CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 17, 2023
Lecture 05 - Basic Mathematical Structures

Recap of last three lectures

Chapter 1: Mathematical reasoning

- Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- Principle of Mathematical Induction
- Well-ordering principle.

Recap of last three lectures

Chapter 1: Mathematical reasoning

- Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- Principle of Mathematical Induction
- Well-ordering principle.

Some common issues

- What is the negation of

1. $\forall n \in \mathbb{N},\left((n \geq 5) \vee\left(n^{2}<23\right)\right)$
2. There is a prime greater than 5 that is not odd.

Recap of last three lectures

Chapter 1: Mathematical reasoning

- Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- Principle of Mathematical Induction
- Well-ordering principle.

Some common issues

- What is the negation of

1. $\forall n \in \mathbb{N},\left((n \geq 5) \vee\left(n^{2}<23\right)\right)$
2. There is a prime greater than 5 that is not odd.

Why do we need to know negation of statements?

Recap of last three lectures

Chapter 1: Mathematical reasoning

- Propositions, predicates.
- Axioms, Theorems and Types of proofs: contradiction, contrapositive, etc.
- Principle of Mathematical Induction
- Well-ordering principle.

Some common issues

- What is the negation of

1. $\forall n \in \mathbb{N},\left((n \geq 5) \vee\left(n^{2}<23\right)\right)$
2. There is a prime greater than 5 that is not odd.

Why do we need to know negation of statements?

- Formally writing a proof.
- Proof by Well-Ordering Principle.

Formal Writing

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Formal Writing

$$
\text { Qn: Prove that } \forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Proof by Induction

Formal Writing

$$
\text { Qn: Prove that } \forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Proof by Induction

1. Base case $n=1, \operatorname{lhs}=1=\frac{1 \cdot 2}{2}=$ rhs. Hence holds.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by Induction

1. Base case $n=1, \operatorname{lhs}=1=\frac{1 \cdot 2}{2}=$ rhs. Hence holds.
2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \ldots k): 1+2+\ldots+k=\frac{k(k+1)}{2}$

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by Induction

1. Base case $n=1, \operatorname{lhs}=1=\frac{1 \cdot 2}{2}=$ rhs. Hence holds.
2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \ldots k): 1+2+\ldots+k=\frac{k(k+1)}{2}$
3. Ind Step: at $k+1$, we need to show

$$
1+2+\ldots+(k+1)=\frac{(k+1)(k+2)}{2}
$$

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by Induction

1. Base case $n=1, \operatorname{lhs}=1=\frac{1 \cdot 2}{2}=$ rhs. Hence holds.
2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \ldots k): 1+2+\ldots+k=\frac{k(k+1)}{2}$
3. Ind Step: at $k+1$, we need to show

$$
\begin{aligned}
& 1+2+\ldots+(k+1)=\frac{(k+1)(k+2)}{2} \\
& \text { lhs }=1+2+\ldots+k+(k+1)=(1+2+\ldots k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1)(\text { By Induction Hypothesis }) \\
& =\frac{k(k+1)+2(k+1)}{2}=\frac{(k+2)(k+1)}{2}=r h s .
\end{aligned}
$$

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by Induction

1. Base case $n=1, \operatorname{lhs}=1=\frac{1 \cdot 2}{2}=$ rhs. Hence holds.
2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \ldots k): 1+2+\ldots+k=\frac{k(k+1)}{2}$
3. Ind Step: at $k+1$, we need to show

$$
\begin{aligned}
& 1+2+\ldots+(k+1)=\frac{(k+1)(k+2)}{2} \\
& \text { lhs }=1+2+\ldots+k+(k+1)=(1+2+\ldots k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1)(\text { By Induction Hypothesis }) \\
& =\frac{k(k+1)+2(k+1)}{2}=\frac{(k+2)(k+1)}{2}=r h s .
\end{aligned}
$$

4. Hence by induction we can conclude for all $n \in \mathbb{N}, n \geq 1$.

Formal Writing

$$
\text { Qn: Prove that } \forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

Formal Writing

$$
\text { Qn: Prove that } \forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

4. S is non-empty! Why? Because by above, $k \in S$.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

4. S is non-empty! Why? Because by above, $k \in S$.
5. By WOP, S must have a smallest element, let it be $k^{\prime} \in S$.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e., $S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}$
4. S is non-empty! Why? Because by above, $k \in S$.
5. By WOP, S must have a smallest element, let it be $k^{\prime} \in S$.
6. $k^{\prime} \neq 1$, so $k^{\prime}-1$ exists. Because for $n=1$, we use Base case!

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

4. S is non-empty! Why? Because by above, $k \in S$.
5. By WOP, S must have a smallest element, let it be $k^{\prime} \in S$.
6. $k^{\prime} \neq 1$, so $k^{\prime}-1$ exists. Because for $n=1$, we use Base case!
7. At $k^{\prime}-1<k$, statement is true, i.e., $1+2 \ldots\left(k^{\prime}-1\right)=\frac{\left(k^{\prime}-1\right)\left(k^{\prime}\right)}{2}$.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

4. S is non-empty! Why? Because by above, $k \in S$.
5. By WOP, S must have a smallest element, let it be $k^{\prime} \in S$.
6. $k^{\prime} \neq 1$, so $k^{\prime}-1$ exists. Because for $n=1$, we use Base case!
7. At $k^{\prime}-1<k$, statement is true, i.e., $1+2 \ldots\left(k^{\prime}-1\right)=\frac{\left(k^{\prime}-1\right)\left(k^{\prime}\right)}{2}$.
8. But now, $1+2 \ldots\left(k^{\prime}-1\right)+k^{\prime}=\frac{\left(k^{\prime}-1\right)\left(k^{\prime}\right)}{2}+k^{\prime}=\frac{k^{\prime}\left(k^{\prime}+1\right)}{2}$.

