CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 14, 2023 Lecture 04 – Strong Induction, Basic Mathematical Structures

Logistics

Exercise Problem Sheets

- ▶ Problem sheet 1 released on Friday.
- (Optional) help session to be held this Wednesday at 6.30pm at CC 103 (New CSE/CC building).

Recap of last three lectures

Chapter 1: Mathematical reasoning

- ▶ Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- ▶ Principle of Mathematical Induction
- ▶ Well-ordering principle.

- Proving one part of the fundamental theorem of arithmetic.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by contradiction using WOP!:

▶ Let S be the set of all integers greater than 1 that cannot be written as a product of primes.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n = a \cdot b$, where n > a, b > 1.

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of primes

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).

• So
$$n = a \cdot b$$
, where $n > a, b > 1$.

Since a and b are smaller than the smallest number in S, they can be written as product of primes.

• Let
$$a = p_1 \dots p_k$$
 and $b = q_1 \dots q_l$. But then
 $n = p_1 \dots p_k \cdot q_1 \dots q_l$, which is a contradiction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of primes

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).

So
$$n = a \cdot b$$
, where $n > a, b > 1$.

Since a and b are smaller than the smallest number in S, they can be written as product of primes.

• Let
$$a = p_1 \dots p_k$$
 and $b = q_1 \dots q_l$. But then
 $n = p_1 \dots p_k \cdot q_1 \dots q_l$, which is a contradiction

Qn: How do you show uniqueness?

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by induction:

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by induction:

• Base case:
$$n = 2$$
, done.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by induction:

▶ Base case: n = 2, done.

• Assume induction hypothesis for n = k, i.e., $k = p_1 \cdots p_n$.

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by induction:

- ▶ Base case: n = 2, done.
- Assume induction hypothesis for n = k, i.e., $k = p_1 \cdots p_n$.

• Consider
$$n = k + 1$$
.

• If k + 1 is a prime, then done. Else $k + 1 = p \cdot q, p, q > 1$.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of primes

Proof by induction:

- ▶ Base case: n = 2, done.
- Assume induction hypothesis for n = k, i.e., $k = p_1 \cdots p_n$.
- Consider n = k + 1.
- ▶ If k + 1 is a prime, then done. Else $k + 1 = p \cdot q, p, q > 1$.
- But now it may be that $p, q \neq k$, so we can't use induction hypothesis.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of primes

Proof by induction:

- ▶ Base case: n = 2, done.
- Assume induction hypothesis for n = k, i.e., $k = p_1 \cdots p_n$.
- Consider n = k + 1.
- ▶ If k + 1 is a prime, then done. Else $k + 1 = p \cdot q, p, q > 1$.
- ▶ But now it may be that $p, q \neq k$, so we can't use induction hypothesis.
- ▶ Let us strengthen our induction hypothesis. That is...

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Proof by induction:

▶ Base case:
$$n = 2$$
, done.

Assume strong induction hypothesis, i.e., for all $1 \le r \le k$, $k = p_1 \cdots p_m$.

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of primes

Proof by induction:

- ▶ Base case: n = 2, done.
- Assume strong induction hypothesis, i.e., for all $1 \le r \le k$, $k = p_1 \cdots p_m$.
- By the stronger hypothesis, we can write $p = p_1 \dots p_k$ and $q = q_1 \dots q_l$.
- Therefore $k + 1 = p_1 \cdots p_k \cdot q_1 \cdots q_k$.
- Thus, the statement holds for all n > 1.

Strong Induction

Strong Induction

Let P(n) be a property of non-negative integers. If

- \triangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $(P(0) \land P(1) \land \dots \land P(k)) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Strong Induction

Strong Induction

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $(P(0) \land P(1) \land \dots \land P(k)) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Induction

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Strong Induction iff Induction iff WOP

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}$, $m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

$$n = q \cdot m + r, \quad 0 \le r < m$$

1. Fix any m > 0, we use strong induction on n.

2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

$$n = q \cdot m + r, \quad 0 \le r < m$$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$,

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

$$n = q \cdot m + r, \quad 0 \le r < m$$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$.

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

$$n = q \cdot m + r, \quad 0 \le r < m$$

- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t., } k + 1 = q^*m + r^*$ for $0 \le r^* \le m$.

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.
- 5. By Ind Hyp, k' = q'm + r' for some $q', 0 \le r' < m$.

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.
- 5. By Ind Hyp, k' = q'm + r' for some $q', 0 \le r' < m$.
- 6. Now to prove 3.2, we choose $q^* = q' + 1, r^* = r'$

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.
- 5. By Ind Hyp, k' = q'm + r' for some $q', 0 \le r' < m$.
- 6. Now to prove 3.2, we choose $q^* = q' + 1, r^* = r'$

7. Then,
$$q^*m + r^* = (q'+1)m + r' = q'm + r' + m = k' + m = ((k+1) - m) + m = k + 1.$$

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.
- 5. By Ind Hyp, k' = q'm + r' for some $q', 0 \le r' < m$.
- 6. Now to prove 3.2, we choose $q^* = q' + 1, r^* = r'$
- 7. Then, $q^*m + r^* = (q'+1)m + r' = q'm + r' + m = k' + m = ((k+1) m) + m = k + 1.$

Qns: Show uniqueness.

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r \ (q, r \in \mathbb{N})$, such that

 $n = q \cdot m + r, \quad 0 \le r < m$

- 1. Fix any m > 0, we use strong induction on n.
- 2. Base cases: $n \in \{0, \ldots, m-1\}$. What should q and r be?
- 3. Induction step: We prove for all $k \ge m$, 3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \le k, \exists q, r \text{ s.t. } n = qm + r, 0 \le r < m$. 3.2 (to prove): $\exists q^*, r^* \text{ s.t.}, k + 1 = q^*m + r^*$ for $0 \le r^* < m$.
- 4. Take $k' = (k+1) m = k (m-1) \le k$. i.e., $k' \le k$, so we can apply ind hyp on k'.
- 5. By Ind Hyp, k' = q'm + r' for some $q', 0 \le r' < m$.
- 6. Now to prove 3.2, we choose $q^* = q' + 1, r^* = r'$
- 7. Then, $q^*m + r^* = (q'+1)m + r' = q'm + r' + m = k' + m = ((k+1) m) + m = k + 1.$

Qns: Show uniqueness. Also, what if $m, n \in \mathbb{Z}, m \neq 0$?

From proofs to structures

From proofs to structures

Next: Chapter 2: Basic Mathematical Structures

- ▶ Finite and infinite sets, Functions
- Relations