
Theorctkal Computer Science 71 (13Yu) i5.b153
North-Hollam!

133

SOME BEHAVIOURAL ASPECTS OF NET THEORY

P.S. THIAGARAJAN

The Insrirute of Marhematical Sciences, Madras 600 113, India

0. Introduction

Net theory was initiated by C.A. Petri in the early 60s [29]. The subject matter

of tne theory is distributed systems and processes. The key aspect of net theory is

that the three fundamental relationships that can exist between the occurrences of

a pair of actions at a state are clearly separated from each other at all levels of the

theory. These three relationships are

(i) at the state s, the action az can occur only after the action a, has occurred

(causality);

(ii) a, can occur or a2 can occur at s but not both (conflict, choice, indeter-
minacy);

(iii) at the state s both a, and az can occur but with no order over their occurrences

(concurrency).

Another important feature of net theory is that states and changes-of-states (called

transitions) are viewed as two intertwined but distinct entities; they are treated on

an “equal” footing by the theory.

Over the years net theory has evolved along many directions. It is difficult to give

an overview of the whole theory in one place. Hence we shall attempt to do something

more modest here. We shall first convey the basic concerns of net theory by presenting

a simple system model called elementary net systems. Then we shall give a brief

sketch of some of the tools that have been proposed to describe the behuuiour of

elementary net systems. We shall concentrate on those tools that have either directly

come out of net theory or which have been prodded into existence by the insistence

of net theory that causality, conflict and concurrency should be clearly separated
from each other in behavioural descriptions of distributed systems.

In our presentation we will concentrate on motivations and basic definitions at

the expense of stating theorems. The fe-v results that we present are stated without

proofs. The proofs can be found in [26]. We shall however leave a trail of pointers

to the literature, using which the interested reader can get a reasonable overview

of net theory and related topics.
In the next section the elementary net system model is presented. Using this model

we then define the basic concepts of net theory. This sets the stage for developing

the behavioural tools that can capture the essential features of distributed systems

0304-3975/90/%3.50 @ 1990, Elsevier Science Publishers B.V. (North-Holland)

134 P.S. 7hiaqarajan

as defined by the elementary net system model. Section 2 develops some notation

and introduces a purely sequential mode of behavioursl description called firing

sequences. In the subsequent section the theory of traces which have an independent

existence is used to recover information concerning concurrency from the firing

sequences. In Section 4 the notion of nonsequential processes is introduced. Non-

sequential processes are a behavioural tool developed within net theory to describe

the nonsequential stretches of behaviour of an elementary net system.
Both trace theory and the theory of nonsequential processes represent concurrency

directly but handle information concerning conflict in an indirect fashion. One must

work with the whole set of traces or nonsequential processes in order to talk about

conflicts. This disadvantage can be overcome with the help of behavioural tools

called unfoldings and labelled event structures that are presented in Section 5. The

unfolding of an elementary net system is a single object in which all the basic

behavioural features of the system are represented in a transparent fashion. Labelled
event structures are direct descendants of unfoldings and they are more pleasing

mathematical objects.

1. Elementary net systems

Elementary net systems, as the name suggests, are meant to be the simplest system

model of net theory. They may be viewed as transition systems obeying a particular

principle of change. This view of elementary net systems is explained in more detail

in [36]. Here, for the sake of brevity, we shall make a direct presentation.

Definition 1.1. A net is a triple N = (S, T, F) where S and T are sets and Fc_

(SxT)u(TxS) is such that

(i) Sn T=B
(ii) domain(F) u range(F) = S u T where

domain(F) = {x I3y.(x, y) E F} and

range(F) = {y 13x.(x, y) E F}.

Thus a net may be viewed as a directed bipartite graph with no isolated elements.

Note that we admit the empty net Nti = (0,0,0).
S is the se! of S-elements, T is the set of T-elements and F is the flow relation of

the net N = (S, T, F). In diagrams the S-elements will be drawn as circles, the

T-elements as boxes and the elements of the flow relation as directed arcs. An

example of a net is shown in Fig. 1.

In this paper, unless otherwise stated, the S-elements will be used to denote the

local atomic states called conditions and the T-elements will be used to denote local

atomic changes-of-states called events. The flow relation will model a fixed neigh-
bourhood relation between the conditions and events of a system. Following usual

135

Fig. 1.

practice, we shall represent such nets of conditions and events by triples of the form

N=(B, E, F).

Let N = (B, E, F) be a net. Then XN = B u E is the set of elements of N. Let

x E XN. Then

‘x = {y 1 (y, x) E F} (the set of pre-elements of x),

x* = {y ((x, y) E F} (the set of post-elemenrs of x).

This “dot” notation is extended to subsets of XN in the obvious way. For e E E we

shall call ‘e the set of pre-condirions of e and we shall call e’ the set of posr-condirions

of e.

Definition 1.2. An elementary net sysrem is a quadruple X = (B, E, F, q.) where

(i) IV,. = (B, E, F) is a net called the underlying net of .K
(ii) qns B is the initial case of JK

In diagrams the initial case will be shown by “marking” the members of Ci,. In

Fig. 2 is an example of an elementary net system. Through the rest of the paper we

shall refer to this net system as Nz_

In most of what follows, we will only deal with elementary net systems. Hence

we will refer to them as net systeins. The dynamics of a net system are simple. A

state (usually called a case) of the system consists of a set of conditions holding
concurrently. An event can occur at a case iff all its preconditions and none of its

post-conditions hold at the case. When an event occurs each of its preconditions

ceases to hold and each of its post-conditions begins to hold. This simple and

restrictive notion of states and changes-of-states leads to a surprisingly rich and

sophisticated class of objects. Indeed one of our aims here is to convince the reader

that the essential features of distributed systems can be isolated and studied using

net systems. First however we must formalize the dynamics of net systems.
Let N = (B, E, F) be a net. Then -, N E 2” x E x 28 is the (elemenrary) rransirion

relation generared by N and is given by

-+N ={(ke,k’)lk-k’=‘enk’-k=e’}

136

Fig. 2.

