CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 31, 2023
Lecture 11 - Basic Mathematical Structures
Equivalence relations and partially ordered sets

Recap: Proofs and Structures

Chapter 1: Proofs

1. Propositions, predicates
2. Types of proofs, axioms
3. Mathematical Induction, Well-ordering principle
4. Strong Induction

Recap: Proofs and Structures

Chapter 1: Proofs

1. Propositions, predicates
2. Types of proofs, axioms
3. Mathematical Induction, Well-ordering principle
4. Strong Induction

Chapter 2: Sets and Functions

1. Finite and infinite sets.
2. Using functions to compare sets: focus on bijections.
3. Countable, countably infinite and uncountable sets.
4. Cantor's diagonalization (New/powerful proof technique!).

Recap: Proofs and Structures

Chapter 1: Proofs

1. Propositions, predicates
2. Types of proofs, axioms
3. Mathematical Induction, Well-ordering principle
4. Strong Induction

Chapter 2: Sets and Functions

1. Finite and infinite sets.
2. Using functions to compare sets: focus on bijections.
3. Countable, countably infinite and uncountable sets.
4. Cantor's diagonalization (New/powerful proof technique!).

Chapter 3: Relations

1. Equivalence Relations
2. Partial Orders

Examples

- Reflexive: $\forall a \in S, a R a$.
- Symmetric: $\forall a, b \in S, a R b$ implies $b R a$.
- Transitive: $\forall a, b, c \in S, a R b, b R c$ implies $a R c$.
- Equivalence: Reflexive, Symmetric and Transitive.

Examples

- Reflexive: $\forall a \in S, a R a$.
- Symmetric: $\forall a, b \in S, a R b$ implies $b R a$.
- Transitive: $\forall a, b, c \in S, a R b, b R c$ implies $a R c$.
- Equivalence: Reflexive, Symmetric and Transitive.

Relation	Refl.	Sym.	Trans.	Equiv.
$a R_{4} b$ if students a and b take same set of courses	\checkmark	\checkmark	\checkmark	\checkmark
$a R_{5} b$ if student a takes course b				
$\{(a, b) \mid a, b \in \mathbb{Z},(a-b) \bmod 2=0\}$				
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$				
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\{(a, b)\|a, b \in \mathbb{Z}, a\| b\}$				
$\{(a, b)\|a, b \in \mathbb{R},\|a-b\|<1\}$				
$\{(a, b),(c, d)) \mid(a, b),(c, d)$ $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\}),(a d=b c)\}$				

Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a]=\{b \in S \mid(a, b) \in R\}$.

Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a]=\{b \in S \mid(a, b) \in R\}$.

In $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid(a-b) \bmod 5=0\}$, what are [0], [1]?

Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a]=\{b \in S \mid(a, b) \in R\}$.

In $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid(a-b) \bmod 5=0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

1. $a R b$
2. $[a]=[b]$
3. $[a] \cap[b] \neq \emptyset$.

Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a]=\{b \in S \mid(a, b) \in R\}$.

In $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid(a-b) \bmod 5=0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

1. $a R b$
2. $[a]=[b]$
3. $[a] \cap[b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Redo the proof formally.)

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.
(H.W.): Write the formal proofs of (1) and (2).

More "applications" of equivalence relations

Defining new objects using equivalence relations
Consider
$R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\}),(a d=b c)\}$.

More "applications" of equivalence relations

Defining new objects using equivalence relations

Consider
$R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\}),(a d=b c)\}$.

- Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right]=\left[\frac{2}{4}\right]$ are two names for the same rational number.
- Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left[\frac{p}{q}\right]$.

More "applications" of equivalence relations

Defining new objects using equivalence relations
Consider
$R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\}),(a d=b c)\}$.

- Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right]=\left[\frac{2}{4}\right]$ are two names for the same rational number.
- Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left[\frac{p}{q}\right]$.
- With this definition, why are addition and multiplication "well-defined"?

More "applications" of equivalence relations

Defining new objects using equivalence relations
Consider
$R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\}),(a d=b c)\}$.

- Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right]=\left[\frac{2}{4}\right]$ are two names for the same rational number.
- Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left[\frac{p}{q}\right]$.
- With this definition, why are addition and multiplication "well-defined"?

Can we define integers and real numbers starting from naturals by using equivalence classes?

Moving on another special relation: Partial Orders
Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.

Moving on another special relation: Partial Orders

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Partial Orders

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric
A relation R on S is anti-symmetric if for all $a, b \in S a R b$ and $b R a$ implies $a=b$.

Partial Orders

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S a R b$ and $b R a$ implies $a=b$.

Examples:

- $R_{1}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.
- $R_{2}(\mathcal{P}(S))=\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$.

