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Recap of last three lectures

Chapter 1: Mathematical reasoning

I Propositions, predicates.

I Axioms, Theorems and Types of proofs: contradiction,
contrapositive, etc.

I Principle of Mathematical Induction

I Well-ordering principle.

Some common issues
I What is the negation of

1. ∀n ∈ N, ((n ≥ 5) ∨ (n2 < 23))
2. There is a prime greater than 5 that is not odd.

Why do we need to know negation of statements?

I Formally writing a proof.

I Proof by Well-Ordering Principle.
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2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

2. Ind Hyp: Assume statement for some k (or for all numbers
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1 + 2 + . . .+ (k + 1) = (k+1)(k+2)

2
lhs= 1 + 2 + . . .+ k + (k + 1) = (1 + 2 + . . . k) + (k + 1)

= k(k+1)
2 + (k + 1) (By Induction Hypothesis)

= k(k+1)+2(k+1)
2 = (k+2)(k+1)

2 = rhs.
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From proofs to structures

Next: Chapter 2: Basic Mathematical Structures

I Finite and infinite sets, Functions

I Relations
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Sets

Figure: Georg Cantor (1845-1918); extract

What is a set?
I A set is an unordered collection of objects.
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Sets

Figure: Georg Cantor (1845-1918); extract

What is a set?
I A set is an unordered collection of objects.

I The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined
by (or satisfy) P is a set, i.e., S = {x | P (x)}.
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Some simple boring stuff about sets

Examples and properties

I We have already seen examples: Z,N,R, set of all horses,...

I Let A,B be two sets. Recall the usual definitions:
I Equality A = B, Subset A ⊆ B,
I Cartesian product A×B = {(a, b) | a ∈ A, b ∈ B}
I Union A ∪B = {x | a ∈ A or b ∈ B}
I Intersection A ∩B = {x | a ∈ A and b ∈ B}
I Empty set φ,
I Power set of A = P(A)= set of all subsets of A.
I If U is the universe, then the complement of A,

Ā = Ac = {x ∈ U | x 6∈ A}.

So, what is the difference between {∅} and ∅?
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Not so simple...

A barber is a man in town who only shaves those who don’t
shave themselves.
Barber’s paradox: Does the barber shave himself?
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Russell’s paradox

Let S = {X | X 6∈ X}
Then if S ∈ S, then S 6∈ S and if S 6∈ S, then S ∈ S!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)
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Start with a few objects defined. Then for a set A and a
property P , S = {x ∈ A | P (x)} is a set.

Let P (x) = x 6∈ x. let A be a set and S = {x ∈ A | x 6∈ x}.
I if (S ∈ S): from the definition of S, S ∈ A and S 6∈ S,

which is a contradiction.
I if (S 6∈ S): from the definition, either S 6∈ A or S ∈ S. But

we have assumed that S 6∈ S. Hence, S 6∈ A. No
contradiction!
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