Definition 1.3. Let X = (B, E, F, tin) be a net system.

(i) C.,-, rhe state space of&” is the least subset of 2’ containing 4” such that if

CE C.,. and (c, e, c’)E-,.,, then C’E C.,..

(ii) TS,. = (C,-, E, *.,.) is rhe transition system associated with X where -*.,. is

+N., restricted to C.,. x E x C.,..

For the system NT shown in Fig. 2, {{b, , b2}, {b, , b4}, {b2, b3}, { b3, b4}} is its state

space. We recall that a transition system is a triple TS = (S, A, +) where S is a set

of states, A is a set of actions and ---, C_ S x A x S is the (labelled) transition relation.

According to the above definition there is a natural way of explaining the dynamics

of a net system with the help of a transition system. We are now in a position to

bring out the particular and restricted notion of change adopted in net theory.
Before doing so it will be convenient to adopt some notations.

Let X = (B, E, F, q,) be a net system, c E C.,. and e E E. Then e is said to be enubled

at c-denoted c[e)-iff there exists C’E C.,, such that (c, e, c’) E +.,.. We shall often

write c 4 c’ in place of (c, e, c’) E +.,..

Proposition 1.4. Let X = (B, E, F, q,) be a nef system, e E E and c, c’, c, , etc. members

of C.,.. Then rhe following statements hold:

(8 c,-&hc$cCq j c,-c2=cJ-c.,I\c2-c,=cJ-cj,

(ii) c[e) e ‘erche’nc=@,

(iii) c : c’ /j c 5 c” 3 c’ = c”.

(i) says that an event causes the same change in the system state whenever it

occurs; its preconditions cease to hold and its post-conditions begin to hold.
(ii) says that an event is enabled at a case if and only if the fixed change associated

with its occurrence is possible at the case. Thus no “side-conditions” are involved

in the enabling of an event. Net systems are in this sense ctean flow models with

the result that they are amenable to analysis using the basic techniques of linear

algebra [22].

(iii) says that the transition systems associated with net systems are dererminisric.

Hence in order to connect up with other approaches to the theory of distributed

systems such as CCS [25] or C ST [I61 one must go over IO ~?&ii,r.< net systems.

When one does so, it is possible to give an operational semantics for CCS-like

processes in terms of labelled net systems. The interested reader can consult [S, 281.

Here we wish to emphasize that in net theory, the act of lobelling is considered

to be a step towards abstraction. Stated differently, the theory provides for and

indeed starts at a primitive level of system modelling where the “bare skeleton” of

a distributed system is described and studied. The advantage of starting this way is

that the basic concepts concerning the behaviour of distributed systems can be

captured-and separated from each other -in a clean way as we shall now see.

Through the rest of this section we fix a net system .,li’= (B, E, F, ci”). We let

e, e’, e, , ez range over E, c, c’, c”, cl, c2 and c, range over C,,-.

Let e, f e2. We say that e, and e3 can occur concurrenfl~~ at c-denoted c[{ e, , e?})-

iff c[e,) and c[e,) and (‘e, u e;) A (‘ezu ei) = 0.

Thus e, and e, can occur concurrently at a case iff they can occur individually

and their “neighbourhoods” are disjoint. When we say that e, and e, can occur

concurrently, what we mean is that they can occur with no order over :heir occurren-
ces. Hence net systems can in general display nonsequential patterns of behaviour.

For the system .,V*, at the initial case e, and e3 can occur concurrently. This notion

of concurrency between a pair of event occurrences can be extended to a set of

events in an obvious way. One then obtains the notion of a srep and indeed one

can define a transition relation between cases based on the notion of steps (see [36]).

Concurrency as defined above at once gives rise to the notion of conflict.

Let e, # e?. e, and ez are said to be in conjlicr at c iff c[e,) and c[e>) but nor

(c[{e,, eJ>).
For the system X1, at the initial case e, and e, (as well as ez and eJ are in conflict.

If two events are in conflict at a case then either one of them may occur but not

both. Thus net systems can display indeterminate behaviours. Conflict situations

can be used to model the flow of information between a system and its environment.

Wherein conflict and concurrency “cverlap” there can be uncertainty regarding

information flow. This situation is known as confusion. Before formalizing the
notion of confusion, let us consider two examples.

For the system JV*, let c = {b,, b2}, c’ = (b3, b4}. It is clear that e, and e3 can occur

concurrently at c to lead the system from c to c’. Two sequential observers reporting

on this transformation could claim the following.

Observer 0,: The conflict between e, and e, at c was resolved in favour of e,

which then occurred to lead the system to the state cl ‘= {b,, b,}. At cl, the event ez

occurred without being in conflict with any event and this led the system to the

state c’.

138 P.S. 7Gagarajun

Obscver O?: Thr: ccnf!ic! between e, and e3 at c was resolved in favour of e3

which then occurred to lead the system to the state cJ = {b, , h,}. At c3, the event e,

occurred without being in conflict with any event and this !ed the system to the

state c’.
Thus the confusion here is over which conflict was resolved in going from c to

c’. This type of confusion is often referred to as symmerric confusion. In Fig. 3 a

different kind of confusion is shown often referred to as asymmetric conjusion.

Fig. 3.

Let c = {b,, b,} and c’ = {b, , b4}. Clearly e3 and e, can occur concurrently at c to

lead the system from c to c’. The confusion here is regarding whether or not a conflict

(between e2 and e,) was resolved in p6ng from c to c’. The observer who records

the occurrence of e, first will claim that a conflict was resolved whereas the observer
who records the occurrence of e3 first will claim that no conflict was resolved. In

general, confusion can be a mixture of both types of confusion outlined above and

the general definition is as follows.

