CS 105: DIC on Discrete Structures

Instructor: S. Akshay

 $\begin{array}{c} {\rm Aug~08,~2023} \\ {\rm Lecture~02-Types~of~proofs,~Mathematical~Induction} \end{array}$

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Piazza has been set up and you must have got the invites. Please join asap.

).

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Piazza has been set up and you must have got the invites. Please join asap.

Recap of last lecture

- ▶ What are discrete structures, course outline.
- ► Chapter 1: proofs and structures. Propositions, theorems.
- ► Theorems and proofs.

Theorems and proofs

A theorem is a proposition which can be shown true

Prove the following theorems.

- 1. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$
- 2. If 6 is prime, then $6^2 = 30$.
- 3. For all $x \in \mathbb{Z}$, x is even iff $x + x^2 x^3$ is even.
- 4. There are infinitely many prime numbers.
- 5. There exist irrational numbers x, y such that x^y is rational.
- 6. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 7. There does not exist a (input-free) C-program which will always determine whether an arbitrary (input-free) C-program will halt.

Theorems and proofs

Contrapositive and converse

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- To show A iff B, you have to show A implies B and conversely, B implies A.
- ▶ Note the difference between contrapositive and converse.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

ightharpoonup Forward direction (\Longrightarrow)

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- \triangleright Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- \triangleright Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- \triangleright Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive!

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 x^3$ is not even, i.e., x is odd $\implies x + x^2 x^3$ is odd.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 x^3$ is not even, i.e., x is odd $\implies x + x^2 x^3$ is odd.
 - 2. Let $x \in \mathbb{Z}$ be odd, i.e., x = 2k + 1 for some $k \in \mathbb{Z}$.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 x^3$ is not even, i.e., x is odd $\implies x + x^2 x^3$ is odd.
 - 2. Let $x \in \mathbb{Z}$ be odd, i.e., x = 2k + 1 for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3$ is odd! (check this!).

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 x^3$ is not even, i.e., x is odd $\implies x + x^2 x^3$ is odd.
 - 2. Let $x \in \mathbb{Z}$ be odd, i.e., x = 2k + 1 for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3$ is odd! (check this!). Hence proved.

Theorem 3.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Two directions.

- ightharpoonup Forward direction (\Longrightarrow)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ► Reverse direction (⇐=)
 - 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 x^3$ is not even, i.e., x is odd $\implies x + x^2 x^3$ is odd.
 - 2. Let $x \in \mathbb{Z}$ be odd, i.e., x = 2k + 1 for some $k \in \mathbb{Z}$.
 - 3. Then $x + x^2 x^3$ is odd! (check this!). Hence proved.

Theorem 4.: There are infinitely many primes.

Theorem 4.: There are infinitely many primes.

Proof by contradiction:

Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.

Theorem 4.: There are infinitely many primes.

- Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- Let $k = (p_1 * p_2 * \dots * p_r) + 1$. Then k when divided by any p_i has remainder 1. So $p_i \not\mid k$ for all $i \in \{1, \dots, r\}$.

Theorem 4.: There are infinitely many primes.

- Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- Let $k = (p_1 * p_2 * \ldots * p_r) + 1$. Then k when divided by any p_i has remainder 1. So $p_i \nmid k$ for all $i \in \{1, \ldots, r\}$.
- ▶ But k > 1 and k is not prime, so k can be written as a product of primes (why?)

Theorem 4.: There are infinitely many primes.

- Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- Let $k = (p_1 * p_2 * \ldots * p_r) + 1$. Then k when divided by any p_i has remainder 1. So $p_i \nmid k$ for all $i \in \{1, \ldots, r\}$.
- ▶ But k > 1 and k is not prime, so k can be written as a product of primes (why?)
- ► Fundamental theorem of arithmetic: any natural number > 1 can be written as a unique product of primes.

Theorem 4.: There are infinitely many primes.

- Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- Let $k = (p_1 * p_2 * \ldots * p_r) + 1$. Then k when divided by any p_i has remainder 1. So $p_i \nmid k$ for all $i \in \{1, \ldots, r\}$.
- ▶ But k > 1 and k is not prime, so k can be written as a product of primes (why?)
- ► Fundamental theorem of arithmetic: any natural number > 1 can be written as a unique product of primes.
- Now let p|k. But $p \notin \{p_1, \ldots, p_r\}$, so this is a contradiction.

Theorem 4.: There are infinitely many primes.

Proof by contradiction:

- Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- Let $k = (p_1 * p_2 * \ldots * p_r) + 1$. Then k when divided by any p_i has remainder 1. So $p_i \not\mid k$ for all $i \in \{1, \ldots, r\}$.
- ▶ But k > 1 and k is not prime, so k can be written as a product of primes (why?)
- ► Fundamental theorem of arithmetic: any natural number > 1 can be written as a unique product of primes.
- Now let p|k. But $p \notin \{p_1, \ldots, p_r\}$, so this is a contradiction.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- ightharpoonup Case 1: If z is rational, we are done (why?)

