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Uncountable Sets and relations
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Countable and countably infinite sets

Definition
I Set C is called countably infinite, if there is a bijection

from set C to N.

I A set is countable if it is finite or countably infinite.

Properties

I Union of countable sets is countable (e.g., Z ∪ {
√

2})
I Cartesian product of countable sets is countable(e.g.,Z×N)

Qn. Show that set of primes P is countable.

I Proof 1

1. In Lecture 1, we showed that set of primes is infinite.
2. So there is surjection from P to N.
3. Now, P ⊆ N. Id : P → N is an injection. Conclude by

Schroder-Bernstein Theorem.

I Proof 2 Show f : P → N by f maps ith prime to i is a bijection
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Countable sets and functions

Are the following sets countable?

I the set of all integers Z
I N× N
I N× N× N
I the set of rationals Q
I the set of all (finite and infinite) subsets of N
I the set of all real numbers R

3



Comparing N and set of all subsets of N

Theorem (Cantor, 1891)

There is no bijection between N and the set of all subsets of N.
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Comparing N and set of all subsets of N

Theorem (Cantor, 1891)

There is no bijection between N and the set of all subsets of N.

Proof by contradiction: Suppose there is such a bijection, say f .
This would imply that each i ∈ N maps to some set f(i) ⊆ N.

0 1 2 3 . . .

f(0) X × × × . . .
f(1) X × X X . . .
f(2) × × × × . . .
f(3) × X × X . . .
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elements, i.e., S = {i ∈ N | i 6∈ f(i)}.

I As f is bij, ∃j ∈ N, f(j) = S.
I S and f(j) differ at position j, for any j.
I Thus, S 6= f(j) for all j ∈ N, which is a contradiction!

4



Cantor’s diagonalization

Does this proof look familiar??
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I S = {i ∈ N | i 6∈ f(i)} is like the one from Russell’s
paradox.
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Cantor’s diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

I S = {i ∈ N | i 6∈ f(i)} is like the one from Russell’s
paradox.

I If ∃j ∈ N such that f(j) = S, then we have a contradiction.

I If j ∈ S, then j 6∈ f(j) = S.
I If j 6∈ S, then j 6∈ f(j), which implies j ∈ S.
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Cantor’s diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

I There cannot be a bijection between any set and its power
set (i.e., its set of subsets).(H.W)

I So there is an infinite hierarchy of “larger” infinities...
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Cantor’s diagonalization

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

I There cannot be a bijection between any set and its power
set (i.e., its set of subsets).(H.W)

I So there is an infinite hierarchy of “larger” infinities...

I There is no bijection from R to N (H.W). Moreover, there
is a bijection from R to set of subsets of N.
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One infinity is “strictly” bigger than another!

Theorem (Cantor, 1891)

There is no bijection between N and the set of all subsets of N.

I But, there is a surjection from set of all subsets of N to N.
I Thus, the “size” of P(N) is strictly greater that N!

Can there be some set whose “size” is in between the two?

Cantor’s Continuum hypothesis

There is no set whose “cardinality” is strictly between N and
P(N) (i.e., between naturals and reals).

Figure: 1st of Hilbert’s 23 problems for the 20th century in 1900.
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What did the world think about these proofs (in 1890s?)

(a) Kronecker (b) Poincare (c) Theologians

I Kronecker: Only constructive proofs are proofs! “Scientific
Charlatan”, “Corruptor of youth”!

I Poincare: Set theory is a “disease” from which
mathematics will be cured.

I Christian Theologians: God=Uniqueness of an absolute
infinity. So, what is all this different infinities...?!

I Hilbert: No one can expel us from the paradise that Cantor
has created for us.
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Summary and moving on...

I Finite and infinite sets.

I Using functions to compare sets: focus on bijections.

I Countable, countably infinite and uncountable sets.

I Cantor’s diagonalization argument (A new powerful proof
technique!).

Next: Basic Mathematical Structures – Relations
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Relations

Definition: Function

Let A, B be two sets. A function f from A to B is a subset R
of A×B such that

(i) ∀a ∈ A, ∃b ∈ B such that (a, b) ∈ R, and

(ii) if (a, b) ∈ R and (a, c) ∈ R, then b = c.

I Now, suppose A is the set of all Btech students and B is
the set of all courses. Clearly, we can assign to each student
the set of courses he/she is taking. Is this a function?

I By removing the two extra assumptions in the defn, we get:

Definition: Relation
I A relation R from A to B is a subset of A×B. If

(a, b) ∈ R, we also write this as a R b.

I Thus, a relation is a way to relate the elements of two (not
necessarily different) sets.
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Examples and representations of relations

We write R(A,B) for a relation from A to B and just R(A) if
A = B. Also if A is clear from context, we just write R.

Examples of relations

I All functions are relations.

I R1(Z) = {(a, b) | a, b ∈ Z, a− b is even }.
I R2(Z) = {(a, b) | a, b ∈ Z, a ≤ b}.
I Let S be a set, R3(P(S)) = {(A,B) | A,B ⊆ S,A ⊆ B}.
I Relational databases are practical examples.

Representations of a relation from A to B.

I As a set of ordered pairs of elements, i.e., subset of A×B.

I As a directed graph.

I As a (database) table.
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Use of relations

Practical application in relational databases: IMDB, university
records, etc.

But, why study relations in this course?

I Functions were special kinds of relations that were useful to
compare sets.

I Are there other special relations?What are they useful for?
I Equivalence relations
I Partial orders
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Partitions of a set – grouping “like” elements

Examples

I Natural numbers are partitioned into even and odd.

I This class is partitioned into sets of students from same
hostel.

How do you define a partition?

Definition

A partition of a set S is a set P of its subsets such that

I if S′ ∈ P , then S′ 6= ∅.
I

⋃
S′∈P

S′ = S : its union covers entire set S.

I If S1, S2 ∈ P , then S1 ∩ S2 = ∅: sets are disjoint.

Can you think of two trivial partitions that any set must have?
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Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain
(only) elements that share some common property. e.g.,

I Evenness or oddness (formally, remainder modulo 2!).

I Same hostel...

I But, this sounds like relation, right? Which one?

Relation generated by a partition

I Clearly all elements in a set of the partition are related by
the “sameness” or “likeness” property.

I So can we define this as a relation? aRb if a is “like” b.

I Formally, we define R(S) by aRb if a and b belong to the
same set in the partition of S.

What properties does this relation have?
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