Let c[e). Then

cfl(e, c) = {e’l e and e’ are in conflict at c}

We say that (c, e, , e2) is a confusion iff

(i) c[{e,, e&,
(ii) cfl(e,,c)#cf(e,, c2) where c4 c2.
It seems safe to assert that distributed systems are difficult to implement and

analyze mainly because of the problem of confusion. Net theory provides some
strong positive evidence in support of this claim. It turns out that systems that are

confusion-free admit a nice theory. More precisely one can identify a large subclass
of confusion-free net systems by placing a simple restriction on the underlying nets.
And this subclass has a nice theory. In fact we can identify subclasses of sequential

(concurrency-free), deferminafe (conflict-free) and confusion-free net systems by

requiring the underlying nets to be S-graphs, T-graphs and Free-choice nets respec-

tively. Actually, in the case of a sequential sys;em one must require the underlying

S-graph to be connected and one must aiso r&quire that exactly one condition holds

at the initial case. Here are the deiinitions of the three net classes.

(1) AnS-gruphisanet N=(B,E,F)suchthatVe~E.I’sl=I=[e’l.

(2) A T-graph is a net N = (B, E, F) such that Vb E B. I’bl = I = Ib’l.
(3) A Free-choice net is a net N = (B, E, F) such that Vb E B. Ve E E. (b, e) E F+

b’={e}v{b}=‘e.

It is easy to check that every S-graph as well as every T-graph is a Free-choice

net but the converse is not true in general. Clearly, not every S-graph (T-graph) is

a T-graph (S-graph). In Fig. 4 examples are shown of net systems based on the

three kinds of nets. The interested reader can verify that the system shown in Fig.

4(a) (Fig. 4(b), (cjj exhibits no concurrency (no conflict, no confusion) within its

state space.

Fig. 4.

Net systems based on S-graphs essentially correspond to sequential state machines.

Net systems based on T-graphs are known- in a larger context-as marked graphs

and their theory is very well understood [7,12,20]. What is surprising is that

net-systems-based Free-choice nets also admit a beautifu! theory [15,381. Thus net
theory suggests that it is not the combination of concurrency and conflicts as such

that causes problems. It is only when these two phenomena combine to produce

confusion that life becomes difficult.

Before concluding this section we wish to point out that the elementary net system

model can be generalized in a variety of ways. One obvious and popular generaliz-

ation leads to a model known as Petri nets but which we prefer to called marked nets.

Let N = (S, T, F) be a net. Then a marking of N is a function M : S + N,

(={O, 1,2,. . . 1). The transition r E T is enabled to occur at the marking M-denoted

M[r)-iff Vs E ‘r. M(s) > 0. When the enabled transition t occurs at the marking

140 P.S. 77ziagamjan

M, a new narking M’ is obtained which is given by

r

M(s)-1 if sE’t-r’,

VIES. M’(s)= M(s)+1 if sEt’--‘f,

M(s) otherwise.

The transformation of M into M’ by the occurrence of t at M is denoted as

M[t)M’. A marked net is then defined to be a quadruple MN = (S, T, F, Mi”) where
NMN = (S, T, F) is a net called the I;nder!ying net of MN and AIi, is a marking of

N,,,,,, called the initial marking of MN. The state space of MN-denoted [Mi,)-also

referred to as the set of reachable markings of MN is the least set of markings of

N,v,N containing Mi” such that if M E [MiJ, t E T and M’ is a marking of N,, such

that M[t)M’, then M’E [MiJ.
A slight generalization of marked nets were independently discovered as vecror

addition sysrems in [21]. Over the years a number of interesting and difficult decision
problems concerning marked nets have been studied and solved (see [17] for a

limited overview of this topic). Marked nets also have some interesting connections

to formal language theory [18].

A second generalization of elementary net systems which is more vital from a

practical standpoint was first achieved by Genrich and Lautenbach [131. The idea

is quite simple. Let JV = (B, E, F, Ci”) be an elementary net system. Then B can be

viewed as a set of atomic propositions and each c E C.,- can be viewed as a boolean
valuation of B. An event then transforms one boolean valuation in C_,- into another

subject to certain restrictions determined by F, the flow relation. We can now

generalize by replacing B by a set of predicate symbols l? Instead of Cc, we identify

the state space to be a set p of (set-theoretic) structures for P with respect to a

chosen domain D of individuals. An event then transforms one sructure in p into

another subject to certain restrictions imposed by the flow relation F. What one

then obtains is a first-order net system which is very rich in expressive power. The
model can be made more useful by exploiting the standard notions of first-order

logic such as function symbols, constants and individual variables.

The notion of an event however is kept the “same” so that a first-order version

of Proposition 1.4 goes through smoothly. As a result, we once again obtain a clean

flow model and the tools of linear algeara become available for analysis. First-order

net systems come in different forms. The two most well-known versions are known

as Predicate/ Trunsirion nets [1 l] and coloured Petri nets [191. These models play a
crucial role in the applications of net theory [5].

2. The behaviour of net systems: preliminaries

We now wish to survey the concepts and techniques that have been proposed in

and around net theory to study the behaviour of distributed systems. We shall do
so by providing various answers to the question: What is the behaviour of a net

system?

The most primitive behavioural representation is calle-! firing sequences. Here

the net system is viewed as generating a set of strings over the events of the system.
All information concerning condition-holdings is thrown away. This is a desirable

feature in that the states are after all abstract entities whose only role is to “imple-

ment” the intended pattern of event occurrences. However, we will show that treating

the condition-holdings O&I par with event occurrences can lead to a number of useful

intermediate behavioural representations that are of independent interest. Returning
to -Sting sequences, what they convey is the mere causai ordering over the -event

occurrences; all information concerning concurrency and conflict(-resolution) is

“lost”. The various other behavioural tools we shall present cdn be seen as an

attempt to recover this information either partiaiiy or completely. Now for some

preliminaries.