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- \triangleright Case 1: If z is rational, we are done (why?)
- ightharpoonup Case 2: Else z is irrational.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- ightharpoonup Case 1: If z is rational, we are done (why?)
- ightharpoonup Case 2: Else z is irrational.
 - ► Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- ightharpoonup Case 1: If z is rational, we are done (why?)
- ightharpoonup Case 2: Else z is irrational.
 - ► Then consider $z^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2}} = (\sqrt{2})^2 = 2$.
 - Thus we have found two irrationals $x=z,y=\sqrt{2}$ such that $x^y=2$ is rational.

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- ightharpoonup Case 1: If z is rational, we are done (why?)
- ightharpoonup Case 2: Else z is irrational.
 - ► Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$.
 - Thus we have found two irrationals $x = z, y = \sqrt{2}$ such that $x^y = 2$ is rational.

Indeed, note that the above proof is not constructive!

Theorem 5.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- ▶ Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- ightharpoonup Case 1: If z is rational, we are done (why?)
- ightharpoonup Case 2: Else z is irrational.
 - ► Then consider $z^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2}} = (\sqrt{2})^2 = 2$.
 - Thus we have found two irrationals $x = z, y = \sqrt{2}$ such that $x^y = 2$ is rational.

Indeed, note that the above proof is not constructive!

(H.W): Post a constructive proof of this theorem on piazza.

Types of proofs

- 1. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 2. If 6 is prime, then $6^2 = 30$.
- 3. x is an even integer iff $x + x^2 x^3$ is even.
- 4. There are infinitely many prime numbers.
- 5. There exist irrational numbers x, y such that x^y is rational.
- 6. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 7. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.

 Direct proof
- 2. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 3. x is an even integer iff $x + x^2 x^3$ is even. - Both directions, by contrapositive $(A \to B = \neg B \to \neg A)$
- 4. There are infinitely many prime numbers.
 - Proof by contradiction
- 5. There exist irrational numbers x, y such that x^y is rational.

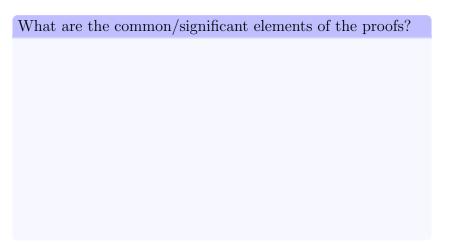
 Non-constructive proof
- 6. For all $n \in \mathbb{N}$, $n! < n^n$.
- 7. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.

 Direct proof
- 2. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 3. x is an even integer iff $x + x^2 x^3$ is even. - Both directions, by contrapositive $(A \to B = \neg B \to \neg A)$
- 4. There are infinitely many prime numbers.
 - Proof by contradiction
- 5. There exist irrational numbers x, y such that x^y is rational.

 Non-constructive proof
- 6. For all $n \in \mathbb{N}$, $n! \le n^n$.
- 7. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.



- ► Rules of inference: Logic, e.g.,
 - ightharpoonup if p is true, and p implies q, then q is true.
 - ▶ if p is true, then $p \lor q$ is true.
 - ▶ if p is true and q is true, then $p \land q$ is true.
 - ightharpoonup if p implies q and q implies r, then p implies r.
 - ▶ if $p \lor q$ is true and p is false, then q is true.

- ► Rules of inference: Logic, e.g.,
 - ightharpoonup if p is true, and p implies q, then q is true.
 - ▶ if p is true, then $p \lor q$ is true.
 - ▶ if p is true and q is true, then $p \land q$ is true.
 - ightharpoonup if p implies q and q implies r, then p implies r.
 - ▶ if $p \lor q$ is true and p is false, then q is true.
- **Strategies**: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.

- ► Rules of inference: Logic, e.g.,
 - ightharpoonup if p is true, and p implies q, then q is true.
 - ▶ if p is true, then $p \lor q$ is true.
 - ▶ if p is true and q is true, then $p \land q$ is true.
 - ightharpoonup if p implies q and q implies r, then p implies r.
 - ▶ if $p \lor q$ is true and p is false, then q is true.
- ► Strategies: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.
 - ▶ Role of counter-examples: Prove or disprove: For all $x \in \mathbb{N}$, $x^2 + x + 41$ is prime.

- ► Rules of inference: Logic, e.g.,
 - ightharpoonup if p is true, and p implies q, then q is true.
 - ▶ if p is true, then $p \lor q$ is true.
 - ▶ if p is true and q is true, then $p \land q$ is true.
 - ightharpoonup if p implies q and q implies r, then p implies r.
 - ▶ if $p \lor q$ is true and p is false, then q is true.
- ► Strategies: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.
 - ▶ Role of counter-examples: Prove or disprove: For all $x \in \mathbb{N}$, $x^2 + x + 41$ is prime.
- ► Axioms: Peano's axioms, Euclid's axioms.

