
2 N. Baudru. Compositional synthesis of asynchronous automata Theor. Comput. Sci.,

412(29):3701-3716, 2011.
3 B. Bollig, J.-P. Katoen, C. Kern and M. Leucker. Learning Communicating Automata from

MSCs. IEEE Trans. Software Eng. 36(3):390-408, 2010.
4 N. Baudru and R. Morin. Unfolding Synthesis of Asynchronous Automata. Proc. of CSR’06,

LNCS 3967, pp. 46-57, 2006.
5 N. Baudru and R. Morin. Synthesis of Safe Message-Passing Systems. Proc. of FSTTCS’07,

LNCS 4855, pp. 277-289, 2007.
6 R. Cori, Y. Métivier and W. Zielonka. Asynchronous Mappings and Asynchronous Cellular

Automata. Inf. and Comput., 106(2):159-202, 1993.
7 V. Diekert and G. Rozenberg, editors. The Book of Traces. In particular, Chapter 8 by

V. Diekert and A. Muscholl. World Scientific, Singapore, 1995.
8 B. Genest, H. Gimbert, A. Muscholl and I. Walukiewicz. Optimal Zielonka-like Construc-

tion. Proc. of ICALP’10, LNCS 6199, pp. 52-63, 2010.
9 B. Genest, H. Gimbert, A. Muscholl, I. Walukiewicz. Asynchronous Games over Tree

Architectures. Proc. of ICALP’13, LNCS 7966, pp. 275-286, 2013.
10 B. Genest, D. Kuske and A. Muscholl. A Kleene Theorem and Model Checking for a Class

of Communicating Automata. Inf. and Comput.204(6):920-956, 2006.
11 P. Gastin, B. Lerman and M. Zeitoun. Distributed Games with Causal Memory Are De-

cidable for Series-Parallel Systems. Proc. of FSTTCS’04, LNCS 3328, 2004.
12 B. Genest and A. Muscholl. Constructing Exponential-size Deterministic Zielonka Auto-

mata. Proc. of ICALP’06, LNCS 4051, pp. 565-576, 2006.
13 J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P. S. Thiagarajan. A

Theory of Regular MSC Languages. In Inf. and Comput. 202(1):1-38, 2005.
14 N. Klarlund, M. Mukund and M. Sohoni. Determinizing Asynchronous Automata. Proc. of

ICALP’94, LNCS 820, pp. 130-141, 1994.
15 D. Kuske. Regular sets of infinite message sequence charts. In Inf. and Comput., 187(1):80-

109, 2003.
16 A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical report,

DAIMI Report PB-78, Aarhus University, 1977.
17 M. Mukund. From global specification to local implementations. In Synthesis and Control

of Discrete Event Systems, Kluwer, pp. 19-34, 2002.
18 S. Krishna and A. Muscholl. A quadratic construction for Zielonka automata with acyclic

communication structure. In TCS, 503: 109-114, 2013.
19 M. Mukund, K. Narayan Kumar and M. Sohoni. Synthesizing Distributed Finite-State

Systems from MSCs. TCS 290(1):221-239, 2003.
20 M. Mukund and M. Sohoni. Keeping Track of the Latest Gossip in a Distributed System.

In Distr. Computing 10(3):137-148, 1997.
21 G. Pighizzini. Synthesis of Nondeterministic Asynchronous Automata. In Algebra, Logic

and Applications 5, pp. 109-126, 1993.
22 A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms using

asynchronous automata. Proc. of CONCUR’03, LNCS 2761, pp. 27-41, 2003.
23 W. Zielonka. Notes on finite asynchronous automata. In R.A.I.R.O. - Informatique

Théorique et Applications, 21:99-135, 1987.
24 W. Zielonka. Safe Executions of Recognizable Trace Languages by Asynchronous Auto-

mata. Proc. of Logic at Botik 1989, LNCS 363, pp. 278-289, 1989.

© S. Akshay, Ionut Dinca, Blaise Genest and Alin Stefanescu;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Anil Seth, Nisheeth Vishnoi - Bill Editors; pp. 16–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Realistic Asynchronous Automata
	Survey of the different constructions

	Obtaining Realistic Asynchronous Automata
	A Theoretical Characterization of Realistic AA
	Proof of Theorem 11
	From (AC1,AC2,AC3) to (LC1,LC2,LC3): Theorem 11(1 -3mu2)
	From (LC1,LC2,LC3) to realistic AA: Theorem 11 (2 -3mu3)
	From realistic AA to (AC1,AC2,AC3): Theorem 11 (3 -3mu1)
	Corollaries

	Testing for Realistic Asynchronous Automata
	Experiments
	Related Work and Conclusion