We fix a net system .v;,= (B,, &, fi,, 4 for the rest of this section and through

the next three sections (up to Section 5). We let b, b’, b” with or without subscripts
range over DO. We let e, e’, e” with or without subscripts range over EO. We let

c, c’, c” with or without subscripts range over C.,, which we shall write, for con-

venience, as CO.

In dealing with sequences we shall adopt the following conventions. Given a set

of symbols 2, we let E* dent ti: the free monoid generated by 2. The null sequence

will be represented as A. If p is a sequence of symbols and x is a symbol, then

#,(p) is the number of times x appears in p.
We will also have to deal with labelled posets. Let 2 be a nonempty alphabet

set. Then a H-labelled poset is a triple TT = (X, S, cp) where (X, G) is a poset and

(p : X + 2 is a labeling function.

Let n=(X,S, cp) be a finite 2-labelled poset. In other words, T is such that X

is a finite set. Then lo(~) (the set of unlabelled linear orders of P) is the subset of

X* is defined as follows: p E lo(~) iff the following conditions are satisfied:

(i) WxE X. #,(p) = 1;
(ii) Vx,yEX. Vp’EPrefix(p)[xSy*#,.(p’) S’#,(p)].

Prefix(p) is the set of prefixes of p and G’ is the usual ordering over the integers.

Consider the .Z:-labelled poset ?I, =(X,, s,, cp,) (with t: = {a, b}) whose Hasse

diagram is shown in Fig. 5.

x3 b

I x1 = cl
a x

2

Fig. 5.

We have indicated cpI by writing q,(x) inside the diagram representing x. We will

follow this convention through the rest of the paper. It is easy to check that

Io(7r,)=(x,xx xxx xxx} 2 3, I 3 29 2 I 3 -

142 P.S. Thiagarqkm

For 2 iabelled poset rr = (X, C, cp) we now define LO(r) (the se: of labelled

linear orders of r) as:

Here we have denoted, by abuse of notation, the natural extension of cp to X*

also as Q. For the poset r,, of Fig. 5, we then have LO(7r,) = {aab, abu}.

We can now introduce the first and the most primitive of our behavioural tools.

Actually I&., the transition system associated with X can also be viewed as a
representation of the behaviour of N. We can however afford to ignore this, given

our present aims.

The set ofjring sequences of NO- denoted F&-is the least subset of E,* (recall

that N,,= (B,,, E,, F,, co)) given by

(i) A E FS,, and cJA)c,;

(ii) suppose p E FSO, c&)c and c a c’; then pe E FS, and c,[pe)c’.

Thus [) is the obvious “extension*’ of *., to {co} x E,* x CO.

For the system Nz, ele4el and e3ele5 are firing sequences. As mentioned earlier,

firing sequences “hide” information concerning concurrency and conflict-resolution.

We will now see how the theory of traces cau be applied to extract information

concerning concurrency from the firing sequences.

3. Traces

The theory of traces was introduced by Mazurkiewin [23] to model the non-

sequential behaviour of distributed programs. The basic idea is to postulate an

independence relation over the letters of an alphabet. The members of the alphabet

represent the actions that can be executed by a program. Two actions that are in

the independence relation are supposed to occur concurrently whenever they occur

“adjacent” to each other. This induces an equivalence relation over the language

which is a sequential description of the behaviour of the program.

Definition 3.1. (i) A concurrent alphaber is a pair 2 = (2, I) where t: is a nonempty

alphabet set and I c 2 x P is an irreflexive and symmetric independence relarion.

(ii) Let p, P’E P*. Then p -“,p’iffthereexistp,,pz~E*and(o,b)~Isuchthat

p=p,abpz and p’=p,bap,.
(iii) 5, =deF(A,)*_

It is easy to check that -I as defined above is an equivalence relation. (In fact

it is a congruence.) For p E H* we denote by [p], the equivalence class of strings

containing p; we call it a truce. In other words, [p], = { p’J p -, p’}. Where I is clear

from the context we will write [p] instead of [p],. The set of truces over E* generated

by the concurrent alphabet Z = (Z, I) is given by

P/- I ={[PllPE~*l.
A trace language over the concurrent alphabet Z = (2, I) is simply a subset of z*/ - ,.

A good deal of effort has gone into the study of trace languages. A survey cf the

major results in this area can be found in [11. A nice appiication ;f trace theory to

the theory of net systems is presented in [24]. In the recent past, trace languages

have also been studied from the standpoint of formal languages. In such studies

the term “partially commutative monoids” is used instead of “trace languages” [6].

Pomsets, which are basically labelled posets can be viewed as a generalization of

traces. Pomsets form the basis of a theory of’ distributed systems which is under

construction by Pratt [32].
Returning to our main concern, a simple but crucial observation concerning traces

is the following.

Proposition 3.2. Ler Z = (S, I) De a concuriwt alphabet and t E Z*/--,. nten there

is a unique (upto isomorphism) Clabelled poset T = (X, S, cp) such that LO(r) = t

and tlx,y~X. cp(x)=~(y)~x~_rvy~x.

Actually this result can be stated in a more precise form but we will not pause

to do so here. The idea should be clear and we wiii pioceed to consider an example.

Let E={a, 6,~) and I ={(a, b), (b,a), (6, c), (c, b)}. Then {abc, bac,acb} is a

trace and it is represented by the E-labelled poset shown in Fig. 6.

0
b

Fig. 6.

We shall introduce one more notion before we relate tract theory to net systems.

Let 2 = (2, I) be a concurrent alphabet and let L c 2* be a (sequential) language.

Then L is consistent with I iff Vp E L. [p] c L.

Suppose 2 = {a, b} and I = {(a, b), (b, a)}. Then clearly L = {ab} is not consistent

with I.

