CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 10, 2023
Lecture 03 - Induction and Well Ordering Principle

Interesting fallacy in using induction!

Conjecture: All horses have the same colour.
"Proof" by induction on number of horses:

1. Base Case $(n=1)$ The case with one horse is trivial.
2. Induction Hypothesis Assume for $n=k \geq 1$, i.e., any set of $k(\geq 1)$ horses has same color.
3. Induction Step We want to show any set of $k+1$ horses have same color. Consider such a set, say $1, \ldots, k+1$.
(A) First, consider horses $1, \ldots, k$. By induction hypothesis, they have same color.
(B) Next, consider horses $2, \ldots, k+1$. By induction hypothesis, they have same color.
(C) Therefore, 1 has same color as 2 (by A) and 2 has same color as $k+1$ (by B), implies all $k+1$ have same color.
4. Thus, by induction, we conclude that for all $n \geq 1$, any set of n horses has the same color.

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction:

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case:

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.
2. Induction Hyp:

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.
2. Induction Hyp: Assume that for $n=k$, it is true, i.e., $f(a, k)=a^{k}$.

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.
2. Induction Hyp: Assume that for $n=k$, it is true, i.e., $f(a, k)=a^{k}$.
3. Induction Step:

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.
2. Induction Hyp: Assume that for $n=k$, it is true, i.e., $f(a, k)=a^{k}$.
3. Induction Step: For $n=k+1$,

$$
f(a, k+1)=a \cdot f(a, k)=a \cdot a^{k}=a^{k+1}(\text { by Induction Hyp })
$$

Proof of algorithm using induction

Consider the following algorithm:
input: non-zero real number a, non-negative integer n. procedure: if $n=0$, then return $f(a, n)=1$;

$$
\text { else } f(a, n)=a \cdot f(a, n-1)
$$

Theorem: Prove that the algorithm computes the function $f(a, n)=a^{n}$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.
Proof by induction: Fix an arbitrary non-zero real number a.

1. Base case: if $n=0, f(a, 0)=1=a^{0}$.
2. Induction Hyp: Assume that for $n=k$, it is true, i.e., $f(a, k)=a^{k}$.
3. Induction Step: For $n=k+1$, $f(a, k+1)=a \cdot f(a, k)=a \cdot a^{k}=a^{k+1}$ (by Induction Hyp).
4. Thus, by induction for all non-negative integers n, the algorithm above computes $f(a, n)=a^{n}$.

What is the basis for induction

Axiom: Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

What is the basis for induction

Axiom: Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

What is the basis for induction

Axiom: Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element. Does this seem familiar? Obvious? What about for rationals?!

What is the basis for induction

Axiom: Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Prove it! (H.W)

What is the basis for induction

Axiom: Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Prove it! (H.W)
What about it's converse?

WOP implies induction

Theorem: Well-ordering principle implies Induction

WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that,
1.1 Base Case holds: $P(0)$ is true;
1.2 Induction Step holds: for $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$;
1.3 But the conclusion doesn't hold, i.e., it isn't the case that $(P(n)$ is true for all non-negative integers).

WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that,
1.1 Base Case holds: $P(0)$ is true;
1.2 Induction Step holds: for $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$;
1.3 But the conclusion doesn't hold, i.e., it isn't the case that $(P(n)$ is true for all non-negative integers).
2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., $P(n)$ is false.

WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that, 1.1 Base Case holds: $P(0)$ is true;
1.2 Induction Step holds: for $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$;
1.3 But the conclusion doesn't hold, i.e., it isn't the case that $(P(n)$ is true for all non-negative integers).
2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., $P(n)$ is false.
3. Now, consider set $S=\{i \in \mathbb{N} \mid P(i)$ is false $\}$.

WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that, 1.1 Base Case holds: $P(0)$ is true;
1.2 Induction Step holds: for $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$;
1.3 But the conclusion doesn't hold, i.e., it isn't the case that $(P(n)$ is true for all non-negative integers).
2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., $P(n)$ is false.
3. Now, consider set $S=\{i \in \mathbb{N} \mid P(i)$ is false $\}$.
4. S is a non-empty (due to 2 .) set of non-negative integers, hence by WOP, it has a smallest element, say $i_{0} \in S$.

WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that, 1.1 Base Case holds: $P(0)$ is true;
1.2 Induction Step holds: for $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$;
1.3 But the conclusion doesn't hold, i.e., it isn't the case that $(P(n)$ is true for all non-negative integers).
2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., $P(n)$ is false.
3. Now, consider set $S=\{i \in \mathbb{N} \mid P(i)$ is false $\}$.
4. S is a non-empty (due to 2 .) set of non-negative integers, hence by WOP, it has a smallest element, say $i_{0} \in S$.
5. $i_{0} \neq 0$ (due to 1.1) and $i_{0}-1 \notin S$ (since i_{0} is smallest in S).
6. $i_{0}-1 \notin S$ implies $P\left(i_{0}-1\right)$ is true (by definition of S).
7. By (1.2), $P\left(i_{0}\right)$ must be true, $i_{0} \notin S$.Contradiction!

The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well-ordering principle iff Induction

The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Well-ordering principle iff Induction
So, we could have chosen either one of them as our basic axiom!

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.
- Since a and b are smaller than the smallest number in S, they can be written as product of primes.
- Let $a=p_{1} \ldots p_{k}$ and $b=q_{1} \cdots q_{l}$. But then $n=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{l}$, which is a contradiction.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.
- Since a and b are smaller than the smallest number in S, they can be written as product of primes.
- Let $a=p_{1} \ldots p_{k}$ and $b=q_{1} \cdots q_{l}$. But then $n=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{l}$, which is a contradiction.

Qn: How do you show uniqueness?

