
CS 105: Department Introductory Course on
Discrete Structures

Instructor : S. Akshay

Aug 14, 2023
Lecture 04 – Strong Induction, Basic Mathematical Structures

1



Logistics

Exercise Problem Sheets
I Problem sheet 1 released on Friday.

I (Optional) help session to be held this Wednesday at
6.30pm at CC 103 (New CSE/CC building).
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Recap of last three lectures

Chapter 1: Mathematical reasoning

I Propositions, predicates.

I Axioms, Theorems and Types of proofs: contradiction,
contrapositive, etc.

I Principle of Mathematical Induction

I Well-ordering principle.
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Direct application of WOP to prove theorems

– Proving one part of the fundamental theorem of arithmetic.
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Direct application of WOP to prove theorems

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
primes

Proof by contradiction using WOP!:

I Let S be the set of all integers greater than 1 that cannot
be written as a product of primes.

I If S is non-empty, there is a least element in it by WOP.

I Call this least number n. First, n can’t be a prime (why?).

I So n = a · b, where n > a, b > 1.

I Since a and b are smaller than the smallest number in S,
they can be written as product of primes.

I Let a = p1 . . . pk and b = q1 · · · ql. But then
n = p1 · · · pk · q1 · · · ql, which is a contradiction.

Qn: How do you show uniqueness?
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Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
primes

Proof by induction:

I Base case: n = 2, done.

I Assume induction hypothesis for n = k, i.e., k = p1 · · · pn.

I Consider n = k + 1.

I If k + 1 is a prime, then done. Else k + 1 = p · q, p, q > 1.

I But now it may be that p, q 6= k, so we can’t use induction
hypothesis.

I Let us strengthen our induction hypothesis. That is...
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Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
primes

Proof by induction:

I Base case: n = 2, done.

I Assume strong induction hypothesis, i.e., for all 1 ≤ r ≤ k,
k = p1 · · · pm.
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Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
primes

Proof by induction:

I Base case: n = 2, done.

I Assume strong induction hypothesis, i.e., for all 1 ≤ r ≤ k,
k = p1 · · · pm.

I By the stronger hypothesis, we can write p = p1 . . . pk and
q = q1 · · · ql.

I Therefore k + 1 = p1 · · · pk · q1 · · · qk.

I Thus, the statement holds for all n > 1.
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Strong Induction

Strong Induction

Let P (n) be a property of non-negative integers. If

I P (0) is true (Base case)

I for all k ≥ 0, (P (0) ∧ P (1) ∧ · · · ∧ P (k)) =⇒ P (k + 1)
(Induction Step)

then P (n) is true for all n ∈ N.

Induction

Let P (n) be a property of non-negative integers. If

I P (0) is true (Base case)

I for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)

then P (n) is true for all n ∈ N.

Theorem: Strong Induction iff Induction iff WOP
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Another exercise by Strong Induction

Quotient-Remainder Theorem

For any two m,n ∈ N, m 6= 0, there exists a unique quotient q
and remainder r (q, r ∈ N), such that

n = q ·m + r, 0 ≤ r < m

1. Fix any m > 0, we use strong induction on n.
2. Base cases: n ∈ {0, . . . ,m− 1}. What should q and r be?
3. Induction step: We prove for all k ≥ m,

3.1 (ind hyp): if ∀n ∈ N, n ≤ k, ∃q, r s.t. n = qm+ r,0 ≤ r < m.
3.2 (to prove): ∃q∗, r∗ s.t., k + 1 = q∗m + r∗ for 0 ≤ r∗ < m.

4. Take k′ = (k + 1)−m = k − (m− 1)≤ k. i.e., k′ ≤ k, so we
can apply ind hyp on k′.

5. By Ind Hyp, k′ = q′m + r′ for some q′, 0 ≤ r′ < m.
6. Now to prove 3.2, we choose q∗ = q′ + 1, r∗ = r′

7. Then, q∗m+ r∗ = (q′+ 1)m+ r′ = q′m+ r′+m = k′+m =
((k + 1)−m) + m = k + 1.

Qns: Show uniqueness. Also, what if m,n ∈ Z,m 6= 0?
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From proofs to structures

Next: Chapter 2: Basic Mathematical Structures

I Finite and infinite sets, Functions

I Relations
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