Definition 3.3. (i) 2, = (&, IO) is the concurrent alphabet of .N; = (&, E,, F,, co)

where

(ii) The trace language of x,,-denoted by 7”-is

144 P.S. ??Cngarujcn

PtopsE%n 3.4. FS, is consistent with IO.

It is easy to check that I,, as specified in Definition 3.3 is irreflexive and symmetric

so that Z, is indeed a concurrent alphabet. For the net system JV? its independence

relation, dencted as I*, is given by

4={(cr, 4, (e3, e,), (cd, e,), (e,, e,), (c,, 4, (e5, e,), (e4, e,), (e,, c4)).

!e,e,e,e,, e2e4e5e,, e2e5e4e,} is a member of T,.,. The labelled poset representation

of this trace is shown in Fig. 7. As seen in this diagram, the trace theory formalism

enables us to reconstruct information concerning concurrency from the firing sequen-

ces of NO via the independence relation IO. It is important to note that IO depends

purely on the underlying net of NO.

It turns out that 7;: also contains information regarding conflict resolution. To

extract this, we need an ordering relation over T’. Let I,, f2 E To. Then
def

t, E” 12 -3 vp E t,. 3p’c 12. p =G p’.

Here =G stands for the usual prefix ordering over E$. It is straightforward to

verify that E” is a partial ordering relation. In Fig. 8 we show an initial fragment

of the poset (of traces) for the system .N2. For convenience, erch trace has been

specified by a representative member of the trace.

Fig. 7.

bei] [e2e4eS] [ele3e6]

WI
Fig. 8.

Let t,, t,E T,,. Then we say that t, and I, are compatible-and this is denoted

t, f r2-if there exists a t E T,, such that t, c,, t and t2 G,, t. We shall write t, 7 t2 to

denote the fact that t, and tz are nor compatible.

We claim that the relation t reflects all information concerning conflicts and their

resolution. To substantiate this claim however, we must wait until event structures

have been introduced. Here we shall only indicate that the relation t carries some

information concerning conflict.

Proposition 3.5. Let :! , :2 E T,,. Then i, t t2 if (here exist p E FS,, and e, , e, E E,, such

that the ,foilowing conditiom ore fuljilled :

(9 pe, , pe E FS,,;
(ii) [pe,] E,, f, and [pe?] E,, tL;

(iii) e, and e2 arc in conflict at c where c,,[p)c.

We propose that the poset (70, Q is a behavioural representation of A;, which
captures all the features of causality, concurrency and conflict that arise during the

history of Ai. Our next task will be to obtain an alternative representation which

is quite different in spirit but which will “agree” with the information provided by

(T&G).

4. Nonsequential processes

Petri suggested that certain kinds of labelled nets called nonsequential processes

should be used to describe the behaviour of net systems [30]. Before presenting this

idea, we need to impose a restriction on net systems.

The net system JY= (I?, E, F, Ci,) is said to be contacrTfree iff

VcEC,.VeEE. [‘esc 3 e’nc=8].

We will assume the generic net system .M,, whose behaviour is under study to be
contact-free. This does not involve any loss of generality. It turns out that every net

system X can be converted into a contact-free net system A” such that X and ..V’

are “behaviourally equivalent” in a strong sense. The interested reader is referred

to [33] for details. Here we shall illustrate the principle with the help of an example.

In Fig. 9 we show a net system (which is not contact-free) and its contact-free

equivalent.
Note that in a contact-free net system an event is enabled at a case iff all its

preconditions hold. Similarly, the definitions of concurrency, conflict and confusion

become much simpler and more intuitively appealing in the absence of contact.

Clearly, the system Af2 is contact-free.
Next we need the notion of a labelled net.

A Zlabelled net is a quadruple N = (II, E, F, cp) where (B, E, F) is a net and

Q : B v E + 2 is the labelling function.

146

bl

P.S. Thiagarajan

e1 e1 _

A nonsequential process of the net system JV~ will be an XJabelled net N =
(B, E, F, (p) in which F and cp are required to satisfy a number of requirements.
(Here X,, = &u I$,.) For instance, one requires F* to be a p.o. relation and one
demands cp(B) c_ I&, and cp(E) E Eo. For our purposes it will be convenient to
associate a nonsequential process with-each firing sequence. This will enable us to
build them up inductively. For a similar approach to the construction of processes,
see [4]. More, our method of construction will directly lead to yet another behavioural
representation called the unfolding. From now on we shall refer to nonsequential
processes as processes. An example of a process of JV* is shown in Fig. 10.

As already mentioned, for each firing sequence p of N0 we will construct an
X,,-labelled net N, = (IS,,, Ep, Fp, tp,,) and call it a process of No. Each member of
BP u E,, will be of the form (y, Y) with y E X0 and Y c_ B,, u E,. The labelling
function will be the obvious projection operator; for each (y, Y) E BP u E,, it will
be the case that qJ(y, Y)) =y. Hence in what follows we will suppress 9p.

The idea is that for each (b, X) E BP the set X will be a record of the unique
history of JV,, that led to this particular holding of b. Similarly, for (e, X) E E, the
set X will record the unique history that led to this particular enabling of e.

The construction of N, is by induction on Ip]. For convenience we will keep track
of the conditions that hold in J\rO after the run represented by the firing sequence
p This set of conditions will be encoded as c,,.

Fig. 10.

Some behavioural aspects of net theory 147

Definition 4.1. Let p E FS,,. Then N, = (BP, Ep, F,) is given by:

(i) IpI=O: N,, =(0,0,0)andc, ={(b,O)lb~ c,}(recallthat~V”,,=(B,,, E,, F,, co)).
(ii) lpl>O: Let p z~‘e and assume that N,!=(B,*, E,,. cr.) 2nd c,. are defined.

