CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 22, 2023
Lecture 07 - Basic Mathematical Structures
Countable Sets and functions

Pop Quiz

Define a sequence of shapes as follows:

- $K(0)$ is an equilateral triangle.
- For $n>0, K(n)$ is formed by replacing each line segment of $K(n-1)$ by the shape shown in bottom of left fig., such that tha rentral vertex points outwards.

The first four stages in the construction of the Koch snowflake

1. Show by induction that $\forall n \in \mathbb{N}$, the no. of line segments in $K(n)$ is $4^{n} \cdot 3$.
2. If the original equilateral triangle $K(0)$ has side length 1 ,
2.1 what is the perimeter of $K(n)$ as a function of n ?
2.2 what is the area of $K(n)$? (Prove both by induction)

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

One direction is easy.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

One direction is easy. (\Longleftarrow)

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

One direction is easy. (\Longleftarrow)

1. Show contrapositive! If A is finite, then there can't be a bijection from A to $A \cup\{b\}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.
4. If $a \neq a_{i}$ for any $i \in \mathbb{N}$, then Define $f(a)=a$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.
4. If $a \neq a_{i}$ for any $i \in \mathbb{N}$, then Define $f(a)=a$.
5. f is a bijection! Prove surjection and injection...

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.
4. If $a \neq a_{i}$ for any $i \in \mathbb{N}$, then Define $f(a)=a$.
5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

- Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.
4. If $a \neq a_{i}$ for any $i \in \mathbb{N}$, then Define $f(a)=a$.
5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

- Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup\{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_{0} \in A$. Define $f\left(a_{0}\right)=b$.
2. Now $A \backslash\left\{a_{0}\right\}$ is infinite \Longrightarrow non-empty, so let $a_{1} \in A \backslash\left\{a_{0}\right\}$. Define $f\left(a_{1}\right)=a_{0}$.
3. $\forall i \in \mathbb{N}, i \geq 1, A \backslash\left\{a_{0}, \ldots a_{i-1}\right\}$ is infinite, hence non-empty, so let $a_{i} \in A \backslash\left\{a_{0}, \ldots, a_{i-1}\right\}$. Define $f\left(a_{i}\right)=a_{i-1}$.
4. If $a \neq a_{i}$ for any $i \in \mathbb{N}$, then Define $f(a)=a$.
5. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

- Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".
- From any set A, there is a surjection from A to \mathbb{N}.

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N}.
Proof: Hilbert's hotel argument. But how do you formalize it?

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N}.
Proof: Hilbert's hotel argument. But how do you formalize it?

$$
f(x)= \begin{cases}-2 x & \text { if } x \leq 0 \\ 2 x-1 & \text { else }\end{cases}
$$

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N}.
Proof: Hilbert's hotel argument. But how do you formalize it?

$$
f(x)= \begin{cases}-2 x & \text { if } x \leq 0 \\ 2 x-1 & \text { else }\end{cases}
$$

Some questions...

1. Is there a bijection between $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
2. Is there a bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
3. Is there a bijection from \mathbb{Q} to \mathbb{N} ?
4. Is there a bijection from the set of all subsets of \mathbb{N} to \mathbb{N} ?
5. Is there a bijection from \mathbb{R} to \mathbb{N} ?

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N}, then C is called countably infinite.
- A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...
By previous corollary (\exists surj from any infinite set to \mathbb{N})
Countably infinite sets are the "smallest" infinite sets.

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N}, then C is called countably infinite.
- A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...
By previous corollary (\exists surj from any infinite set to \mathbb{N})
Countably infinite sets are the "smallest" infinite sets.
What are the other properties of countable sets?

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- the set of all integers \mathbb{Z}
- $\mathbb{N} \times \mathbb{N}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- the set of rationals \mathbb{Q}
- the set of all (finite and infinite) subsets of \mathbb{N}
- the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?
That is, is there a bijection from these sets to \mathbb{N} ?

- the set of all integers \mathbb{Z}
- $\mathbb{N} \times \mathbb{N}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- the set of rationals \mathbb{Q}
- the set of all (finite and infinite) subsets of \mathbb{N}
- the set of all real numbers \mathbb{R}

To show these it suffices to show that

- there is an injection from these sets to \mathbb{N}

Some questions...

Are the following sets countable?
That is, is there a bijection from these sets to \mathbb{N} ?

- the set of all integers \mathbb{Z}
- $\mathbb{N} \times \mathbb{N}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- the set of rationals \mathbb{Q}
- the set of all (finite and infinite) subsets of \mathbb{N}
- the set of all real numbers \mathbb{R}

To show these it suffices to show that

- there is an injection from these sets to \mathbb{N}
- or there is a surjection from \mathbb{N} (or any countable set) to these sets.