Formal Writing

Qn: Prove that $\forall n \in \mathbb{N}, n \geq 1,1+2+\ldots+n=\frac{n(n+1)}{2}$

Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.
2. There exists some k for which $1+2 \ldots k \neq \frac{k(k+1)}{2}$.
3. Let S be set of all such counter-examples, i.e.,

$$
S=\left\{\ell \in \mathbb{N} \left\lvert\, 1+2 \ldots \ell \neq \frac{\ell(\ell+1)}{2}\right.\right\}
$$

4. S is non-empty! Why? Because by above, $k \in S$.
5. By WOP, S must have a smallest element, let it be $k^{\prime} \in S$.
6. $k^{\prime} \neq 1$, so $k^{\prime}-1$ exists. Because for $n=1$, we use Base case!
7. At $k^{\prime}-1<k$, statement is true, i.e., $1+2 \ldots\left(k^{\prime}-1\right)=\frac{\left(k^{\prime}-1\right)\left(k^{\prime}\right)}{2}$.
8. But now, $1+2 \ldots\left(k^{\prime}-1\right)+k^{\prime}=\frac{\left(k^{\prime}-1\right)\left(k^{\prime}\right)}{2}+k^{\prime}=\frac{k^{\prime}\left(k^{\prime}+1\right)}{2}$.
9. Implies $k^{\prime} \notin S$. A contradiction.

From proofs to structures

From proofs to structures

Next: Chapter 2: Basic Mathematical Structures

- Finite and infinite sets, Functions
- Relations

Sets

What is a set?

- A set is an unordered collection of objects.
- The objects in a set are called its elements.

Sets

The Conception of Power or Cardinal Number
By an "aggregate" (Menge) we are to understand
any collection into a whole (Zusammenfassung zu
einem Ganzen) M of definite and separate objects m
of our intuition or our thought. These objects are
called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- A set is an unordered collection of objects.
- The objects in a set are called its elements.

Sets

> § 1
> The Conception of Power or Cardinal Number By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- A set is an unordered collection of objects.
- The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined by (or satisfy) P is a set, i.e., $S=\{x \mid P(x)\}$.

Some simple boring stuff about sets

Examples and properties

- We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
- Equality $A=B$, Subset $A \subseteq B$,
- Cartesian product $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B=\{x \mid a \in A$ or $b \in B\}$
- Intersection $A \cap B=\{x \mid a \in A$ and $b \in B\}$
- Empty set ϕ,
- Power set of $A=\mathcal{P}(A)=$ set of all subsets of A.
- If U is the universe, then the complement of A, $\bar{A}=A^{c}=\{x \in U \mid x \notin A\}$.

Some simple boring stuff about sets

Examples and properties

- We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
- Equality $A=B$, Subset $A \subseteq B$,
- Cartesian product $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B=\{x \mid a \in A$ or $b \in B\}$
- Intersection $A \cap B=\{x \mid a \in A$ and $b \in B\}$
- Empty set ϕ,
- Power set of $A=\mathcal{P}(A)=$ set of all subsets of A.
- If U is the universe, then the complement of A, $\bar{A}=A^{c}=\{x \in U \mid x \notin A\}$.
So, what is the difference between $\{\emptyset\}$ and \emptyset ?

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?
Russell's paradox
Let $S=\{X \mid X \notin X\}$
Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S=\{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?
Russell's paradox
Let $S=\{X \mid X \notin X\}$
Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!
Axiomatic approach to set theory (ZFC!)
Start with a few objects defined. Then for a set A and a property $P, S=\{x \in A \mid P(x)\}$ is a set.

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?
Russell's paradox
Let $S=\{X \mid X \notin X\}$
Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!
Axiomatic approach to set theory (ZFC!)
Start with a few objects defined. Then for a set A and a property $P, S=\{x \in A \mid P(x)\}$ is a set.

Why does this definition get rid of Russell's paradox?

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S=\{X \mid X \notin X\}$
Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S=\{x \in A \mid P(x)\}$ is a set.

Let $P(x)=x \notin x$. let A be a set and $S=\{x \in A \mid x \notin x\}$.

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S=\{X \mid X \notin X\}$
Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S=\{x \in A \mid P(x)\}$ is a set.

Let $P(x)=x \notin x$. let A be a set and $S=\{x \in A \mid x \notin x\}$.

- if $(S \in S)$: from the definition of $S, S \in A$ and $S \notin S$, which is a contradiction.

Not so simple...

A barber is a man in town who only shaves those who don't shave themselves.
Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S=\{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S=\{x \in A \mid P(x)\}$ is a set.

Let $P(x)=x \notin x$. let A be a set and $S=\{x \in A \mid x \notin x\}$.

- if $(S \in S)$: from the definition of $S, S \in A$ and $S \notin S$, which is a contradiction.
- if $(S \notin S)$: from the definition, either $S \notin A$ or $S \in S$. But we have assumed that $S \notin S$. Hence, $S \notin A$. No contradiction!