Then N,, = (BP, E,, F,) is given by

(i) Ep = E,,u{(e, X)} w h ere X={(b,D)JbE’eh(b,D)Ec,,},

(ii) B,=B,#uXu Y where Y={(b,{(e,X)})(bEe’},

(iii) F, = F,.u (X x {(e, X)}) u ({(e, X)} x Y),
(iv) cP =(c,,-X)u Y.

N, (with the obvious projection operator as the labelling function) is called a

process of JV~. We let PO denote the set of processes of Jf,, where

def

PO = W,lc,~ &I.

Actual!y PO just denotes the set ofJinite processes of JV~ but for our current purposes

they will do.
It is easy to see that there is a close relationship between the processes and traces

of Jvb. In order to state this relationship in a strong way, we define an “inclusion”

relation c_‘c POX PO as

N,, = (BP, E,, F,) c’ N,,e= (B,,, E,,, F,,)

iff B, c B,. and E, 5 E,, and F, c F,..

Theorem 4.2. (P,,, c-‘) and (TO, E,,) are isomorphic posers. In facf, f: PO+ TO given

byf(N,J = [PI is an isomorphism.

The underlying nets of the processes of net systems are interesting objects in their

own right. We shall call them cuusul nets. A causal net is a net N = (B, E, F) such

that
(i) Vb E B. l’bl, lb.1 G 1,

(ii) F* is a partial ordering relation over X = Bu E.

Proposition 4.3. The underlying net of each process of JV~ is a cuusal net.

An example of an infinite causai net is shown in Fig. 11.

Causal nets are interesting because they can be used :o study concurrency in

isolation from conflict. To see this let N = (B, E, F) be a causal net and let 4 = F*.

Fig. II.

148 P. 5. Thiugarajan

Then we cari define the concurrency relation co as
der

Vx,yeBuE. xcoy e XKyAyscx.

i?ws in the setting of causal nets, concurrency just expresses the absence of

causality and causality is simply a partial ordering relation. Hence the theory of

posets can be applied to study the co-relation. This part of net theory was initiated

by Petri [31]. A variety of density properties for causal nets have been proposed
and their interrelationships have been investigated [3,9, lo]. Returning to our main

theme we are now ready to present unfoldings and labelled event structures.

5. Labelled event structures

Due to Theorem 4.2 the poset (PO, c’) also contains information about conflicts
and their resolutions. In a seminal paper, Nielsen, Plotkin and Winskel showed-

among other things-how to “glue” together the elements of PO into a single object

in which causality, concurrency and conflict are represented explicitly [27].

Definition 5.1. Let NO = (B,,, E,,, F,,) be the process associated with p E FS,. Then

the unfolding of NO is the triple UFO = (&, I$, &,) where

(i) &=u{B,,lp~ &I,
(ii) &=U{&,lp~ &I,

(iii) FO=lJ{F,)pEFSO}.

As before, the labelling function is the obvious projection operator and we have

suppressed it. An initial fragment of the unfolding of ,Irz is shown in Fig. 12. As

this example shows, the unfolding of a net system will be in general an infinite object.

The unfolding of a net system presents a single record of all the runs of the
system. In this record each occurrence of an element of the net system (condition-

holding or event occurrence) is recorded separately so that the unique-m general-

nonsequential history that led to this occurrence lies in its past. The underlying nets

of the unfoldings of net systems are called occurrence nets.

Before we present the notion of occurrence nets it will be convenient to adopt

some notations concerning posets. Let P = (X, G) be a poset and Y G X. Then

JY={x]3y~ Y.x<y} and tY={x(3y~ Y.y<x}.

If Y = {y} is a singleton, we will write 7 y and J y instead of t{ y} and &{ y} respectively.
For x, y E X, x T y will denote the fact that there exists z E X such that x s z and

y C z. Finally xty will denote the negation of x 7 y.

An occurrence net is a net N = (B, E, F) such that

(i) Vbc B. I’bls 1;

(ii) bN = def F* is a partial ordering relation over XN ;
(iii) Ve, , e2 c E. [e, # e, A ‘e, A ‘e 2 Z (date, n tez =0] (where te is defined w.r.t.

the order&; relatton < ,,,).

Proposition 5.2. The unfolding of a net system is a labelled occurrence net.

Fig. 12.

In an occurrence net N = (B, E, F) causality is represented by the partial ordering

re!ation SN = F*. The conflict relation # N~XN x XN is defined to be the least
subset of XN x XN satisfying

(i) Ye,, e2E E. [e, # ezr\‘e,n’e2#(b+e, #Ne2];

(ii) Vx,y,zEX,. x#NySNz*x#,z.

It is easy to check that # N is irreflexive and symmetric. If two elements are in

conflict then the idea is that in no stretch of behaviour can they both occur. On the

other hand, for an element to occur, all the elements that lie in its “past” (as specified

by sN) must have occurred. These considerations will be made more precise when

we come to deai with event structures. Going back to the occurrence net N = (4 E, F)

the concurrency relation coN can now be defined as

de1
vx, y E XN. xcoNy = n&(x <Nyvy <Nxvx#Ny).

Proposition 5.3. Let N denote the underlying occurrence net of CJF,,, the unfolding of
the net system NO. Suppose that x, y E &v I?,,. 7hen x # ,,, y ifl there does not exist a
process N,=(B,,,E,,F,) of.Nbsuch thatx,yEB,uE,.

Corresponding statements can be made about sN and coN, the causality and
concurrency relation respectively of the occurrence net underlying UFO. In this
sense UFO is a behavioural representation of X0 in which causality, concurrency
and conflict are explicitly represented. We can now ask in what sense UFO and
(TO, E,,) are related to each other. To answer this question we must go over to

labelled event structures.
In the present setting we note that a trace-via the labelled poset associated with

it-can be seen as a more abstract representation of a process; it is a representation
in which the conditions have been restricted away. Similarly an event structure is
a more abstract representation of an occurrence net that is obtained by throwing
away the conditions.

