CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 28, 2023
Lecture 09 - Basic Mathematical Structures
Uncountable Sets and relations

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Qn. Show that set of primes P is countable.

- Proof 1

1. In Lecture 1, we showed that set of primes is infinite.

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Qn. Show that set of primes P is countable.

- Proof 1

1. In Lecture 1, we showed that set of primes is infinite.
2. So there is surjection from P to \mathbb{N}.

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Qn. Show that set of primes P is countable.

- Proof 1

1. In Lecture 1, we showed that set of primes is infinite.
2. So there is surjection from P to \mathbb{N}.
3. Now, $P \subseteq \mathbb{N}$. $I d: P \rightarrow \mathbb{N}$ is an injection.

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Qn. Show that set of primes P is countable.

- Proof 1

1. In Lecture 1, we showed that set of primes is infinite.
2. So there is surjection from P to \mathbb{N}.
3. Now, $P \subseteq \mathbb{N}$. $I d: P \rightarrow \mathbb{N}$ is an injection. Conclude by Schroder-Bernstein Theorem.

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N}.
- A set is countable if it is finite or countably infinite.

Properties

- Union of countable sets is countable (e.g., $\mathbb{Z} \cup\{\sqrt{2}\}$)
- Cartesian product of countable sets is countable(e.g., $\mathbb{Z} \times \mathbb{N}$)

Qn. Show that set of primes P is countable.

- Proof 1

1. In Lecture 1, we showed that set of primes is infinite.
2. So there is surjection from P to \mathbb{N}.
3. Now, $P \subseteq \mathbb{N}$. $I d: P \rightarrow \mathbb{N}$ is an injection. Conclude by Schroder-Bernstein Theorem.

- Proof 2 Show $f: P \rightarrow \mathbb{N}$ by f maps $i^{\text {th }}$ prime to i is a bijection

Countable sets and functions

Are the following sets countable?

- the set of all integers \mathbb{Z}
- $\mathbb{N} \times \mathbb{N}$
- $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- the set of rationals \mathbb{Q}
- the set of all (finite and infinite) subsets of \mathbb{N}
- the set of all real numbers \mathbb{R}

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	\checkmark	\times	\times	\times	\ldots
$f(1)$	\checkmark	\times	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	\times	\times	\ldots
$f(3)$	\times	\checkmark	\times	\checkmark	\ldots

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\cdots
$f(1)$	\checkmark	$\nVdash \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.
- S and $f(j)$ differ at position j, for any j.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.
Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	\ldots
$f(0)$	$\checkmark \times$	\times	\times	\times	\ldots
$f(1)$	\checkmark	$\nprec \checkmark$	\checkmark	\checkmark	\ldots
$f(2)$	\times	\times	$\nprec \checkmark$	\times	\ldots
$f(3)$	\times	\checkmark	\times	$\checkmark \times$	\ldots

- Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$.
- As f is bij, $\exists j \in \mathbb{N}, f(j)=S$.
- S and $f(j)$ differ at position j, for any j.
- Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction! \square

Cantor's diagonalization

Does this proof look familiar??

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

- $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

- $S=\{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.
- If $\exists j \in \mathbb{N}$ such that $f(j)=S$, then we have a contradiction.
- If $j \in S$, then $j \notin f(j)=S$.
- If $j \notin S$, then $j \notin f(j)$, which implies $j \in S$.

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- So there is an infinite hierarchy of "larger" infinities...

Cantor's diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- So there is an infinite hierarchy of "larger" infinities...
- There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N}.

One infinity is "strictly" bigger than another!

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

One infinity is "strictly" bigger than another!

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

- But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N}.
- Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

One infinity is "strictly" bigger than another!

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

- But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N}.
- Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

One infinity is "strictly" bigger than another!

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N}.

- But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N}.
- Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

Cantor's Continuum hypothesis

There is no set whose "cardinality" is strictly between \mathbb{N} and $\mathcal{P}(\mathbb{N})$ (i.e., between naturals and reals).

Figure: 1st of Hilbert's 23 problems for the 20th century in 1900.

What did the world think about these proofs (in 1890s?)

(a) Kronecker

(b) Poincare

(c) Theologians

- Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- Poincare: Set theory is a "disease" from which mathematics will be cured.
- Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!

What did the world think about these proofs (in 1890s?)

(a) Kronecker

(b) Poincare

(c) Theologians

- Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- Poincare: Set theory is a "disease" from which mathematics will be cured.
- Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!
- Hilbert: No one can expel us from the paradise that Cantor has created for us.

Summary and moving on...

- Finite and infinite sets.
- Using functions to compare sets: focus on bijections.
- Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument (A new powerful proof technique!).

Summary and moving on...

- Finite and infinite sets.
- Using functions to compare sets: focus on bijections.
- Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument (A new powerful proof technique!).

Next: Basic Mathematical Structures - Relations

Relations

Definition: Function

Let A, B be two sets. A function f from A to B is a subset R of $A \times B$ such that
(i) $\forall a \in A, \exists b \in B$ such that $(a, b) \in R$, and
(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b=c$.

