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Equivalence relations and partitions
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Recap: Proofs and Structures

Chapter 1: Proofs

1. Propositions, predicates

2. Types of proofs, axioms

3. Mathematical Induction, Well-ordering principle

4. Strong Induction

Chapter 2: Sets and Functions

1. Finite and infinite sets.

2. Using functions to compare sets: focus on bijections.

3. Countable, countably infinite and uncountable sets.

4. Cantor’s diagonalization (New/powerful proof technique!).

Chapter 3: Relations
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Relations

Definition: Relation
I A relation R from A to B is a subset of A×B. If

(a, b) ∈ R, we also write this as a R b.

We write R(A,B) for a relation from A to B and just R(A) if
A = B. Also if A is clear from context, we just write R.

Examples of relations

I All functions are relations.

I R1(Z) = {(a, b) | a, b ∈ Z, a− b is even }.
I R2(Z) = {(a, b) | a, b ∈ Z, a ≤ b}.
I Let S be a set, R3(P(S)) = {(A,B) | A,B ⊆ S,A ⊆ B}.

Representations of a relation from A to B.

As a set of ordered pairs of elements, i.e., subset of A×B; As a
directed graph; As a (database) table.
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Partitions of a set – grouping “like” elements

Definition

A partition of a set S is a

set P of its subsets such that

I if S′ ∈ P , then S′ 6= ∅.
I

⋃
S′∈P

S′ = S : its union covers entire set S.

I If S1, S2 ∈ P , then S1 ∩ S2 = ∅: sets are disjoint.

Examples

I Natural numbers are partitioned into even and odd.

I Class is partitioned into sets of students from same hostel.
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Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain
(only) elements that share some common property. e.g.,

I Evenness or oddness (formally, remainder modulo 2!).

I Same hostel...

I But, this sounds like relation, right? Which one?

Every Partition gives rise to a Relation

I All elements in a set of the partition are related by the
“sameness” or “likeness” property.

I We can define this as a relation! aRb if a is “like” b.

I Formally, we define R(S) by aRb if a and b belong to the
same set in the partition of S.

What properties does this relation have?
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Properties of a relation generated by a partition

1. All elements must be related to themselves

I A relation R(S) is called reflexive if for all a ∈ S, aRa.

2. If a is “like” b, then b must be “like” a.
I A relation R(S) is called symmetric if for all a, b ∈ S, we

have aRb implies bRa.

3. If a is “like” b and b is “like” c, then a must be “like” c.
I A relation R(S) called transitive if for all a, b, c ∈ S, we

have aRb and bRc implies aRc.

Any other defining properties?

Definition

A relation which satisfies all these three properties is called an
equivalence relation.

Thus, from any partition, we get an equivalence relation. Is the
converse true?
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Examples

I Reflexive: ∀a ∈ S, aRa.

I Symmetric: ∀a, b ∈ S, aRb implies bRa.

I Transitive: ∀a, b, c ∈ S, aRb, bRc implies aRc.

I Equivalence: Reflexive, Symmetric and Transitive.

Relation Refl. Sym. Trans. Equiv.

aR4b if students a and b take
same set of courses

X X X X

aR5b if student a takes course b

{(a, b) | a, b ∈ Z, (a− b) mod 2 = 0}
{(a, b) | a, b ∈ Z, a ≤ b}
{(a, b) | a, b ∈ Z, a < b}
{(a, b) | a, b ∈ Z, a | b}
{(a, b) | a, b ∈ R, |a− b| < 1}
{((a, b), (c, d)) | (a, b), (c, d) ∈
Z× (Z \ {0}), (ad = bc)}
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I if S′ ∈ P , then S′ 6= ∅.
I

⋃
S′∈P

S′ = S : its union covers entire set S.

I If S1, S2 ∈ P , then S1 ∩ S2 = ∅: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set S gives rise to a canonical equivalence
relation R on S, namely,

I aRb if a and b belong to the same set in the partition of S.

Is the converse true? Can we generate a partition from every
equivalence relation?
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Equivalence classes

Definition
I Let R be an equivalence relation on set S, and let a ∈ S.

I Then the equivalence class of a, denoted [a], is the set of all
elements related to it, i.e., [a] = {b ∈ S | (a, b) ∈ R}.

In R = {(a, b) ∈ Z× Z | (a− b) mod 5 = 0}, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let a, b ∈ S. Then, the
following statements are equivalent:

1. aRb

2. [a] = [b]

3. [a] ∩ [b] 6= ∅.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to
(1) symm and trans. (H.W.: Redo the proof formally.)
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From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the
equivalence classes of R form a partition of S.

2. Conversely, given a partition P of S, there is an
equivalence relation R whose equivalence classes are
exactly the sets of P .

Proof sketch of (1): Union, non-emptiness follows from
reflexivity. The rest (pairwise disjointness) follows from the
previous lemma.
(H.W.): Write the formal proofs of (1) and (2).
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More “applications” of equivalence relations

Defining new objects using equivalence relations

Consider
R = {((a, b), (c, d)) | (a, b), (c, d) ∈ Z× (Z \ {0}), (ad = bc)}.

I Then the equivalence classes of R define the rational
numbers.

I e.g.,
[
1
2

]
=
[
2
4

]
are two names for the same rational number.

I Indeed, when we write p
q we implicitly mean

[
p
q

]
.

I With this definition, why are addition and multiplication
“well-defined”?

Can we define integers and real numbers starting from naturals
by using equivalence classes?
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