An euent structure is a triple ES = (E, s, #) where

(i) E is a set of events.
(ii) G EE x E is a partial ordering relation called the causality relation of ES.

(iii) # is an irreflexive and symmetric relation called the conjlict relation of ES.
(iv) # is “inherited” via s in the sense that

We,, e2,‘e3E E. e,#e*se, * e,#e,

Definition SA. ES, = (e +, so, b,,, &) is the iabelled event structure of Jv, given by
(recall that UFO = (&, I$,, i$))

(i) d,-, is < ,,, restricted to &,x &-, where N is the underlying occurrence net of

f-JF,;
(ii) #O is # ,,, restricted to &x &,;

(iii) &, : &,a E,, is the restriction of the labelling function of UF,, to &.

Proposition 55. (Z,, d,, #0) is an event structure.

We now have yet another representation of the behaviour of & (apart from UF,,)
in which causality, conflict and concurrency are explicitly represented. It turns out
that (T,,, cO) obtained via the theory of traces and ES, “agree” as to what the
behaviour of JV,, is. To bring this out we must represent ES, in terms of its states.
The states of an event structure are called configurations.

Definition 5.6. Let ES = (E, s, #) be an event structure. Then ds E is called a
conjFguration iff it satisfies

(i) (d x d) n # =0 (conflict-free),
(ii) d = S_d (left-closed).

Theorem 5.7. (Gin, z) and (T,,, co) are isomorphicposets. In fact, the map g : To + CE”
given by g([p]) = E, (recall that IV, = (B,,, E,, F,)) is an isomorphism.

Here Ci” is the set offinite configurations of ES,. The alert but uninitiated reader
might be puzzled by the fact that the agreement between ES, and (T,, Em) is stated
in terms of an isomorphisn. between (Cg”, _ c) and (T,, TV,& We do so because it
so happens that ES, and (Ci”, G) are “equivalent*’ objects in a precise sense. This
follows from the theory of event structures.

In [27] a basic representation theorem for event structures was established in
terms of the posets of configurations. It turns out that for the event structure ES,

the poset of configurat;ons (C,, , c) is a prime algebraic coherent poset Due to lack
of space we will not go into details here. Moreover, given PO, a prime algebraic
coherent poset, there is a canonical way of extracting an event structure ES from
PO and it turns out that (C ES, c) and PO are isomorphic posets. Since a prime
algebraic coherent poset is a special kind of an algebraic cpo, event structures can
be identified with a restricted class of Scott domains.

If an event structure ES is finitary (i.e., S_e is finite for every e) then it turns out
that the representation theorem cited above can be extended to establish a representa-
tion theorem linking ES and (Cri;ls, c) (see [26]). Clearly ES,, the event structure
associated with X0 is finitary. Hence we are justified in claiming-via Theorem
5.7-that trace theory and the theory of event structures agree as io what the
behaviour of an elementary net system is.

Occurrence nets have not been investigated as objects of independent interest in
the way that causal nets have been studied. Event structures on the other hand have
a substantial theory. Winskel has constructed a major part of this theory [39] and
has demonstrated how event structures can be used to provide the “non-interleaved”
denotational semantics of CCS-like languages [4OJ. Actually, what we have called
event structures here are called prime event structures in the literature. It turns out
that in semantic applications it is more convenient to use a generalization of prime
event structures called stable event structures. For details, the reader is once again
referred to 1401.

6. Summary

Our aim here has been to give a general picture of the behavioure! aspects of net
theory. We have done so by presenting a number of behavioural notions which,
regardiess of their origins, reflect the basic concerns of net theory.

A number of other behavioural tools have not been presented (see, for example.
[33,35]). The relationship between trace theory and event structures can be estab-
lished in a general setting [34]. Studies which relate a variety of behavioural notions
to each other in a categorical framework can be found in [41] and also in [2].

In CCS and CSP, which are two other well-known approaches to the study of
distributed systems, one is concerned in some sense only with behaviours. In these

approache-: a great deal of the theory is devoted to the search for a suitable notion
of behavioural equivalence for identifying process terms. In net theory the study of
the interplay between the structure of a distributed system (as specified by a net)
and its behaviour has traditionally been one of the main concerns.

In the recent past however, a number of bridges have been constructed with net
theory on the one side and CCS and CSP on the other [14,28,37]. As a result one
may expect that in the future the pursuit of net theory will reflect the concerns of
CCS-like approaches in a more direct fashion.

Acknowledgment

I thank Carl Adam Petri for creating net theory and for teaching me his version
of the theory. The line of presentation followed here has been strongly influenced
by my joint work with Mogens Nielsen and Grzegorz Kozenberg. Many many thanks
to Karen Moller for producing, as usual, a nice manuscript in record time. This
paper was written during a very pleasant stay at the Computer Science Department
of Aarhus University.

References

[I] IJ. Aalbersberg and G. Rozenberg, Theory of traces, Tech. Report 16, Computer Science Department,

Univ. of Leiden, The Netherlands, 1986.
121 M. Bednarczyk, Categories of asynchronous systems, Ph.D. Thesis, Computer Science Department,

Univ. of Sussex, Great Britain, 1987.
[3] E. Best, A theorem on the characteristics of non-sequential processes, Fund. Ir~fi~rm. III (I) (1980)

77-94.

[4] E. Best and R. Devillers, Sequential and concurrent behaviour in Petri net theory, 77teorer. Compur.

Set. 55 (1987) 87-136.
[5] W. Brauer, W. Reisig and G. Rozenbcrg. eds.. Pefri Nets: Applicahns and Relationships to Other

Models oj’Concurrency, Lecture Notes in Computer Science 255 (Springer, Berlin, 1987).
[6] C. Choffrut, Free partially commutative monoids, Tech. Report 86-20, LITP, University of Paris 7,

France, 1986.
[7] F. Commoner, A.N. Holt. S. Even and A. Pntieli, Marked directed graphs, J. CornPi:: Srsrem Sri.