- Now, suppose A is the set of all Btech students and B is the set of all courses. Clearly, we can assign to each student the set of courses he/she is taking. Is this a function?

Relations

Definition: Function

Let A, B be two sets. A function f from A to B is a subset R of $A \times B$ such that
(i) $\forall a \in A, \exists b \in B$ such that $(a, b) \in R$, and
(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b=c$.

- Now, suppose A is the set of all Btech students and B is the set of all courses. Clearly, we can assign to each student the set of courses he/she is taking. Is this a function?
- By removing the two extra assumptions in the defn, we get:

Definition: Relation

- A relation R from A to B is a subset of $A \times B$. If $(a, b) \in R$, we also write this as $a R b$.
- Thus, a relation is a way to relate the elements of two (not necessarily different) sets.

Examples and representations of relations

We write $R(A, B)$ for a relation from A to B and just $R(A)$ if $A=B$. Also if A is clear from context, we just write R.

Examples of relations

- All functions are relations.
- $R_{1}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a-b$ is even $\}$.
- $R_{2}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.
- Let S be a set, $R_{3}(\mathcal{P}(S))=\{(A, B) \mid A, B \subseteq S, A \subseteq B\}$.
- Relational databases are practical examples.

Examples and representations of relations

We write $R(A, B)$ for a relation from A to B and just $R(A)$ if $A=B$. Also if A is clear from context, we just write R.

Examples of relations

- All functions are relations.
- $R_{1}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a-b$ is even $\}$.
- $R_{2}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.
- Let S be a set, $R_{3}(\mathcal{P}(S))=\{(A, B) \mid A, B \subseteq S, A \subseteq B\}$.
- Relational databases are practical examples.

Representations of a relation from A to B.

- As a set of ordered pairs of elements, i.e., subset of $A \times B$.
- As a directed graph.
- As a (database) table.

Use of relations

Practical application in relational databases: IMDB, university records, etc.

Use of relations

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

Use of relations

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

- Functions were special kinds of relations that were useful to compare sets.

Use of relations

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

- Functions were special kinds of relations that were useful to compare sets.
- Are there other special relations?What are they useful for?

Use of relations

Practical application in relational databases: IMDB, university records, etc.

But, why study relations in this course?

- Functions were special kinds of relations that were useful to compare sets.
- Are there other special relations?What are they useful for?
- Equivalence relations
- Partial orders

Partitions of a set - grouping "like" elements

Examples

- Natural numbers are partitioned into even and odd.
- This class is partitioned into sets of students from same hostel.

How do you define a partition?

Partitions of a set - grouping "like" elements

Examples

- Natural numbers are partitioned into even and odd.
- This class is partitioned into sets of students from same hostel.

How do you define a partition?
Definition
A partition of a set S is a

Partitions of a set - grouping "like" elements

Examples

- Natural numbers are partitioned into even and odd.
- This class is partitioned into sets of students from same hostel.

How do you define a partition?
Definition
A partition of a set S is a set P of its subsets such that

Partitions of a set - grouping "like" elements

Examples

- Natural numbers are partitioned into even and odd.
- This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

- if $S^{\prime} \in P$, then $S^{\prime} \neq \emptyset$.
- $\bigcup_{S^{\prime} \in P} S^{\prime}=S$: its union covers entire set S.
- If $S_{1}, S_{2} \in P$, then $S_{1} \cap S_{2}=\emptyset$: sets are disjoint.

Partitions of a set - grouping "like" elements

Examples

- Natural numbers are partitioned into even and odd.
- This class is partitioned into sets of students from same hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

- if $S^{\prime} \in P$, then $S^{\prime} \neq \emptyset$.
- $\bigcup_{S^{\prime} \in P} S^{\prime}=S$: its union covers entire set S.
- If $S_{1}, S_{2} \in P$, then $S_{1} \cap S_{2}=\emptyset$: sets are disjoint.

Can you think of two trivial partitions that any set must have?

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...
- But, this sounds like relation, right? Which one?

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...
- But, this sounds like relation, right? Which one?

Relation generated by a partition

- Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- So can we define this as a relation?

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...
- But, this sounds like relation, right? Which one?

Relation generated by a partition

- Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- So can we define this as a relation? $a R b$ if a is "like" b.

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...
- But, this sounds like relation, right? Which one?

Relation generated by a partition

- Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- So can we define this as a relation? $a R b$ if a is "like" b.
- Formally, we define $R(S)$ by $a R b$ if a and b belong to the same set in the partition of S.

Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- Same hostel...
- But, this sounds like relation, right? Which one?

Relation generated by a partition

- Clearly all elements in a set of the partition are related by the "sameness" or "likeness" property.
- So can we define this as a relation? $a R b$ if a is "like" b.
- Formally, we define $R(S)$ by $a R b$ if a and b belong to the same set in the partition of S.

What properties does this relation have?

