CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 24, 2023
Lecture 08 - Basic Mathematical Structures
Countable and Uncountable Sets

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...
By previous corollary (\exists surj from any infinite set to \mathbb{N})
Countably infinite sets are the "smallest" infinite sets.

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

1. the set of all integers \mathbb{Z}
2. $\mathbb{N} \times \mathbb{N}$
3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
4. the set of rationals \mathbb{Q}
5. the set of all (finite and infinite) subsets of \mathbb{N}
6. the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?
That is, is there a bijection from these sets to \mathbb{N} ?

1. the set of all integers \mathbb{Z}
2. $\mathbb{N} \times \mathbb{N}$
3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
4. the set of rationals \mathbb{Q}
5. the set of all (finite and infinite) subsets of \mathbb{N}
6. the set of all real numbers \mathbb{R}

To show these it suffices to show that

- there is an injection from these sets to \mathbb{N}

Some questions...

Are the following sets countable?
That is, is there a bijection from these sets to \mathbb{N} ?

1. the set of all integers \mathbb{Z}
2. $\mathbb{N} \times \mathbb{N}$
3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
4. the set of rationals \mathbb{Q}
5. the set of all (finite and infinite) subsets of \mathbb{N}
6. the set of all real numbers \mathbb{R}

To show these it suffices to show that

- there is an injection from these sets to \mathbb{N}
- or there is a surjection from \mathbb{N} (or any countable set) to these sets.

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set

Can we say $\left\{a_{0}, \ldots, b_{0}, \ldots\right\}$ is a countably infinite set?

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set

Can we say $\left\{a_{0}, \ldots, b_{0}, \ldots\right\}$ is a countably infinite set?

- But then what is the position of b_{i} (i.e., natural number corresponding to it)?

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set Can we say $\left\{a_{0}, \ldots, b_{0}, \ldots\right\}$ is a countably infinite set?

- But then what is the position of b_{i} (i.e., natural number corresponding to it)?
- Rather, choose $\left\{a_{0}, b_{0}, a_{1}, b_{1}, \ldots\right\}$, then b_{i} is at $(2 i+1)^{t h}$ position.

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set

Can we say $\left\{a_{0}, \ldots, b_{0}, \ldots\right\}$ is a countably infinite set?

- But then what is the position of b_{i} (i.e., natural number corresponding to it)?
- Rather, choose $\left\{a_{0}, b_{0}, a_{1}, b_{1}, \ldots\right\}$, then b_{i} is at $(2 i+1)^{t h}$ position.
- Formally, define a bijection $f:(A \cup B) \rightarrow \mathbb{N}$ by $f\left(a_{i}\right)=2 i$ and $f\left(b_{i}\right)=2 i+1$

Unions of countable sets is countable

Let $A=\left\{a_{0}, \ldots,\right\}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B=\left\{b_{0}\right\}$ is a singleton
2. $B=\left\{b_{0}, \ldots, b_{n}\right\}$ is a finite set
3. $B=\left\{b_{0}, \ldots\right\}$ is a countably infinite set

Can we say $\left\{a_{0}, \ldots, b_{0}, \ldots\right\}$ is a countably infinite set?

- But then what is the position of b_{i} (i.e., natural number corresponding to it)?
- Rather, choose $\left\{a_{0}, b_{0}, a_{1}, b_{1}, \ldots\right\}$, then b_{i} is at $(2 i+1)^{t h}$ position.
- Formally, define a bijection $f:(A \cup B) \rightarrow \mathbb{N}$ by $f\left(a_{i}\right)=2 i$ and $f\left(b_{i}\right)=2 i+1$
- Is this correct?

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

- That is, define a bijection from $A \times B$ to \mathbb{N}.

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

- That is, define a bijection from $A \times B$ to \mathbb{N}.

$$
f\left(a_{i}, b_{j}\right)=\left(\sum_{k=1}^{i+j} k\right)+j+1
$$

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

- That is, define a bijection from $A \times B$ to \mathbb{N}.

$$
f\left(a_{i}, b_{j}\right)=\left(\sum_{k=1}^{i+j} k\right)+j+1
$$

Corollaries

- $\mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$ are countable.

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

- That is, define a bijection from $A \times B$ to \mathbb{N}.

$$
f\left(a_{i}, b_{j}\right)=\left(\sum_{k=1}^{i+j} k\right)+j+1
$$

Corollaries

- $\mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$ are countable.
- The set of (positive) rationals is countable.

Products of countable sets are countable

Theorem: The cartesian product of two countably infinite sets is countably infinite
Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B=\{(a, b) \mid a \in A, b \in B\}$.

- That is, define a bijection from $A \times B$ to \mathbb{N}.

$$
f\left(a_{i}, b_{j}\right)=\left(\sum_{k=1}^{i+j} k\right)+j+1
$$

Corollaries

- $\mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$ are countable.
- The set of (positive) rationals is countable.

Hint: Show that $f(a, b)=\left\{\begin{array}{l}a / b \text { if } b \neq 0 \\ 0 \text { if } b=0\end{array}\right.$, is a surjection. How does the result follow?

Countable sets and functions

Are the following sets countable?

- the set of all integers \mathbb{Z}
- $\mathbb{N} \times \mathbb{N}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- the set of rationals \mathbb{Q}
- the set of all (finite and infinite) subsets of \mathbb{N}
- the set of all real numbers \mathbb{R}

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

- Proving existence just needs one to exhibit a function
- But how do we prove non-existence?

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

- Proving existence just needs one to exhibit a function
- But how do we prove non-existence? Try contradiction.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	\checkmark	\times	\times	\times	\ldots
$f(1)$	\checkmark	\times	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	\times	\times	\ldots
$f(3)$	\times	\checkmark	\times	\checkmark	\ldots

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\cdots
$f(1)$	\checkmark	$\nVdash \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.
- S and $f(j)$ differ at position j, for any j.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.
- S and $f(j)$ differ at position j, for any j.
- Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction! \square

Cantor's diagonalization

Does this proof look familiar??

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

- $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

- $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.
- If $\exists j \in \mathbb{N}$ such that $f(j)=S$, then we have a contradiction.
- If $j \in S$, then $j \notin f(j)=S$.
- If $j \notin S$, then $j \notin f(j)$, which implies $j \in S$.

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- So there is an infinite hierarchy of "larger" infinities...

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- So there is an infinite hierarchy of "larger" infinities...
- There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N}.

