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Equivalence relations and partially ordered sets
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Recap: Proofs and Structures

Chapter 1: Proofs

1. Propositions, predicates

2. Types of proofs, axioms

3. Mathematical Induction, Well-ordering principle

4. Strong Induction

Chapter 2: Sets and Functions

1. Finite and infinite sets.

2. Using functions to compare sets: focus on bijections.

3. Countable, countably infinite and uncountable sets.

4. Cantor’s diagonalization (New/powerful proof technique!).

Chapter 3: Relations
1. Equivalence Relations

2. Partial Orders
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Examples

I Reflexive: ∀a ∈ S, aRa.

I Symmetric: ∀a, b ∈ S, aRb implies bRa.

I Transitive: ∀a, b, c ∈ S, aRb, bRc implies aRc.

I Equivalence: Reflexive, Symmetric and Transitive.

Relation Refl. Sym. Trans. Equiv.

aR4b if students a and b take
same set of courses

X X X X

aR5b if student a takes course b

{(a, b) | a, b ∈ Z, (a− b) mod 2 = 0}
{(a, b) | a, b ∈ Z, a ≤ b}
{(a, b) | a, b ∈ Z, a < b}
{(a, b) | a, b ∈ Z, a | b}
{(a, b) | a, b ∈ R, |a− b| < 1}
{((a, b), (c, d)) | (a, b), (c, d) ∈
Z× (Z \ {0}), (ad = bc)}
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Equivalence classes

Definition
I Let R be an equivalence relation on set S, and let a ∈ S.

I Then the equivalence class of a, denoted [a], is the set of all
elements related to it, i.e., [a] = {b ∈ S | (a, b) ∈ R}.

In R = {(a, b) ∈ Z× Z | (a− b) mod 5 = 0}, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let a, b ∈ S. Then, the
following statements are equivalent:

1. aRb

2. [a] = [b]

3. [a] ∩ [b] 6= ∅.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to
(1) symm and trans. (H.W.: Redo the proof formally.)
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From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the
equivalence classes of R form a partition of S.

2. Conversely, given a partition P of S, there is an
equivalence relation R whose equivalence classes are
exactly the sets of P .

Proof sketch of (1): Union, non-emptiness follows from
reflexivity. The rest (pairwise disjointness) follows from the
previous lemma.
(H.W.): Write the formal proofs of (1) and (2).
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More “applications” of equivalence relations

Defining new objects using equivalence relations

Consider
R = {((a, b), (c, d)) | (a, b), (c, d) ∈ Z× (Z \ {0}), (ad = bc)}.

I Then the equivalence classes of R define the rational
numbers.

I e.g.,
[
1
2

]
=
[
2
4

]
are two names for the same rational number.

I Indeed, when we write p
q we implicitly mean

[
p
q

]
.

I With this definition, why are addition and multiplication
“well-defined”?

Can we define integers and real numbers starting from naturals
by using equivalence classes?
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Moving on another special relation: Partial Orders

Consider {(a, b) | a, b ∈ Z, a ≤ b}.

This is reflexive, transitive
but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all a, b ∈ S aRb and
bRa implies a = b.

Examples:

I R1(Z) = {(a, b) | a, b ∈ Z, a ≤ b}.
I R2(P(S)) = {(A,B) | A,B ∈ P(S), A ⊆ B}.

Definition

A partial order is a relation which is reflexive, transitive and
anti-symmetric.
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Partial orders and equivalences relations

I Reflexive: ∀a ∈ S, aRa.

I Symmetric: ∀a, b ∈ S, aRb implies bRa.

I Anti-symmetric: ∀a, b ∈ S, aRb, bRa implies a = b.

I Transitive: ∀a, b, c ∈ S, aRb, bRc implies aRc.
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X X X

Partial order X X X
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Partially ordered sets (Posets)

Definition

A set S together with a partial order � on S, is called a
partially-ordered set or poset, denoted (S,�).

Examples

I (Z,≤): integers with the usual less than or equal to
relation.

I (P(S),⊆): powerset of any set with the subset relation.

I (Z+, | ): positive integers with divisibility relation.
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Graphical representation of relations: posets

Recall: any relation on a set can be represented as a graph with

I nodes as elements of the set and

I directed edges between them indicating the ordered pairs
that are related.

I Did these come from posets?

I Do graphs defined by posets have any “special” properties?
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Graphical representation of relations: posets

I Let S = {1, 2, 3}. Recall the poset (P(S),⊆).
I How does the graph of (P(S),⊆) look like?

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of a poset and its Hasse diagram

I What is “special” about these graphs?
I Graphs of posets are “acyclic” (except for self-loops).
I Starting from a node and following the directed edges

(except self-loops), one can’t come back to the same node.
I Given the Hasse diagram of a poset, its reflexive transitive

closure gives back the graph of the poset.
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