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Logistics and recap

Course material, references are being posted at

I http://www.cse.iitb.ac.in/~akshayss/teaching.html

I Piazza has been set up and you must have got the invites.
Please join asap.

Recap of last lecture

I What are discrete structures, course outline.

I Chapter 1: proofs and structures. Propositions, theorems.

I Theorems and proofs.
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Theorems and proofs

A theorem is a proposition which can be shown true

Prove the following theorems.

1. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a + b ≥ c

2. If 6 is prime, then 62 = 30.

3. For all x ∈ Z, x is even iff x + x2 − x3 is even.

4. There are infinitely many prime numbers.

5. There exist irrational numbers x, y such that xy is rational.

6. For all n ∈ N, n! ≤ nn.

7. There does not exist a (input-free) C-program which will
always determine whether an arbitrary (input-free)
C-program will halt.

3



Theorems and proofs

Contrapositive and converse

I The contrapositive of “if A then B” is “if ¬B then ¬A”.

I A statement is logically equivalent to its contrapositive,
i.e., it suffices to show one to imply the other.

I To show A iff B, you have to show A implies B and
conversely, B implies A.

I Note the difference between contrapositive and converse.
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Proof by of Theorem 3

Theorem 3.: For all x ∈ Z, x is even iff x + x2 − x3 is even.

Two directions.

I Forward direction ( =⇒ )

1. Let x ∈ Z and x even.
2. i.e., x = 2k for some k ∈ Z.
3. Then x + x2 − x3 = 2k + 4k2 − 8k3 = 2(k + 2k2 − 4k3)

which is even.

I Reverse direction (⇐=)

1. We will show contrapositive! i.e., x is not even =⇒
x+x2−x3 is not even, i.e., x is odd =⇒ x+x2−x3 is odd.

2. Let x ∈ Z be odd, i.e., x = 2k + 1 for some k ∈ Z.
3. Then x + x2 − x3 is odd! (check this!). Hence proved.
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Proof by contradiction

Theorem 4.: There are infinitely many primes.

Proof by contradiction:

I Suppose there are only finitely many primes, say
p1 < p2 < . . . < pr.

I Let k = (p1 ∗ p2 ∗ . . . ∗ pr) + 1. Then k when divided by any
pi has remainder 1. So pi 6 | k for all i ∈ {1, . . . , r}.

I But k > 1 and k is not prime, so k can be written as a
product of primes (why?)

I Fundamental theorem of arithmetic: any natural number
> 1 can be written as a unique product of primes.

I Now let p|k. But p 6∈ {p1, . . . , pr}, so this is a
contradiction.
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A Non-constructive proof

Theorem 5.: There exist irrational numbers x and y such
that xy is rational.

Proof:

I Consider
√

2. First show that
√

2 is irrational.

I Let x = y =
√

2 and consider z =
√

2
√
2
.

I Case 1: If z is rational, we are done (why?)

I Case 2: Else z is irrational.

I Then consider z
√
2 = (

√
2
√
2
)
√
2 = (

√
2)2 = 2.

I Thus we have found two irrationals x = z, y =
√

2 such that
xy = 2 is rational.

Indeed, note that the above proof is not constructive!

(H.W): Post a constructive proof of this theorem on piazza.
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Types of proofs

1. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a + b ≥ c.

– Direct proof

2. If 6 is prime, then 62 = 30.

– Vacuous/trivial proof

3. x is an even integer iff x + x2 − x3 is even.

– Both directions, by contrapositive (A→ B = ¬B → ¬A)

4. There are infinitely many prime numbers.

– Proof by contradiction

5. There exist irrational numbers x, y such that xy is rational.

– Non-constructive proof

6. For all n ∈ N, n! ≤ nn.

7. There does not exist a (input-free) program which will
always determine whether an arbitrary (input-free)
program will halt.
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Theorems and proofs

What are the common/significant elements of the proofs?

I Rules of inference: Logic, e.g.,
I if p is true, and p implies q, then q is true.
I if p is true, then p ∨ q is true.
I if p is true and q is true, then p ∧ q is true.
I if p implies q and q implies r, then p implies r.
I if p ∨ q is true and p is false, then q is true.

I Strategies: vacuous, direct, case-by-case, contrapositive,
contradiction, constructive, non-constructive.
I Role of counter-examples: Prove or disprove: For all x ∈ N,

x2 + x + 41 is prime.

I Axioms: Peano’s axioms, Euclid’s axioms.
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Axioms

(a) Euclid (b) G. Peano (c) Zermelo-Fraenkel

(a) Euclid’s axioms for geometry in 300 BCE.

(b) Peano’s axioms for natural numbers in 1889.

(c) Zermelo-Fraenkel and Choice axioms (ZFC) are a small set
of axioms from which most of mathematics can be inferred.

I But proving even 2+2=4 requires > 20000 lines of proof!

I In this course, we will assume axioms, mostly from high
school math (distributivity of numbers etc.).
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Introducing the world of Mathematical Induction

Induction (Axiom)

Let P (n) be a property of non-negative integers. If

I P (0) is true (Base case)

I for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction Step)

then P (n) is true for all n ∈ N.

Theorem 6.: For all integers n > 1, n! < nn

Proof by induction: we will show for all n ≥ 2, n! < nn

1. Base case For n = 2, 2! = 2 ≤ 4 = 22, so Base Case is true.

2. Induction Hypothesis: Assume, for some n = k ≥ 2, k! < kk

3. Induction step: To show: (k + 1)! ≤ (k + 1)(k+1)

(k + 1)! = k! · (k + 1) ≤ kk(k + 1) (by Induction Hypothesis)
< (k + 1)k · (k + 1) = (k + 1)(k+1)

4. Hence by induction, we conclude that for all n ≥ 2, n! < nn.
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Examples by induction (H.W)

1. Summations:

1.1 1 + 2 + . . . + n = n(n+1)
2 .

1.2 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1 n(n+1)
2
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2 .

1.2 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1 n(n+1)
2

2. Inequalities

2.1 If h > −1, then 1 + nh ≤ (1 + h)n for all non-negative
integers n.

3. Divisibility

3.1 6 divides n3 − n when n is a non-negative integer.
3.2 21 divides 4n+1 + 52n−1 whenever n is positive integer.

4. Many more... including correctness/optimality of
algorithms.
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3.2 21 divides 4n+1 + 52n−1 whenever n is positive integer.

4. Many more... including correctness/optimality of
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– “Proof technique” rather than a “Solution technique” as it
requires a good guess of the answer.
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Interesting fallacy in using induction!

Conjecture: All horses have the same colour.

“Proof” by induction on number of horses:

1. Base Case (n = 1) The case with one horse is trivial.

2. Induction Hypothesis Assume for n = k ≥ 1, i.e., any set of
k(≥ 1) horses has same color.

3. Induction Step We want to show any set of k + 1 horses
have same color. Consider such a set, say 1, . . . , k + 1.

(A) First, consider horses 1, . . . , k. By induction hypothesis,
they have same color.

(B) Next, consider horses 2, . . . , k + 1. By induction hypothesis,
they have same color.

(C) Therefore, 1 has same color as 2 (by A) and 2 has same
color as k + 1 (by B), implies all k + 1 have same color.

4. Thus, by induction, we conclude that for all n ≥ 1, any set
of n horses has the same color.

Where is the bug?
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