CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 14, 2023
Lecture 04 - Strong Induction, Basic Mathematical Structures

Logistics

Exercise Problem Sheets

- Problem sheet 1 released on Friday.
- (Optional) help session to be held this Wednesday at 6.30pm at CC 103 (New CSE/CC building).

Recap of last three lectures

Chapter 1: Mathematical reasoning

- Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- Principle of Mathematical Induction
- Well-ordering principle.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.
- Since a and b are smaller than the smallest number in S, they can be written as product of primes.
- Let $a=p_{1} \ldots p_{k}$ and $b=q_{1} \cdots q_{l}$. But then $n=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{l}$, which is a contradiction.

Direct application of WOP to prove theorems

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by contradiction using WOP!:

- Let S be the set of all integers greater than 1 that cannot be written as a product of primes.
- If S is non-empty, there is a least element in it by WOP.
- Call this least number n. First, n can't be a prime (why?).
- So $n=a \cdot b$, where $n>a, b>1$.
- Since a and b are smaller than the smallest number in S, they can be written as product of primes.
- Let $a=p_{1} \ldots p_{k}$ and $b=q_{1} \cdots q_{l}$. But then $n=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{l}$, which is a contradiction.

Qn: How do you show uniqueness?

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume induction hypothesis for $n=k$, i.e., $k=p_{1} \cdots p_{n}$.

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume induction hypothesis for $n=k$, i.e., $k=p_{1} \cdots p_{n}$.
- Consider $n=k+1$.
- If $k+1$ is a prime, then done. Else $k+1=p \cdot q, p, q>1$.

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume induction hypothesis for $n=k$, i.e., $k=p_{1} \cdots p_{n}$.
- Consider $n=k+1$.
- If $k+1$ is a prime, then done. Else $k+1=p \cdot q, p, q>1$.
- But now it may be that $p, q \neq k$, so we can't use induction hypothesis.

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume induction hypothesis for $n=k$, i.e., $k=p_{1} \cdots p_{n}$.
- Consider $n=k+1$.
- If $k+1$ is a prime, then done. Else $k+1=p \cdot q, p, q>1$.
- But now it may be that $p, q \neq k$, so we can't use induction hypothesis.
- Let us strengthen our induction hypothesis. That is...

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume strong induction hypothesis, i.e., for all $1 \leq r \leq k$, $k=p_{1} \cdots p_{m}$.

Direct proof by induction

- Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer >1 can be written as a product of primes
Proof by induction:

- Base case: $n=2$, done.
- Assume strong induction hypothesis, i.e., for all $1 \leq r \leq k$, $k=p_{1} \cdots p_{m}$.
- By the stronger hypothesis, we can write $p=p_{1} \ldots p_{k}$ and $q=q_{1} \cdots q_{l}$.
- Therefore $k+1=p_{1} \cdots p_{k} \cdot q_{1} \cdots q_{k}$.
- Thus, the statement holds for all $n>1$.

Strong Induction

Strong Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0,(P(0) \wedge P(1) \wedge \cdots \wedge P(k)) \Longrightarrow P(k+1)$ (Induction Step)
then $P(n)$ is true for all $n \in \mathbb{N}$.

Strong Induction

Strong Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0,(P(0) \wedge P(1) \wedge \cdots \wedge P(k)) \Longrightarrow P(k+1)$ (Induction Step)
then $P(n)$ is true for all $n \in \mathbb{N}$.

Induction

Let $P(n)$ be a property of non-negative integers. If

- $P(0)$ is true (Base case)
- for all $k \geq 0, P(k) \Longrightarrow P(k+1)$ (Induction step) then $P(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Strong Induction iff Induction iff WOP

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.
5. By Ind Hyp, $k^{\prime}=q^{\prime} m+r^{\prime}$ for some $q^{\prime}, 0 \leq r^{\prime}<m$.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.
5. By Ind Hyp, $k^{\prime}=q^{\prime} m+r^{\prime}$ for some $q^{\prime}, 0 \leq r^{\prime}<m$.
6. Now to prove 3.2, we choose $q^{*}=q^{\prime}+1, r^{*}=r^{\prime}$

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.
5. By Ind Hyp, $k^{\prime}=q^{\prime} m+r^{\prime}$ for some $q^{\prime}, 0 \leq r^{\prime}<m$.
6. Now to prove 3.2, we choose $q^{*}=q^{\prime}+1, r^{*}=r^{\prime}$
7. Then, $q^{*} m+r^{*}=\left(q^{\prime}+1\right) m+r^{\prime}=q^{\prime} m+r^{\prime}+m=k^{\prime}+m=$ $((k+1)-m)+m=k+1$.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}$, r^{*} s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.
5. By Ind Hyp, $k^{\prime}=q^{\prime} m+r^{\prime}$ for some $q^{\prime}, 0 \leq r^{\prime}<m$.
6. Now to prove 3.2, we choose $q^{*}=q^{\prime}+1, r^{*}=r^{\prime}$
7. Then, $q^{*} m+r^{*}=\left(q^{\prime}+1\right) m+r^{\prime}=q^{\prime} m+r^{\prime}+m=k^{\prime}+m=$ $((k+1)-m)+m=k+1$.
Qns: Show uniqueness.

Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two $m, n \in \mathbb{N}, m \neq 0$, there exists a unique quotient q and remainder $r(q, r \in \mathbb{N})$, such that

$$
n=q \cdot m+r, \quad 0 \leq r<m
$$

1. Fix any $m>0$, we use strong induction on n.
2. Base cases: $n \in\{0, \ldots, m-1\}$. What should q and r be?
3. Induction step: We prove for all $k \geq m$,
3.1 (ind hyp): if $\forall n \in \mathbb{N}, n \leq k, \exists q, r$ s.t. $n=q m+r, 0 \leq r<m$.
3.2 (to prove): $\exists q^{*}, r^{*}$ s.t., $k+1=q^{*} m+r^{*}$ for $0 \leq r^{*}<m$.
4. Take $k^{\prime}=(k+1)-m=k-(m-1) \leq k$. i.e., $k^{\prime} \leq k$, so we can apply ind hyp on k^{\prime}.
5. By Ind Hyp, $k^{\prime}=q^{\prime} m+r^{\prime}$ for some $q^{\prime}, 0 \leq r^{\prime}<m$.
6. Now to prove 3.2, we choose $q^{*}=q^{\prime}+1, r^{*}=r^{\prime}$
7. Then, $q^{*} m+r^{*}=\left(q^{\prime}+1\right) m+r^{\prime}=q^{\prime} m+r^{\prime}+m=k^{\prime}+m=$ $((k+1)-m)+m=k+1$.
Qns: Show uniqueness. Also, what if $m, n \in \mathbb{Z}, m \neq 0$?

From proofs to structures

From proofs to structures

Next: Chapter 2: Basic Mathematical Structures

- Finite and infinite sets, Functions
- Relations