Partial Orders

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S a R b$ and $b R a$ implies $a=b$.

Examples:

- $R_{1}(\mathbb{Z})=\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.
- $R_{2}(\mathcal{P}(S))=\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$.

Definition

A partial order is a relation which is reflexive, transitive and anti-symmetric.

Partial orders and equivalences relations

- Reflexive: $\forall a \in S, a R a$.
- Symmetric: $\forall a, b \in S, a R b$ implies $b R a$.
- Anti-symmetric: $\forall a, b \in S, a R b, b R a$ implies $a=b$.
- Transitive: $\forall a, b, c \in S, a R b, b R c$ implies $a R c$.

Partial orders and equivalences relations

- Reflexive: $\forall a \in S, a R a$.
- Symmetric: $\forall a, b \in S, a R b$ implies $b R a$.
- Anti-symmetric: $\forall a, b \in S, a R b, b R a$ implies $a=b$.
- Transitive: $\forall a, b, c \in S, a R b, b R c$ implies $a R c$.

	Reflexive	Transitive	Symmetric	Anti-symmetric
Equivalence relation	\checkmark	\checkmark	\checkmark	
Partial order	\checkmark	\checkmark		

Partial orders and equivalences relations

- Reflexive: $\forall a \in S, a R a$.
- Symmetric: $\forall a, b \in S, a R b$ implies $b R a$.
- Anti-symmetric: $\forall a, b \in S, a R b, b R a$ implies $a=b$.
- Transitive: $\forall a, b, c \in S, a R b, b R c$ implies $a R c$.

	Refl.	Anti-Sym	Trans.	PO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$				
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$				
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$				

Partial orders

	Refl.	Anti-Sym	Trans.	PO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$				
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$				
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$				

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.

Partial orders

	Refl.	Anti-Sym	Trans.	PO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$				
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$				
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$				

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order?

Partial orders

	Refl.	Anti-Sym	Trans.	PO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$				
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$				
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$				

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by \preceq).

Partial orders

	Refl.	Anti-Sym	Trans.	PO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$				
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$				
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$				
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$				

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by \preceq).
- A total order is a partial order \preceq on S in which every pair of elements is comparable
- i.e., $\forall a, b \in S$, either $a \preceq b$ or $b \preceq a$.

Partial orders

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	\times
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$					
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$					
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$					
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$					

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by \preceq).
- A total order is a partial order \preceq on S in which every pair of elements is comparable
- i.e., $\forall a, b \in S$, either $a \preceq b$ or $b \preceq a$.

Partial orders

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	\times
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$					
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$					
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$					
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$					

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by \preceq).
- A total order is a partial order \preceq on S in which every pair of elements is comparable
- Qn: Can a relation be symmetric and anti-symmetric?

Partial orders

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	\times
$\{(a, b) \mid a, b \in \mathbb{Z}, a<b\}$					
$\left\{(a, b)\left\|a, b \in \mathbb{Z}^{+}, a\right\| b\right\}$					
$\{((a, b),(c, d)) \mid(a, b),(c, d) \in$					
$\mathbb{Z}^{+} \times \mathbb{Z}^{+}, a<c$ or $\left.(a=c, b \leq d)\right\}$					

- We use \preceq to denote partial orders and write $a \preceq b$ instead of $a R b$.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by \preceq).
- A total order is a partial order \preceq on S in which every pair of elements is comparable
- Qn: Can a relation be symmetric and anti-symmetric?
- Qn: Can a relation be neither symmetric nor anti-symmetric?

Partially ordered sets (Posets)

Definition

A set S together with a partial order \preceq on S, is called a partially-ordered set or poset, denoted (S, \preceq).

Partially ordered sets (Posets)

Definition

A set S together with a partial order \preceq on S, is called a partially-ordered set or poset, denoted (S, \preceq).

Examples

- (\mathbb{Z}, \leq) : integers with the usual less than or equal to relation.
- $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- $\left(\mathbb{Z}^{+}, \mid\right)$: positive integers with divisibility relation.

Graphical representation of relations: posets

Recall: any relation on a set can be represented as a graph with

- nodes as elements of the set and
- directed edges between them indicating the ordered pairs that are related.

- Did these come from posets?
- Do graphs defined by posets have any "special" properties?

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Figure: Graph of a poset and its Hasse diagram

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- What is "special" about these graphs?

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- What is "special" about these graphs?
- Graphs of posets are "acyclic" (except for self-loops).
- Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.

Graphical representation of relations: posets

- Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- What is "special" about these graphs?
- Graphs of posets are "acyclic" (except for self-loops).
- Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.
- Given the Hasse diagram of a poset, its reflexive transitive closure gives back the graph of the poset.

