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Recap of last three lectures

Chapter 1: Mathematical reasoning
» Propositions, predicates.

» Axioms, Theorems and Types of proofs: contradiction,
contrapositive, etc.

» Principle of Mathematical Induction

» Well-ordering principle.

Some common issues
> What is the negation of

1. Vn e N,((n > 5) Vv (n? < 23))
2. There is a prime greater than 5 that is not odd.

Why do we need to know negation of statements?
» Formally writing a proof.
» Proof by Well-Ordering Principle.
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1. n=1, lhs:lz%:rhs. Hence holds.

2. : Assume statement for some £ (or for all numbers
from 1...k): 1—&—2—1—...—1—]{:@
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Formal Writing
Qn: Prove that

Proof by Induction
1. n=1, lhs:lz%:rhs. Hence holds.
2. : Assume statement for some £ (or for all numbers
from 1...k): 1—&—2—1—...—1—]{:@
:at k4 1, we need to show

14+2+4...+ (k+ 1) = &DEED)

lhs=14+2+...4+k+(k+1)=1+2+...k)+(k+1)

= 52 4 (k+1) (By )

_ k(k+1)42r2(k+1) _ (k+2)2(k+1) — rhs.

3

4. Hence by induction we can conclude for all n € N,n > 1.
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Proof by WOP
Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.

2. There exists some k for which 1+ 2...k 75 kH

3. Let S be set of all such counter—examples, ie.,
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Qn: Prove that

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1.
2.

AR

Suppose Not. i.e., the negation of the statement holds.
There exists some k for which 1 +2...% ;é k“

Let S be set of all such counter—examples, ie.,
S={teN|1+2...¢% 4Dy

S is non-empty! Why? Because by above, k € S.

By WOP, S must have a smallest element, let it be ¥’ € S.
k' # 1, so k' — 1 exists. Because for n = 1, we use Base case!
At k' — 1 < k, statement is true, i.e.,

142, (K —1) = EZE)

But now, 1 +2...(K = 1)+ k = (F=L(E) 71)(’4) + kK = (k ==y



Formal Writing

Qn: Prove that
Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1.
2.
3.

A

© o

Suppose Not. i.e., the negation of the statement holds.
There exists some k for which 1+ 2...k # k(kTH)

Let S be set of all such counter-examples, i.e.,
S={teN|1+2...¢% 4Dy

S is non-empty! Why? Because by above, k € S.

By WOP, S must have a smallest element, let it be k' € S.
k' # 1, so k' — 1 exists. Because for n = 1, we use Base case!
At k' — 1 < k, statement is true, i.e.,

142, (K —1) = EZE)

Butnovv,1+2...(k'71)+k/=W+HZW‘

. Implies k¥’ ¢ S. A contradiction.
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Next: Chapter 2: Basic Mathematical Structures
» Finite and infinite sets, Functions
> Relations
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What is a set?
> A set is an unordered collection of objects.

» The objects in a set are called its elements.
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What is a set?
> A set is an unordered collection of objects.

» The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined
by (or satisfy) P is a set, i.e., S = {z | P(z)}.



Some simple boring stuff about sets

Examples and properties

> We have already seen examples: Z,N, R, set of all horses,...
> Let A, B be two sets. Recall the usual definitions:
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Equality A = B, Subset A C B,

Cartesian product A x B = {(a,b) | a € A,b € B}
Union AUB={z|a€ Aorbec B}

Intersection ANB ={z|a € A and b € B}
Empty set ¢,

Power set of A =P(A)= set of all subsets of A.
If U is the universe, then the complement of A,

A=A={zecU|x¢gA}
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A barber is a man in town who only shaves those who don’t
shave themselves.

Barber’s paradox: Does the barber shave himself?

Russell’s paradox

Let S={X | X ¢ X}

Then if S € S, then S ¢ S and if S & S, then S € S!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)
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Not so simple...

A barber is a man in town who only shaves those who don’t
shave themselves.
Barber’s paradox: Does the barber shave himself?

Russell’s paradox
Let S={X | X ¢ X}
Then if S € S, then S ¢ S and if S ¢ S, then S € S!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a
property P, S ={x € A| P(z)} is a set.

Let P(z) =x ¢ x. let Abeasetand S={z € A|z &z}.
» if (S €.5): from the definition of S, S € Aand S & S,
which is a contradiction.
» if (S ¢.S5): from the definition, either S ¢ A or S € S. But
we have assumed that S ¢ S. Hence, S ¢ A. No

contradiction!