Axioms

(a) Euclid

(b) G. Peano

(c) Zermelo-Fraenkel

- (a) Euclid's axioms for geometry in 300 BCE.
- (b) Peano's axioms for natural numbers in 1889.

Axioms

(a) Euclid

(b) G. Peano

(c) Zermelo-Fraenkel

- (a) Euclid's axioms for geometry in 300 BCE.
- (b) Peano's axioms for natural numbers in 1889.
- (c) Zermelo-Fraenkel and Choice axioms (ZFC) are a small set of axioms from which most of mathematics can be inferred.
 - ▶ But proving even 2+2=4 requires > 20000 lines of proof!
 - ▶ In this course, we will assume axioms, mostly from high school math (distributivity of numbers etc.).

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step) then P(n) is true for all $n \in \mathbb{N}$.

11

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step) then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

- 1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2$, $k! < k^k$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

- 1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2$, $k! < k^k$
- 3. Induction step: To show: $(k+1)! \le (k+1)^{(k+1)}$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

- 1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2$, $k! < k^k$
- 3. Induction step: To show: $(k+1)! \le (k+1)^{(k+1)}$ $(k+1)! = k! \cdot (k+1) \le k^k (k+1)$ (by Induction Hypothesis)

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

- 1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2$, $k! < k^k$
- 3. Induction step: To show: $(k+1)! \le (k+1)^{(k+1)}$ $(k+1)! = k! \cdot (k+1) \le k^k (k+1)$ (by Induction Hypothesis) $< (k+1)^k \cdot (k+1) = (k+1)^{(k+1)}$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- ightharpoonup P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 6.: For all integers n > 1, $n! < n^n$

- 1. Base case For n = 2, $2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2$, $k! < k^k$
- 3. Induction step: To show: $(k+1)! \le (k+1)^{(k+1)}$ $(k+1)! = k! \cdot (k+1) \le k^k (k+1)$ (by Induction Hypothesis) $< (k+1)^k \cdot (k+1) = (k+1)^{(k+1)}$
- 4. Hence by induction, we conclude that for all $n \geq 2$, $n! < n^n$.

1. Summations:

1.1
$$1+2+\ldots+n=\frac{n(n+1)}{2}$$
.
1.2 $1^2-2^2+3^2-\cdots+(-1)^{n-1}n^2=(-1)^{n-1}\frac{n(n+1)}{2}$

- 1. Summations: For every positive integer n,
 - 1.1 $1+2+\ldots+n=\frac{n(n+1)}{2}$.
 - 1.2 $1^2 2^2 + 3^2 \dots + (-1)^{n-1} n^2 = (-1)^{n-1} \frac{n(n+1)}{2}$

- 1. Summations: For every positive integer n,
 - 1.1 $1+2+\ldots+n=\frac{n(n+1)}{2}$.
 - 1.2 $1^2 2^2 + 3^2 \dots + (-1)^{n-1} n^2 = (-1)^{n-1} \frac{n(n+1)}{2}$
- 2. Inequalities
 - 2.1 If h > -1, then $1 + nh \le (1 + h)^n$ for all non-negative integers n.
- 3. Divisibility
 - 3.1 6 divides $n^3 n$ when n is a non-negative integer.
 - 3.2 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is positive integer.
- 4. Many more... including correctness/optimality of algorithms.

- 1. Summations: For every positive integer n,
 - 1.1 $1+2+\ldots+n=\frac{n(n+1)}{2}$.
 - 1.2 $1^2 2^2 + 3^2 \dots + (-1)^{n-1} n^2 = (-1)^{n-1} \frac{n(n+1)}{2}$
- 2. Inequalities
 - 2.1 If h > -1, then $1 + nh \le (1 + h)^n$ for all non-negative integers n.
- 3. Divisibility
 - 3.1 6 divides $n^3 n$ when n is a non-negative integer.
 - 3.2 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is positive integer.
- 4. Many more... including correctness/optimality of algorithms.
- "Proof technique" rather than a "Solution technique" as it requires a good guess of the answer.

Interesting fallacy in using induction!

Conjecture: All horses have the same colour.

"Proof" by induction on number of horses:

- 1. Base Case (n = 1) The case with one horse is trivial.
- 2. Induction Hypothesis Assume for $n = k \ge 1$, i.e., any set of $k(\ge 1)$ horses has same color.
- 3. Induction Step We want to show any set of k + 1 horses have same color. Consider such a set, say $1, \ldots, k + 1$.
 - (A) First, consider horses $1, \ldots, k$. By induction hypothesis, they have same color.
 - (B) Next, consider horses $2, \ldots, k+1$. By induction hypothesis, they have same color.
 - (C) Therefore, 1 has same color as 2 (by A) and 2 has same color as k + 1 (by B), implies all k + 1 have same color.
- 4. Thus, by induction, we conclude that for all $n \geq 1$, any set of n horses has the same color.

Where is the bug?