S(l971) 511-523.

[8] P. Degano, R. DeNicola and U. Montanari, A new operational semantics for CCS based on
condition/event systems, Nota lnterna B4-42, Department of Computer Science, Univ. of Pisa,

Italy, 1986.
[9] C. Fernandez and P.S. Thiagarajan, D-continuous causal nets: a model of non-sequential processes,

Theoret. Comput. Sci. 28 (1984) 171-196.

[IO] C. Fernandez, M. Nielsen and P.S. Thiagarajan, Notions of realizable non-sequential processes,
Fund. Inform. IX (1986) 421-454.

[II] H.J. Genrich, Predicate/transition nets, in: Lecture Notes in Computer Science 254 (Springer,
Be&r, 1987) 207-247.

[I21 H.J. Genrich and K. Lautenbach, Synch:onisationsgraphen, Acta Inform. 2 (1973) 143-161.
[I31 H.J. Genrich and K. Lautenbach, System modelling with high-level Petri nets, 77teorer. Compur.

Sri. 13 (1981) 109-136.
[141 U. Goltz, On representing CCS programs by finite Petri nets, in: Lecture Notes in Computer Science

324 (Springer, Berlin, 1988) 339-350.

iI51

[I91

PO1

WI
WI

M. Hack, Analysis of production schemata by Petri nets, MS. Thesis, TR-94, Project MAC,
Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1972.
C.A.R. Hoare, Communicaling Sequential Processes (Prentice Hall, London, 1985).
M. Jantzen, Complexity of place/transition nets. in: Lecture Notes in Computer Science 254
(Springer. Berlin. 1987) 413 -435.
M. Jantzen, Language theory of Petri nets, in: Lecture Notes in Computer Science 254 (Springer,
Berlin, 1987) 397-412.
K. Jensen, Coloured Petri nets, in: Lecture Notes in Computer Science 254 (Springer, Berlin, 1987)
248-299.
J.R. Jump and P.S. Thiagarajan, On rile equivalence of asynchronous control structures, S/AM 1.
Compur. 2(2) (1973) 67-87.
R.M. Karp and R.E. Miller, Parallel program schemata, 1. Compuf. Sysrem Sci. 3(2) (1969) 147-195.
K. Lautenbach, Linear algebraic techniques for place/transition nets. in: Lecture Notes in Computer
Science 254 (Springer. Berlin, 19x7) 142-167.

1231 A. Mazurkiewicz, Concurrent progr?-. schcmc : and their interpretations, DAIMI Report PB-78,
Computer Science Department, Aarhus Univ., Denmark, 1977.

[24] A. Mazurkiewicz, Semantics of concurrent systems: a modular fixed-point trace approach, in:
Lecture Notes in Computer Science 188 (Springer, Berlin. 1985) 353-375.

[25] R. Milner, A Ca/cu/us q/Communicating Systems, Lecture Notes in Computer Science 92 (Springl:r,
Berlin, 1980).

[26] M. Nielsen, G. Rozenberg and P.S. Thiagarajan, Behavioural notions for elementary net systems,
Internal Report, Computer Science Department, Aarhus Univ., Denmark.

[L7] M. Nielsen, G. Plotkin and G. Winskel, Petri nets, event structures and domains: Part 1, Theorer.

1281

1291

[301

1311

1321

I331

[341

[351

1361

1371

[381

[391

[421

[411

Comput. Sci. 13 (1980) 85-108.
E.R. Olderog. Operational Petri net semantics for CCSP. in: L.ecture Notes in Computer Science
266 (Springer, Berlin, 1987) 196-223.
C.A. Petri, Kommunikation mit Automaten, Schrifften des IIM Nr. 2, lnstitut fiir fnstrumentelle
Mathematik, Bonn Univ.. Fed. Rep. Germany, 1962.
C.A. Petri, Non-sequential processes, lnterner Bericht ISF-77-5, Gesellschaft fur Mathematik und
Datenverarbeitung, St. Augustin. Fed. Rep. Germany. 1977.
C.A. Petri, Concurrency theory, in: Lecture Notes in Computer Science 254 (Springer, Berlin, 1987)
4-24.
V.R. Pratt, Modelling concurrency with partial orders, Internat. 1. Para//e/&ogramming IS(1) (1986)
33-71.
G. Rorcnberg and P.S. Thiagarajan, Petri nets: basic notions, structure and behaviour, in: Lecture
Notes in Computer Science 224 (Springer, Berlin, 1986) 585-668.
B. Rozoy and P.S. Thiagarajan, Event structures and trace monoids, Report 87-47, LITP, Univ. of
Paris 7, France, 1987.
P.H. Starke, Traces and semiwords, in: Lecture Notes in Computer Science 208 (Springer, Berlin,
1985) 332-349.
P.S. T,t._garajan, Elementary net systems, in: Lecture No!es in Computer Science 254 (Springer,
Berlin, 1987) 26-59.
D. Taubner, The finite representation of abstract programs by automata and Petri nets, Ph.D.
Dissertation, Technical Univ. of Munich, Fed. Rep. Germany, 1989.
P.S. Thiagarajan and K. Voss, A fresh look at free choice nets, Inform. and Conrrol61(2) (1984)
85-113.
G. Winskel, Event structures, in: Lectdre Notes in Computer Science 255 (Springer. Berlin, 1987)
325-392.
G. Winskel, Ewnf sfrucrure semantics qf CC’S and relored languages. Lecture Notes in Computer
Science 140 (Springer, Berlin, 1982).
G. Winskel, Categories of models for concurrency, Tech. Report No. 58, Computer Laboratory,
Cambridge University, U.K., 1986.

-

